hikyuu 2.6.8.4__py3-none-manylinux2014_x86_64.whl → 2.7.0__py3-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hikyuu/__init__.py +31 -17
- hikyuu/__init__.pyi +610 -590
- hikyuu/analysis/__init__.pyi +584 -563
- hikyuu/analysis/analysis.pyi +585 -564
- hikyuu/core.py +2 -0
- hikyuu/core.pyi +586 -565
- hikyuu/cpp/__init__.pyi +2 -2
- hikyuu/cpp/core310.pyi +501 -108
- hikyuu/cpp/core310.so +0 -0
- hikyuu/cpp/core311.pyi +495 -108
- hikyuu/cpp/core311.so +0 -0
- hikyuu/cpp/core312.pyi +495 -108
- hikyuu/cpp/core312.so +0 -0
- hikyuu/cpp/core313.pyi +501 -108
- hikyuu/cpp/core313.so +0 -0
- hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
- hikyuu/cpp/libboost_charconv-mt.so +0 -0
- hikyuu/cpp/libboost_charconv-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_chrono-mt.so +0 -0
- hikyuu/cpp/libboost_chrono-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_date_time-mt.so +0 -0
- hikyuu/cpp/libboost_date_time-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_serialization-mt.so +0 -0
- hikyuu/cpp/libboost_serialization-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_system-mt.so +0 -0
- hikyuu/cpp/libboost_system-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_thread-mt.so +0 -0
- hikyuu/cpp/libboost_thread-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libboost_wserialization-mt.so +0 -0
- hikyuu/cpp/libboost_wserialization-mt.so.1.88.0 +0 -0
- hikyuu/cpp/libhikyuu.so +0 -0
- hikyuu/cpp/libsqlite3.so +0 -0
- hikyuu/data/clickhouse_upgrade/createdb.sql +105 -105
- hikyuu/data/common.py +3 -3
- hikyuu/data/common_clickhouse.py +1 -1
- hikyuu/data/download_block.py +351 -0
- hikyuu/data/em_block_to_clickhouse.py +26 -74
- hikyuu/data/em_block_to_mysql.py +25 -75
- hikyuu/data/em_block_to_sqlite.py +26 -78
- hikyuu/data/hku_config_template.py +3 -3
- hikyuu/data/pytdx_to_clickhouse.py +15 -11
- hikyuu/data/pytdx_to_h5.py +6 -2
- hikyuu/data/pytdx_to_mysql.py +5 -1
- hikyuu/data/pytdx_weight_to_clickhouse.py +1 -1
- hikyuu/data/pytdx_weight_to_mysql.py +1 -1
- hikyuu/data/pytdx_weight_to_sqlite.py +1 -1
- hikyuu/data/zh_bond10_to_clickhouse.py +1 -1
- hikyuu/draw/__init__.pyi +1 -1
- hikyuu/draw/drawplot/__init__.pyi +9 -9
- hikyuu/draw/drawplot/bokeh_draw.pyi +600 -580
- hikyuu/draw/drawplot/common.pyi +1 -1
- hikyuu/draw/drawplot/echarts_draw.pyi +602 -582
- hikyuu/draw/drawplot/matplotlib_draw.py +4 -74
- hikyuu/draw/drawplot/matplotlib_draw.pyi +612 -592
- hikyuu/draw/elder.pyi +11 -11
- hikyuu/draw/kaufman.pyi +18 -18
- hikyuu/draw/volume.pyi +10 -10
- hikyuu/examples/notebook/Demo/Demo1.ipynb +48 -33
- hikyuu/extend.py +0 -7
- hikyuu/extend.pyi +594 -573
- hikyuu/fetcher/stock/zh_block_em.py +12 -40
- hikyuu/gui/HikyuuTDX.py +99 -31
- hikyuu/gui/data/CollectSpotThread.py +1 -1
- hikyuu/gui/data/EscapetimeThread.py +8 -14
- hikyuu/gui/data/ImportBlockInfoTask.py +3 -10
- hikyuu/gui/data/MainWindow.py +1196 -717
- hikyuu/gui/data/SchedImportThread.py +2 -2
- hikyuu/gui/data/UsePytdxImportToH5Thread.py +3 -3
- hikyuu/gui/data/UseQmtImportToH5Thread.py +2 -2
- hikyuu/gui/data/UseTdxImportToH5Thread.py +3 -3
- hikyuu/gui/data/tool.py +32 -25
- hikyuu/gui/dataserver.py +5 -3
- hikyuu/gui/images/liandongxiaopu.png +0 -0
- hikyuu/hub.pyi +6 -6
- hikyuu/include/hikyuu/DataType.h +4 -16
- hikyuu/include/hikyuu/KData.h +6 -3
- hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +1 -1
- hikyuu/include/hikyuu/KDataSharedBufferImp.h +1 -1
- hikyuu/include/hikyuu/KQuery.h +2 -2
- hikyuu/include/hikyuu/Stock.h +4 -1
- hikyuu/include/hikyuu/StockManager.h +13 -3
- hikyuu/include/hikyuu/data_driver/BaseInfoDriver.h +8 -0
- hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
- hikyuu/include/hikyuu/data_driver/KDataDriver.h +26 -1
- hikyuu/include/hikyuu/data_driver/base_info/mysql/MySQLBaseInfoDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/base_info/sqlite/SQLiteBaseInfoDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/block_info/mysql/MySQLBlockInfoDriver.h +2 -1
- hikyuu/include/hikyuu/data_driver/block_info/qianlong/QLBlockInfoDriver.h +2 -1
- hikyuu/include/hikyuu/data_driver/block_info/sqlite/SQLiteBlockInfoDriver.h +2 -1
- hikyuu/include/hikyuu/data_driver/kdata/DoNothingKDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/cvs/KDataTempCsvDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/hdf5/H5KDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/mysql/MySQLKDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/sqlite/SQLiteKDataDriver.h +1 -1
- hikyuu/include/hikyuu/data_driver/kdata/tdx/TdxKDataDriver.h +1 -1
- hikyuu/include/hikyuu/hikyuu.h +1 -1
- hikyuu/include/hikyuu/indicator/build_in.h +1 -0
- hikyuu/include/hikyuu/indicator/crt/CYCLE.h +4 -4
- hikyuu/include/hikyuu/indicator/crt/HSL.h +2 -2
- hikyuu/include/hikyuu/indicator/crt/QUANTILE_TRUNC.h +30 -0
- hikyuu/include/hikyuu/indicator/crt/TURNOVER.h +1 -0
- hikyuu/include/hikyuu/indicator/crt/ZSCORE.h +2 -2
- hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +25 -0
- hikyuu/include/hikyuu/misc.h +38 -0
- hikyuu/include/hikyuu/plugin/dataserver.h +2 -1
- hikyuu/include/hikyuu/plugin/device.h +10 -0
- hikyuu/include/hikyuu/plugin/extind.h +37 -0
- hikyuu/include/hikyuu/plugin/hkuextra.h +0 -18
- hikyuu/include/hikyuu/plugin/interface/DataServerPluginInterface.h +2 -2
- hikyuu/include/hikyuu/plugin/interface/DevicePluginInterface.h +2 -0
- hikyuu/include/hikyuu/plugin/interface/ExtendIndicatorsPluginInterface.h +12 -0
- hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +0 -14
- hikyuu/include/hikyuu/plugin/interface/plugins.h +3 -1
- hikyuu/include/hikyuu/python/pybind_utils.h +1 -8
- hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +3 -0
- hikyuu/include/hikyuu/trade_manage/Performance.h +4 -4
- hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
- hikyuu/include/hikyuu/trade_sys/moneymanager/imp/FixedCapitalFundsMM.h +0 -4
- hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +36 -3
- hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +125 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +125 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/build_in.h +3 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/buildin_norm.h +36 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/buildin_scfilter.h +51 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/GroupSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreLessOrEqualValueSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreNanSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/MinAmountPercentSCFilter.h +25 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/PriceSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/filter/TopNSCFilter.h +24 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/EqualWeightMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICIRMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/imp/WeightMultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormMinMax.h +23 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantile.h +28 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantileUniform.h +28 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormZScore.h +25 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/__init__.py +1 -0
- hikyuu/include/hikyuu/trade_sys/multifactor/normalize/quantile_trunc.h +16 -0
- hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +7 -0
- hikyuu/include/hikyuu/trade_sys/portfolio/imp/SimplePortfolio.h +7 -0
- hikyuu/include/hikyuu/trade_sys/portfolio/imp/WithoutAFPortfolio.h +7 -0
- hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +49 -0
- hikyuu/include/hikyuu/trade_sys/selector/build_in.h +1 -0
- hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +40 -0
- hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +0 -3
- hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +49 -0
- hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorSelector.h +1 -1
- hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorValueSelector.h +1 -1
- hikyuu/include/hikyuu/trade_sys/signal/imp/BandSignal2.h +0 -4
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/AddValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/DivValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/MulValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorSignal.h +1 -1
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorValueSignal.h +4 -4
- hikyuu/include/hikyuu/trade_sys/signal/imp/logic/SubValueSignal.h +2 -2
- hikyuu/include/hikyuu/trade_sys/slippage/build_in.h +5 -1
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_LogNormal.h +22 -0
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Normal.h +22 -0
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_TruncNormal.h +25 -0
- hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Uniform.h +23 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/LogNormalSlippage.h +28 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/NormalSlippage.h +28 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/TruncNormalSlippage.h +28 -0
- hikyuu/include/hikyuu/trade_sys/slippage/imp/UniformSlippage.h +24 -0
- hikyuu/include/hikyuu/trade_sys/system/System.h +14 -1
- hikyuu/include/hikyuu/utilities/SpendTimer.h +17 -7
- hikyuu/include/hikyuu/utilities/arithmetic.h +55 -0
- hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +1 -1
- hikyuu/include/hikyuu/utilities/plugin/PluginLoader.h +4 -1
- hikyuu/include/hikyuu/version.h +5 -5
- hikyuu/plugin/libbacktest.so +0 -0
- hikyuu/plugin/libclickhousedriver.so +0 -0
- hikyuu/plugin/libdataserver.so +0 -0
- hikyuu/{cpp/core39.so → plugin/libdataserver_parquet.so} +0 -0
- hikyuu/plugin/libdevice.so +0 -0
- hikyuu/plugin/libextind.so +0 -0
- hikyuu/plugin/libhkuextra.so +0 -0
- hikyuu/plugin/libimport2hdf5.so +0 -0
- hikyuu/plugin/libtmreport.so +0 -0
- hikyuu/trade_manage/__init__.pyi +599 -579
- hikyuu/trade_manage/broker.pyi +3 -3
- hikyuu/trade_manage/broker_easytrader.pyi +1 -1
- hikyuu/trade_manage/trade.py +0 -2
- hikyuu/trade_manage/trade.pyi +599 -579
- hikyuu/util/__init__.pyi +1 -1
- hikyuu/util/singleton.pyi +1 -1
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/METADATA +36 -32
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/RECORD +197 -164
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/top_level.txt +2 -2
- hikyuu/cpp/core39.pyi +0 -14385
- hikyuu/data_driver/__init__.py +0 -49
- hikyuu/data_driver/jqdata_data_driver.py +0 -277
- hikyuu/data_driver/pytdx_data_driver.py +0 -292
- hikyuu/fetcher/stock/zh_stock_a_huatai.py +0 -51
- hikyuu/fetcher/stock/zh_stock_a_pytdx.py +0 -129
- hikyuu/gui/data/CollectToMemThread.py +0 -123
- hikyuu/gui/data/CollectToMySQLThread.py +0 -178
- hikyuu/gui/start_huatai_insight.py +0 -510
- hikyuu/include/hikyuu/views/arrow_common.h +0 -38
- hikyuu/include/hikyuu/views/arrow_views.h +0 -117
- hikyuu/tools/update_block_info.py +0 -168
- /hikyuu/include/hikyuu/{views → trade_sys/multifactor/filter}/__init__.py +0 -0
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/WHEEL +0 -0
- {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core313.pyi
CHANGED
|
@@ -3,7 +3,7 @@ import collections.abc
|
|
|
3
3
|
import numpy
|
|
4
4
|
import numpy.typing
|
|
5
5
|
import typing
|
|
6
|
-
__all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', '
|
|
6
|
+
__all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_FUNC', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'GROUP_COUNT', 'GROUP_FUNC', 'GROUP_MAX', 'GROUP_MEAN', 'GROUP_MIN', 'GROUP_PROD', 'GROUP_SUM', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NORM_MinMax', 'NORM_NOTHING', 'NORM_Quantile', 'NORM_Quantile_Uniform', 'NORM_Zscore', 'NOT', 'NormalizeBase', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'QUANTILE_TRUNC', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SCFilter_AmountLimit', 'SCFilter_Group', 'SCFilter_IgnoreNan', 'SCFilter_LessOrEqualValue', 'SCFilter_Price', 'SCFilter_TopN', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_MultiFactor2', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SP_LogNormal', 'SP_Normal', 'SP_TruncNormal', 'SP_Uniform', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'ScoresFilterBase', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'bind_email', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_expire_date', 'get_funds_list', 'get_kdata', 'get_last_version', 'get_log_level', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'open_ostream_to_python', 'open_spend_time', 'parallel_run_pf', 'parallel_run_sys', 'positions_to_df', 'positions_to_np', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'toPriceList', 'trades_to_df', 'trades_to_np', 'translist_to_df', 'translist_to_np', 'view_license', 'weights_to_df', 'weights_to_np']
|
|
7
7
|
class AllocateFundsBase:
|
|
8
8
|
"""
|
|
9
9
|
资产分配算法基类, 子类接口:
|
|
@@ -229,7 +229,10 @@ class Block:
|
|
|
229
229
|
def __init__(self) -> None:
|
|
230
230
|
...
|
|
231
231
|
@typing.overload
|
|
232
|
-
def __init__(self,
|
|
232
|
+
def __init__(self, category: str, name: str) -> None:
|
|
233
|
+
...
|
|
234
|
+
@typing.overload
|
|
235
|
+
def __init__(self, category: str, name: str, index_code: str) -> None:
|
|
233
236
|
...
|
|
234
237
|
@typing.overload
|
|
235
238
|
def __init__(self, arg0: Block) -> None:
|
|
@@ -1207,9 +1210,6 @@ class DatetimeList:
|
|
|
1207
1210
|
@staticmethod
|
|
1208
1211
|
def to_pandas(data: DatetimeList):
|
|
1209
1212
|
...
|
|
1210
|
-
@staticmethod
|
|
1211
|
-
def to_pyarrow(data):
|
|
1212
|
-
...
|
|
1213
1213
|
def __bool__(self) -> bool:
|
|
1214
1214
|
"""
|
|
1215
1215
|
Check whether the list is nonempty
|
|
@@ -2009,8 +2009,6 @@ class Indicator:
|
|
|
2009
2009
|
"""
|
|
2010
2010
|
转化为np.array, 如果为时间序列, 则包含 datetime 日期列
|
|
2011
2011
|
"""
|
|
2012
|
-
def to_pyarrow(self) -> typing.Any:
|
|
2013
|
-
...
|
|
2014
2012
|
def value_to_df(self) -> typing.Any:
|
|
2015
2013
|
"""
|
|
2016
2014
|
转换为 DataFrame, 仅包含值
|
|
@@ -2019,8 +2017,6 @@ class Indicator:
|
|
|
2019
2017
|
"""
|
|
2020
2018
|
仅转化值为np.array, 不包含日期列
|
|
2021
2019
|
"""
|
|
2022
|
-
def value_to_pyarrow(self) -> typing.Any:
|
|
2023
|
-
...
|
|
2024
2020
|
@property
|
|
2025
2021
|
def discard(self) -> int:
|
|
2026
2022
|
"""
|
|
@@ -2336,8 +2332,6 @@ class KData:
|
|
|
2336
2332
|
"""
|
|
2337
2333
|
将 KData 转换为 NumPy 数组
|
|
2338
2334
|
"""
|
|
2339
|
-
def to_pyarrow(self) -> typing.Any:
|
|
2340
|
-
...
|
|
2341
2335
|
def tocsv(self, arg0: str) -> None:
|
|
2342
2336
|
"""
|
|
2343
2337
|
tocsv(self, filename)
|
|
@@ -2597,9 +2591,6 @@ class KRecordList:
|
|
|
2597
2591
|
@staticmethod
|
|
2598
2592
|
def to_pandas(data):
|
|
2599
2593
|
...
|
|
2600
|
-
@staticmethod
|
|
2601
|
-
def to_pyarrow(data):
|
|
2602
|
-
...
|
|
2603
2594
|
def __bool__(self) -> bool:
|
|
2604
2595
|
"""
|
|
2605
2596
|
Check whether the list is nonempty
|
|
@@ -3074,6 +3065,17 @@ class MultiFactorBase:
|
|
|
3074
3065
|
...
|
|
3075
3066
|
def __str__(self) -> str:
|
|
3076
3067
|
...
|
|
3068
|
+
def add_special_normalize(self, name: str, norm: NormalizeBase = None, category: str = '', style_inds: collections.abc.Sequence[Indicator] = []) -> None:
|
|
3069
|
+
"""
|
|
3070
|
+
add_special_normalize(self, name[, norm=None, category="", style_inds=[]])
|
|
3071
|
+
|
|
3072
|
+
对指定名称的指标应用特定的标准化/归一化、行业中性化、风格因子中性化操作。标准化操作、行业中性化、风格因子中性化彼此无关,可同时指定也可分开指定。
|
|
3073
|
+
|
|
3074
|
+
:param str name: 特殊归一化方法名称
|
|
3075
|
+
:param Normalize norm: 特殊归一化方法
|
|
3076
|
+
:param str category: 行业中性化时,指定板块类别
|
|
3077
|
+
:param list[Indicator] style_inds: 用于中性化的风格指标列表
|
|
3078
|
+
"""
|
|
3077
3079
|
def clone(self) -> MultiFactorBase:
|
|
3078
3080
|
"""
|
|
3079
3081
|
克隆操作
|
|
@@ -3095,7 +3097,14 @@ class MultiFactorBase:
|
|
|
3095
3097
|
:return: ScoreRecordList
|
|
3096
3098
|
"""
|
|
3097
3099
|
def get_all_src_factors(self) -> list[list[Indicator]]:
|
|
3098
|
-
|
|
3100
|
+
"""
|
|
3101
|
+
get_all_src_factors(self)
|
|
3102
|
+
|
|
3103
|
+
获取所有原始因子列表(如果指定了标准化、行业中性化, 返回为已处理的因子列表)
|
|
3104
|
+
|
|
3105
|
+
:rtype: list
|
|
3106
|
+
:return: list IndicatorList stks x inds
|
|
3107
|
+
"""
|
|
3099
3108
|
def get_datetime_list(self) -> DatetimeList:
|
|
3100
3109
|
"""
|
|
3101
3110
|
获取参考日期列表(由参考证券通过查询条件获得)
|
|
@@ -3171,6 +3180,14 @@ class MultiFactorBase:
|
|
|
3171
3180
|
"""
|
|
3172
3181
|
是否存在指定参数
|
|
3173
3182
|
"""
|
|
3183
|
+
def set_normalize(self, norm: NormalizeBase) -> None:
|
|
3184
|
+
"""
|
|
3185
|
+
set_normalize(self, norm)
|
|
3186
|
+
|
|
3187
|
+
设置标准化或归一化方法(影响全部因子)
|
|
3188
|
+
|
|
3189
|
+
:param NormalizeBase norm: 标准化或归一化方法实例
|
|
3190
|
+
"""
|
|
3174
3191
|
def set_param(self, arg0: str, arg1: any) -> None:
|
|
3175
3192
|
"""
|
|
3176
3193
|
set_param(self, name, value)
|
|
@@ -3221,6 +3238,74 @@ class MultiFactorBase:
|
|
|
3221
3238
|
@query.setter
|
|
3222
3239
|
def query(self, arg1: Query) -> None:
|
|
3223
3240
|
...
|
|
3241
|
+
class NormalizeBase:
|
|
3242
|
+
"""
|
|
3243
|
+
用于 MF 的截面标准化操作
|
|
3244
|
+
"""
|
|
3245
|
+
@staticmethod
|
|
3246
|
+
def _pybind11_conduit_v1_(*args, **kwargs):
|
|
3247
|
+
...
|
|
3248
|
+
def __getstate__(self) -> tuple:
|
|
3249
|
+
...
|
|
3250
|
+
@typing.overload
|
|
3251
|
+
def __init__(self) -> None:
|
|
3252
|
+
...
|
|
3253
|
+
@typing.overload
|
|
3254
|
+
def __init__(self, arg0: NormalizeBase) -> None:
|
|
3255
|
+
...
|
|
3256
|
+
@typing.overload
|
|
3257
|
+
def __init__(self, arg0: str) -> None:
|
|
3258
|
+
"""
|
|
3259
|
+
初始化构造函数
|
|
3260
|
+
|
|
3261
|
+
:param str name: 名称
|
|
3262
|
+
"""
|
|
3263
|
+
def __repr__(self) -> str:
|
|
3264
|
+
...
|
|
3265
|
+
def __setstate__(self, arg0: tuple) -> None:
|
|
3266
|
+
...
|
|
3267
|
+
def __str__(self) -> str:
|
|
3268
|
+
...
|
|
3269
|
+
def clone(self) -> NormalizeBase:
|
|
3270
|
+
"""
|
|
3271
|
+
克隆操作
|
|
3272
|
+
"""
|
|
3273
|
+
def get_param(self, arg0: str) -> any:
|
|
3274
|
+
"""
|
|
3275
|
+
get_param(self, name)
|
|
3276
|
+
|
|
3277
|
+
获取指定的参数
|
|
3278
|
+
|
|
3279
|
+
:param str name: 参数名称
|
|
3280
|
+
:return: 参数值
|
|
3281
|
+
:raises out_of_range: 无此参数
|
|
3282
|
+
"""
|
|
3283
|
+
def have_param(self, arg0: str) -> bool:
|
|
3284
|
+
"""
|
|
3285
|
+
是否存在指定参数
|
|
3286
|
+
"""
|
|
3287
|
+
def normalize(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> list[float]:
|
|
3288
|
+
"""
|
|
3289
|
+
【重载接口】子类计算接口
|
|
3290
|
+
"""
|
|
3291
|
+
def set_param(self, arg0: str, arg1: any) -> None:
|
|
3292
|
+
"""
|
|
3293
|
+
set_param(self, name, value)
|
|
3294
|
+
|
|
3295
|
+
设置参数
|
|
3296
|
+
|
|
3297
|
+
:param str name: 参数名称
|
|
3298
|
+
:param value: 参数值
|
|
3299
|
+
:raises logic_error: Unsupported type! 不支持的参数类型
|
|
3300
|
+
"""
|
|
3301
|
+
@property
|
|
3302
|
+
def name(self) -> str:
|
|
3303
|
+
"""
|
|
3304
|
+
名称
|
|
3305
|
+
"""
|
|
3306
|
+
@name.setter
|
|
3307
|
+
def name(self, arg1: str) -> None:
|
|
3308
|
+
...
|
|
3224
3309
|
class OrderBrokerBase:
|
|
3225
3310
|
"""
|
|
3226
3311
|
订单代理包装基类,用户可以参考自定义自己的订单代理,加入额外的处理
|
|
@@ -3494,6 +3579,10 @@ class Portfolio:
|
|
|
3494
3579
|
"""
|
|
3495
3580
|
是否存在指定参数
|
|
3496
3581
|
"""
|
|
3582
|
+
def last_suggestion(self) -> typing.Any:
|
|
3583
|
+
"""
|
|
3584
|
+
回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
|
|
3585
|
+
"""
|
|
3497
3586
|
def reset(self) -> None:
|
|
3498
3587
|
"""
|
|
3499
3588
|
复位操作
|
|
@@ -3790,8 +3879,6 @@ class PositionRecordList:
|
|
|
3790
3879
|
...
|
|
3791
3880
|
def to_pandas(self):
|
|
3792
3881
|
...
|
|
3793
|
-
def to_pyarrow(self):
|
|
3794
|
-
...
|
|
3795
3882
|
class ProfitGoalBase:
|
|
3796
3883
|
"""
|
|
3797
3884
|
盈利目标策略基类
|
|
@@ -4270,6 +4357,87 @@ class ScoreRecordList:
|
|
|
4270
4357
|
...
|
|
4271
4358
|
def to_pandas(self):
|
|
4272
4359
|
...
|
|
4360
|
+
class ScoresFilterBase:
|
|
4361
|
+
"""
|
|
4362
|
+
用于 MF 的截面标准化操作
|
|
4363
|
+
"""
|
|
4364
|
+
@staticmethod
|
|
4365
|
+
def _pybind11_conduit_v1_(*args, **kwargs):
|
|
4366
|
+
...
|
|
4367
|
+
def __getstate__(self) -> tuple:
|
|
4368
|
+
...
|
|
4369
|
+
@typing.overload
|
|
4370
|
+
def __init__(self) -> None:
|
|
4371
|
+
...
|
|
4372
|
+
@typing.overload
|
|
4373
|
+
def __init__(self, arg0: ScoresFilterBase) -> None:
|
|
4374
|
+
...
|
|
4375
|
+
@typing.overload
|
|
4376
|
+
def __init__(self, arg0: str) -> None:
|
|
4377
|
+
"""
|
|
4378
|
+
初始化构造函数
|
|
4379
|
+
|
|
4380
|
+
:param str name: 名称
|
|
4381
|
+
"""
|
|
4382
|
+
def __or__(self, arg0: ScoresFilterBase) -> ScoresFilterBase:
|
|
4383
|
+
...
|
|
4384
|
+
def __repr__(self) -> str:
|
|
4385
|
+
...
|
|
4386
|
+
def __setstate__(self, arg0: tuple) -> None:
|
|
4387
|
+
...
|
|
4388
|
+
def __str__(self) -> str:
|
|
4389
|
+
...
|
|
4390
|
+
def _filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
|
|
4391
|
+
"""
|
|
4392
|
+
【重载接口】子类计算接口
|
|
4393
|
+
"""
|
|
4394
|
+
def clone(self) -> ScoresFilterBase:
|
|
4395
|
+
"""
|
|
4396
|
+
克隆操作
|
|
4397
|
+
"""
|
|
4398
|
+
def filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
|
|
4399
|
+
"""
|
|
4400
|
+
filter(self, scores, date, query)
|
|
4401
|
+
|
|
4402
|
+
截面过滤
|
|
4403
|
+
:param list scores: 截面数据
|
|
4404
|
+
:param Datetime date: 截面日期
|
|
4405
|
+
:param KQuery query: 查询参数
|
|
4406
|
+
:return: 截面数据
|
|
4407
|
+
:rtype: ScoreRecordList
|
|
4408
|
+
"""
|
|
4409
|
+
def get_param(self, arg0: str) -> any:
|
|
4410
|
+
"""
|
|
4411
|
+
get_param(self, name)
|
|
4412
|
+
|
|
4413
|
+
获取指定的参数
|
|
4414
|
+
|
|
4415
|
+
:param str name: 参数名称
|
|
4416
|
+
:return: 参数值
|
|
4417
|
+
:raises out_of_range: 无此参数
|
|
4418
|
+
"""
|
|
4419
|
+
def have_param(self, arg0: str) -> bool:
|
|
4420
|
+
"""
|
|
4421
|
+
是否存在指定参数
|
|
4422
|
+
"""
|
|
4423
|
+
def set_param(self, arg0: str, arg1: any) -> None:
|
|
4424
|
+
"""
|
|
4425
|
+
set_param(self, name, value)
|
|
4426
|
+
|
|
4427
|
+
设置参数
|
|
4428
|
+
|
|
4429
|
+
:param str name: 参数名称
|
|
4430
|
+
:param value: 参数值
|
|
4431
|
+
:raises logic_error: Unsupported type! 不支持的参数类型
|
|
4432
|
+
"""
|
|
4433
|
+
@property
|
|
4434
|
+
def name(self) -> str:
|
|
4435
|
+
"""
|
|
4436
|
+
名称
|
|
4437
|
+
"""
|
|
4438
|
+
@name.setter
|
|
4439
|
+
def name(self, arg1: str) -> None:
|
|
4440
|
+
...
|
|
4273
4441
|
class SelectorBase:
|
|
4274
4442
|
"""
|
|
4275
4443
|
选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
|
|
@@ -4347,6 +4515,14 @@ class SelectorBase:
|
|
|
4347
4515
|
"""
|
|
4348
4516
|
子类复位操作实现
|
|
4349
4517
|
"""
|
|
4518
|
+
def add_scores_filter(self, arg0: ScoresFilterBase) -> None:
|
|
4519
|
+
"""
|
|
4520
|
+
add_scores_filter(self, filter)
|
|
4521
|
+
|
|
4522
|
+
在已有过滤基础上新增过滤, 仅适用于 SE_MultiFactor
|
|
4523
|
+
|
|
4524
|
+
:param ScoresFilter filter: 新的过滤器
|
|
4525
|
+
"""
|
|
4350
4526
|
def add_stock(self, stock: Stock, sys: ...) -> None:
|
|
4351
4527
|
"""
|
|
4352
4528
|
add_stock(self, stock, sys)
|
|
@@ -4429,6 +4605,19 @@ class SelectorBase:
|
|
|
4429
4605
|
:param value: 参数值
|
|
4430
4606
|
:raises logic_error: Unsupported type! 不支持的参数类型
|
|
4431
4607
|
"""
|
|
4608
|
+
def set_scores_filter(self, arg0: ScoresFilterBase) -> None:
|
|
4609
|
+
"""
|
|
4610
|
+
set_scores_filter(self, filter)
|
|
4611
|
+
|
|
4612
|
+
设置 ScoresFilter, 将替换现有的过滤器. 仅适用于 SE_MultiFactor
|
|
4613
|
+
|
|
4614
|
+
:param ScoresFilter filter: ScoresFilter
|
|
4615
|
+
"""
|
|
4616
|
+
@property
|
|
4617
|
+
def mf(self) -> ...:
|
|
4618
|
+
"""
|
|
4619
|
+
获取关联的 MF
|
|
4620
|
+
"""
|
|
4432
4621
|
@property
|
|
4433
4622
|
def name(self) -> str:
|
|
4434
4623
|
"""
|
|
@@ -4447,6 +4636,11 @@ class SelectorBase:
|
|
|
4447
4636
|
"""
|
|
4448
4637
|
由 PF 运行时设定的实际运行系统列表
|
|
4449
4638
|
"""
|
|
4639
|
+
@property
|
|
4640
|
+
def scfilter(self) -> ScoresFilterBase:
|
|
4641
|
+
"""
|
|
4642
|
+
获取 ScoresFilter
|
|
4643
|
+
"""
|
|
4450
4644
|
class SignalBase:
|
|
4451
4645
|
"""
|
|
4452
4646
|
信号指示器基类
|
|
@@ -5296,6 +5490,15 @@ class StockManager:
|
|
|
5296
5490
|
"""
|
|
5297
5491
|
获取当前板块信息驱动参数
|
|
5298
5492
|
"""
|
|
5493
|
+
def get_category_list(self) -> list[str]:
|
|
5494
|
+
"""
|
|
5495
|
+
get_category_list(self)
|
|
5496
|
+
|
|
5497
|
+
获取所有板块分类
|
|
5498
|
+
|
|
5499
|
+
:return: 所有板块分类
|
|
5500
|
+
:rtype: StringList
|
|
5501
|
+
"""
|
|
5299
5502
|
def get_context(self) -> StrategyContext:
|
|
5300
5503
|
"""
|
|
5301
5504
|
获取当前上下文
|
|
@@ -5653,9 +5856,6 @@ class StockWeightList:
|
|
|
5653
5856
|
@staticmethod
|
|
5654
5857
|
def to_pandas(data):
|
|
5655
5858
|
...
|
|
5656
|
-
@staticmethod
|
|
5657
|
-
def to_pyarrow(data):
|
|
5658
|
-
...
|
|
5659
5859
|
def __bool__(self) -> bool:
|
|
5660
5860
|
"""
|
|
5661
5861
|
Check whether the list is nonempty
|
|
@@ -6249,6 +6449,10 @@ class System:
|
|
|
6249
6449
|
"""
|
|
6250
6450
|
是否存在指定参数
|
|
6251
6451
|
"""
|
|
6452
|
+
def last_suggestion(self) -> typing.Any:
|
|
6453
|
+
"""
|
|
6454
|
+
回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
|
|
6455
|
+
"""
|
|
6252
6456
|
def ready(self) -> None:
|
|
6253
6457
|
...
|
|
6254
6458
|
def reset(self) -> None:
|
|
@@ -6863,9 +7067,6 @@ class TimeLineList:
|
|
|
6863
7067
|
@staticmethod
|
|
6864
7068
|
def to_pandas(data):
|
|
6865
7069
|
...
|
|
6866
|
-
@staticmethod
|
|
6867
|
-
def to_pyarrow(data):
|
|
6868
|
-
...
|
|
6869
7070
|
def __bool__(self) -> bool:
|
|
6870
7071
|
"""
|
|
6871
7072
|
Check whether the list is nonempty
|
|
@@ -7826,8 +8027,6 @@ class TradeRecordList:
|
|
|
7826
8027
|
...
|
|
7827
8028
|
def to_pandas(self):
|
|
7828
8029
|
...
|
|
7829
|
-
def to_pyarrow(self):
|
|
7830
|
-
...
|
|
7831
8030
|
class TradeRequest:
|
|
7832
8031
|
"""
|
|
7833
8032
|
交易请求记录。系统内部在实现延迟操作时登记的交易请求信息。暴露该结构的主要目的是用于
|
|
@@ -7914,9 +8113,6 @@ class TransList:
|
|
|
7914
8113
|
@staticmethod
|
|
7915
8114
|
def to_pandas(data):
|
|
7916
8115
|
...
|
|
7917
|
-
@staticmethod
|
|
7918
|
-
def to_pyarrow(data):
|
|
7919
|
-
...
|
|
7920
8116
|
def __bool__(self) -> bool:
|
|
7921
8117
|
"""
|
|
7922
8118
|
Check whether the list is nonempty
|
|
@@ -8157,6 +8353,26 @@ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit:
|
|
|
8157
8353
|
"""
|
|
8158
8354
|
聚合函数: 非空值计数, 可参考 AGG_STD 帮助
|
|
8159
8355
|
"""
|
|
8356
|
+
def AGG_FUNC(ind: Indicator, agg_func: typing.Any, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
|
|
8357
|
+
"""
|
|
8358
|
+
AGG_FUNC(ind, agg_func[, ktype=Query.MIN, fill_null=False, unit=1]
|
|
8359
|
+
|
|
8360
|
+
使用自定函数聚合其他K线周期的指标。虽然支持python自定义函数, 但python函数需要GIL, 速度会慢。建议最好直接使用 C++ 自定义聚合函数。
|
|
8361
|
+
|
|
8362
|
+
示例, 计算日线时聚合分钟线收盘价的和:
|
|
8363
|
+
|
|
8364
|
+
>>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
|
|
8365
|
+
>>> ind = AGG_FUNC(CLOSE(), lambda ds, x: np.sum(x))
|
|
8366
|
+
>>> ind(k)
|
|
8367
|
+
|
|
8368
|
+
:param Indicator ind: 待计算指标
|
|
8369
|
+
:param callable agg_func: 自定义聚合函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回针对list的聚合结果, 注意是单个值
|
|
8370
|
+
:param KQuery.KType ktype: 聚合的K线周期
|
|
8371
|
+
:param bool fill_null: 是否填充缺失值
|
|
8372
|
+
:param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
|
|
8373
|
+
:return: 聚合结果
|
|
8374
|
+
:rtype: Indicator
|
|
8375
|
+
"""
|
|
8160
8376
|
def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
|
|
8161
8377
|
"""
|
|
8162
8378
|
聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
|
|
@@ -9132,6 +9348,48 @@ def FLOOR(arg0: typing.SupportsFloat) -> Indicator:
|
|
|
9132
9348
|
:param data: 输入数据
|
|
9133
9349
|
:rtype: Indicator
|
|
9134
9350
|
"""
|
|
9351
|
+
def GROUP_COUNT(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9352
|
+
"""
|
|
9353
|
+
分组累积计数
|
|
9354
|
+
"""
|
|
9355
|
+
def GROUP_FUNC(ind: Indicator, group_func: typing.Any, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9356
|
+
"""
|
|
9357
|
+
GROUP_FUNC(ind, group_func[, ktype=Query.DAY, unit=1])
|
|
9358
|
+
|
|
9359
|
+
自定义分组累积计算指标。虽然支持python自定义函数, 但python函数需要GIL, 速度较慢。建议最好直接使用 C++ 自定义分组累积函数。
|
|
9360
|
+
|
|
9361
|
+
示例, 计算日线时聚合分钟线收盘价的和:
|
|
9362
|
+
|
|
9363
|
+
>>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
|
|
9364
|
+
>>> ind = GROUP_FUNC(CLOSE(), lambda dates, data: data/2.0)
|
|
9365
|
+
>>> ind(k)
|
|
9366
|
+
|
|
9367
|
+
:param Indicator ind: 待计算指标
|
|
9368
|
+
:param callable group_func: 自定义分组累积函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回和输入等长的累积计算结果, 类型同样须为 np.array
|
|
9369
|
+
:param KQuery.KType ktype: 分组的K线周期
|
|
9370
|
+
:param int unit: 分组周期单位 (分组的K线周期单位, 使用日线计算分钟线, unit=2代表按2天累积计算的分钟线)
|
|
9371
|
+
:rtype: Indicator
|
|
9372
|
+
"""
|
|
9373
|
+
def GROUP_MAX(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9374
|
+
"""
|
|
9375
|
+
分组累积最大值
|
|
9376
|
+
"""
|
|
9377
|
+
def GROUP_MEAN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9378
|
+
"""
|
|
9379
|
+
分组累积平均
|
|
9380
|
+
"""
|
|
9381
|
+
def GROUP_MIN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9382
|
+
"""
|
|
9383
|
+
分组累积最小值
|
|
9384
|
+
"""
|
|
9385
|
+
def GROUP_PROD(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9386
|
+
"""
|
|
9387
|
+
分组累积乘积
|
|
9388
|
+
"""
|
|
9389
|
+
def GROUP_SUM(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
|
|
9390
|
+
"""
|
|
9391
|
+
分组累积和
|
|
9392
|
+
"""
|
|
9135
9393
|
@typing.overload
|
|
9136
9394
|
def HHV(n: typing.SupportsInt = 20) -> Indicator:
|
|
9137
9395
|
...
|
|
@@ -10103,6 +10361,36 @@ def NDAY(x: Indicator, y: Indicator, n: IndParam) -> Indicator:
|
|
|
10103
10361
|
:param int|Indicator|IndParam n: 时间窗口
|
|
10104
10362
|
:rtype: Indicator
|
|
10105
10363
|
"""
|
|
10364
|
+
def NORM_MinMax() -> NormalizeBase:
|
|
10365
|
+
"""
|
|
10366
|
+
最小-最大标准化操作
|
|
10367
|
+
"""
|
|
10368
|
+
def NORM_NOTHING() -> NormalizeBase:
|
|
10369
|
+
"""
|
|
10370
|
+
无截面标准化操作
|
|
10371
|
+
"""
|
|
10372
|
+
def NORM_Quantile(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
|
|
10373
|
+
"""
|
|
10374
|
+
分位数截面标准化操作
|
|
10375
|
+
|
|
10376
|
+
:param quantile_min: 最小分位数
|
|
10377
|
+
:param quantile_max: 最大分位数
|
|
10378
|
+
"""
|
|
10379
|
+
def NORM_Quantile_Uniform(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
|
|
10380
|
+
"""
|
|
10381
|
+
分位数截面均匀分布标准化操作
|
|
10382
|
+
|
|
10383
|
+
:param quantile_min: 最小分位数
|
|
10384
|
+
:param quantile_max: 最大分位数
|
|
10385
|
+
"""
|
|
10386
|
+
def NORM_Zscore(out_extreme: bool = False, nsigma: typing.SupportsFloat = 3.0, recursive: bool = False) -> NormalizeBase:
|
|
10387
|
+
"""
|
|
10388
|
+
Z-score 标准化操作
|
|
10389
|
+
|
|
10390
|
+
:param out_extreme: 是否剔除异常值
|
|
10391
|
+
:param nsigma: 异常值判断倍数±3.0
|
|
10392
|
+
:param recursive: 是否递归处理异常值
|
|
10393
|
+
"""
|
|
10106
10394
|
@typing.overload
|
|
10107
10395
|
def NOT() -> Indicator:
|
|
10108
10396
|
...
|
|
@@ -10241,6 +10529,22 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
|
|
|
10241
10529
|
:rtype: Indicator
|
|
10242
10530
|
"""
|
|
10243
10531
|
@typing.overload
|
|
10532
|
+
def QUANTILE_TRUNC(n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
|
|
10533
|
+
...
|
|
10534
|
+
@typing.overload
|
|
10535
|
+
def QUANTILE_TRUNC(data: Indicator, n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
|
|
10536
|
+
"""
|
|
10537
|
+
QUANTILE_TRUNC(data[, n=60, quantial_min=0.01, quantial_max=0.99])
|
|
10538
|
+
|
|
10539
|
+
对数据进行分位数截断处理。非窗口滚动。
|
|
10540
|
+
|
|
10541
|
+
:param Indicator data: 待剔除异常值数据
|
|
10542
|
+
:param int n: 时间窗口
|
|
10543
|
+
:param float quantial_min: 剔除极值时使用的百分位数下限,默认 0.01
|
|
10544
|
+
:param float quantial_max: 剔除极值时使用的百分位数上限,默认 0.99
|
|
10545
|
+
:rtype: Indicator
|
|
10546
|
+
"""
|
|
10547
|
+
@typing.overload
|
|
10244
10548
|
def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
|
|
10245
10549
|
...
|
|
10246
10550
|
@typing.overload
|
|
@@ -10598,6 +10902,59 @@ def SAFTYLOSS(data: Indicator, n1: Indicator, n2: Indicator, p: Indicator) -> In
|
|
|
10598
10902
|
:param float|Indicator|IndParam p: 噪音系数
|
|
10599
10903
|
:rtype: Indicator
|
|
10600
10904
|
"""
|
|
10905
|
+
def SCFilter_AmountLimit(min_amount_percent_limit: typing.SupportsFloat = 0.1) -> ScoresFilterBase:
|
|
10906
|
+
"""
|
|
10907
|
+
SCFilter_AmountLimit([min_amount_percent_limit: float = 0.1])
|
|
10908
|
+
|
|
10909
|
+
过滤掉成交金额在评分列表末尾百分比范围内的截面
|
|
10910
|
+
|
|
10911
|
+
注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是成交金额较小的系统评分记录;反之,则是金额较大的系统评分记录
|
|
10912
|
+
|
|
10913
|
+
:param double min_amount_percent_limit: 最小金额百分比限制
|
|
10914
|
+
:return: 截面过滤器
|
|
10915
|
+
:rtype: ScoresFilterPtr
|
|
10916
|
+
"""
|
|
10917
|
+
def SCFilter_Group(group: typing.SupportsInt = 10, group_index: typing.SupportsInt = 0) -> ScoresFilterBase:
|
|
10918
|
+
"""
|
|
10919
|
+
SCFilter_Group([group: int=10, group_index: int=0])
|
|
10920
|
+
|
|
10921
|
+
按截面进行分组过滤
|
|
10922
|
+
:param int group: 分组数量
|
|
10923
|
+
:param int group_index: 分组索引
|
|
10924
|
+
:return: 截面过滤器
|
|
10925
|
+
:rtype: ScoresFilterPtr
|
|
10926
|
+
"""
|
|
10927
|
+
def SCFilter_IgnoreNan() -> ScoresFilterBase:
|
|
10928
|
+
"""
|
|
10929
|
+
SCFilter_IgnoreNan() -> ScoresFilterPtr
|
|
10930
|
+
|
|
10931
|
+
忽略截面中的NAN值
|
|
10932
|
+
"""
|
|
10933
|
+
def SCFilter_LessOrEqualValue(value: typing.SupportsFloat = 0.0) -> ScoresFilterBase:
|
|
10934
|
+
"""
|
|
10935
|
+
SCFilter_LessOrEqualValue([value = 0.0])
|
|
10936
|
+
|
|
10937
|
+
过滤掉评分小于等于指定值的截面
|
|
10938
|
+
"""
|
|
10939
|
+
def SCFilter_Price(min_price: typing.SupportsFloat = 10.0, max_price: typing.SupportsFloat = 100000.0) -> ScoresFilterBase:
|
|
10940
|
+
"""
|
|
10941
|
+
SCFilter_Price([min_price = 10., max_price = 100000.])
|
|
10942
|
+
|
|
10943
|
+
仅保留价格在 [min_price, max_price] 之间的标的
|
|
10944
|
+
|
|
10945
|
+
注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是价格较小的系统评分记录;反之,则是价格较大的系统评分记录
|
|
10946
|
+
|
|
10947
|
+
:param double min_price: 最小价格限制
|
|
10948
|
+
:param double max_price: 最大价格限制
|
|
10949
|
+
"""
|
|
10950
|
+
def SCFilter_TopN(topn: typing.SupportsInt = 10) -> ScoresFilterBase:
|
|
10951
|
+
"""
|
|
10952
|
+
SCFilter_TopN([topn: int=10])
|
|
10953
|
+
|
|
10954
|
+
获取评分列表中的前 topn 个
|
|
10955
|
+
|
|
10956
|
+
:param int topn: 前 topn 个
|
|
10957
|
+
"""
|
|
10601
10958
|
def SE_EvaluateOptimal(arg0: typing.Any) -> SelectorBase:
|
|
10602
10959
|
"""
|
|
10603
10960
|
SE_EvaluateOptimal(evalulate_func)
|
|
@@ -10648,6 +11005,27 @@ def SE_MultiFactor(inds: collections.abc.Sequence, topn: typing.SupportsInt = 10
|
|
|
10648
11005
|
:param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
|
|
10649
11006
|
:param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
|
|
10650
11007
|
"""
|
|
11008
|
+
@typing.overload
|
|
11009
|
+
def SE_MultiFactor2(mf: ..., filter: ScoresFilterBase = ...) -> SelectorBase:
|
|
11010
|
+
...
|
|
11011
|
+
@typing.overload
|
|
11012
|
+
def SE_MultiFactor2(inds: collections.abc.Sequence, ic_n: typing.SupportsInt = 5, ic_rolling_n: typing.SupportsInt = 120, ref_stk: typing.Any = None, spearman: bool = True, mode: str = 'MF_ICIRWeight', filter: ScoresFilterBase = ...) -> SelectorBase:
|
|
11013
|
+
"""
|
|
11014
|
+
SE_MultiFactor2([inds, ic_n, ic_rolling_n, ref_stk, spearman, mode, filter])
|
|
11015
|
+
|
|
11016
|
+
创建基于多因子评分的选择器,两种创建方式
|
|
11017
|
+
|
|
11018
|
+
- 直接指定 MF:
|
|
11019
|
+
:param MultiFactorBase mf: 直接指定的多因子合成算法
|
|
11020
|
+
|
|
11021
|
+
- 参数直接创建:
|
|
11022
|
+
:param sequense(Indicator) inds: 原始因子列表
|
|
11023
|
+
:param int ic_n: 默认 IC 对应的 N 日收益率
|
|
11024
|
+
:param int ic_rolling_n: IC 滚动周期
|
|
11025
|
+
:param Stock ref_stk: 参考证券 (未指定时,默认为 sh000300 沪深300)
|
|
11026
|
+
:param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
|
|
11027
|
+
:param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
|
|
11028
|
+
"""
|
|
10651
11029
|
def SE_PerformanceOptimal(key: str = '帐户平均年收益率%', mode: typing.SupportsInt = 0) -> SelectorBase:
|
|
10652
11030
|
"""
|
|
10653
11031
|
SE_PerformanceOptimal(key="帐户平均年收益率%", mode=0)
|
|
@@ -11058,6 +11436,48 @@ def SP_FixedValue(value: typing.SupportsFloat = 0.01) -> SlippageBase:
|
|
|
11058
11436
|
:param float p: 偏移价格
|
|
11059
11437
|
:return: 移滑价差算法实例
|
|
11060
11438
|
"""
|
|
11439
|
+
def SP_LogNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
|
|
11440
|
+
"""
|
|
11441
|
+
SP_LogNormal([mean=0.0, stddev=0.05])
|
|
11442
|
+
|
|
11443
|
+
对数正态分布随机价格移滑价差算法, 买入和卖出操作是价格在对数正态分布[mean, stddev]范围内的随机偏移
|
|
11444
|
+
|
|
11445
|
+
:param float mean: 对数正态分布的均值
|
|
11446
|
+
:param float stddev: 对数正态分布的标准差
|
|
11447
|
+
:return: 移滑价差算法实例
|
|
11448
|
+
"""
|
|
11449
|
+
def SP_Normal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
|
|
11450
|
+
"""
|
|
11451
|
+
SP_Normal([mean=0.0, stddev=0.05])
|
|
11452
|
+
|
|
11453
|
+
正态分布随机价格移滑价差算法, 买入和卖出操作是价格在正态分布[mean, stddev]范围内的随机偏移
|
|
11454
|
+
|
|
11455
|
+
:param float mean: 正态分布的均值
|
|
11456
|
+
:param float stddev: 正态分布的标准差
|
|
11457
|
+
:return: 移滑价差算法实例
|
|
11458
|
+
"""
|
|
11459
|
+
def SP_TruncNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05, min_value: typing.SupportsFloat = -0.11, max_value: typing.SupportsFloat = 0.1) -> SlippageBase:
|
|
11460
|
+
"""
|
|
11461
|
+
SP_TruncNormal([mean=0.0, stddev=0.05, min_value=-0.1, max_value=0.1])
|
|
11462
|
+
|
|
11463
|
+
截断正态分布随机价格移滑价差算法, 买入和卖出操作是价格在截断正态分布[mean, stddev, min_value, max_value]范围内的随机偏移
|
|
11464
|
+
|
|
11465
|
+
:param float mean: 截断正态分布的均值
|
|
11466
|
+
:param float stddev: 截断正态分布的标准差
|
|
11467
|
+
:param float min_value: 最小截断值
|
|
11468
|
+
:param float max_value: 最大截断值
|
|
11469
|
+
:return: 移滑价差算法实例
|
|
11470
|
+
"""
|
|
11471
|
+
def SP_Uniform(min_value: typing.SupportsFloat = -0.05, max_value: typing.SupportsFloat = 0.05) -> SlippageBase:
|
|
11472
|
+
"""
|
|
11473
|
+
SP_Uniform([min_value=-0.05, max_value=0.05])
|
|
11474
|
+
|
|
11475
|
+
均匀分布随机价格移滑价差算法, 买入和卖出操作是价格在[min_value, max_value]范围内的均匀分布随机偏移
|
|
11476
|
+
|
|
11477
|
+
:param float min_value: 最小偏移价格
|
|
11478
|
+
:param float max_value: 最大偏移价格
|
|
11479
|
+
:return: 移滑价差算法实例
|
|
11480
|
+
"""
|
|
11061
11481
|
@typing.overload
|
|
11062
11482
|
def SQRT() -> Indicator:
|
|
11063
11483
|
...
|
|
@@ -13747,7 +14167,7 @@ def ZSCORE(data: Indicator, out_extreme: bool = False, nsigma: typing.SupportsFl
|
|
|
13747
14167
|
"""
|
|
13748
14168
|
ZSCORE(data[, out_extreme, nsigma, recursive])
|
|
13749
14169
|
|
|
13750
|
-
|
|
14170
|
+
对数据进行标准化(归一),可选进行极值处理
|
|
13751
14171
|
|
|
13752
14172
|
注:非窗口滚动,如需窗口滚动的标准化,直接 (x - MA(x, n)) / STDEV(x, n) 即可。
|
|
13753
14173
|
|
|
@@ -13801,6 +14221,15 @@ def batch_calculate_inds(arg0: collections.abc.Sequence, arg1: KData) -> list:
|
|
|
13801
14221
|
:return: 指标计算结果列表
|
|
13802
14222
|
:rtype: list
|
|
13803
14223
|
"""
|
|
14224
|
+
def bind_email(arg0: str, arg1: str) -> None:
|
|
14225
|
+
"""
|
|
14226
|
+
bind_email(email: str, code: str)
|
|
14227
|
+
|
|
14228
|
+
绑定邮箱和授权码
|
|
14229
|
+
|
|
14230
|
+
:param str email: 邮箱地址
|
|
14231
|
+
:param str code: 授权码
|
|
14232
|
+
"""
|
|
13804
14233
|
def can_upgrade() -> bool:
|
|
13805
14234
|
...
|
|
13806
14235
|
def close_ostream_to_python() -> None:
|
|
@@ -13861,10 +14290,6 @@ def dates_to_np(arg0: DatetimeList) -> numpy.ndarray:
|
|
|
13861
14290
|
"""
|
|
13862
14291
|
将 DatetimeList 转换为 NumPy 元组
|
|
13863
14292
|
"""
|
|
13864
|
-
def dates_to_pa(arg0: DatetimeList) -> typing.Any:
|
|
13865
|
-
"""
|
|
13866
|
-
将日期列表转换为 pyarrow.Table 对象
|
|
13867
|
-
"""
|
|
13868
14293
|
def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume']) -> KRecordList:
|
|
13869
14294
|
"""
|
|
13870
14295
|
df_to_krecords(df: pd.DataFrame[, columns: dict]) -> KRecordList
|
|
@@ -13878,7 +14303,7 @@ def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['da
|
|
|
13878
14303
|
def fetch_trial_license(arg0: str) -> str:
|
|
13879
14304
|
"""
|
|
13880
14305
|
fetch_trial_license(email: str)
|
|
13881
|
-
|
|
14306
|
+
|
|
13882
14307
|
获取试用授权码
|
|
13883
14308
|
|
|
13884
14309
|
:param str email: 邮箱地址
|
|
@@ -13926,38 +14351,23 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
|
|
|
13926
14351
|
:param Datetime end: 结束日期
|
|
13927
14352
|
:rtype: DatetimeList
|
|
13928
14353
|
"""
|
|
13929
|
-
|
|
13930
|
-
|
|
13931
|
-
|
|
13932
|
-
|
|
13933
|
-
|
|
14354
|
+
def get_expire_date() -> Datetime:
|
|
14355
|
+
"""
|
|
14356
|
+
get_expire_date() -> Datetime
|
|
14357
|
+
|
|
14358
|
+
查看授权到期时间
|
|
14359
|
+
"""
|
|
14360
|
+
def get_funds_list(arg0: collections.abc.Sequence[TradeManager], arg1: DatetimeList) -> list[list[FundsRecord]]:
|
|
13934
14361
|
"""
|
|
13935
|
-
|
|
14362
|
+
get_funds_list(tm_list: list, ref_dates: DatetimeList) -> list[Funds])
|
|
13936
14363
|
|
|
13937
|
-
|
|
13938
|
-
|
|
13939
|
-
:param stks: 证券列表
|
|
13940
|
-
:param list[Indicator] inds: 指标列表
|
|
13941
|
-
:param Datetime date: 指定日期
|
|
13942
|
-
:param int cal_len: 计算需要的数据长度
|
|
13943
|
-
:param str ktype: k线类型
|
|
13944
|
-
:param str market: 指定行情市场(用于日期对齐)
|
|
14364
|
+
一次性从多个账户中获取多个指定时刻的账户资金信息
|
|
13945
14365
|
|
|
13946
|
-
|
|
13947
|
-
|
|
13948
|
-
|
|
13949
|
-
:param stks: 指定证券列表
|
|
13950
|
-
:param list[Indicator] inds: 指定指标列表
|
|
13951
|
-
:param Query query: 查询条件
|
|
13952
|
-
:param str market: 指定行情市场(用于日期对齐)
|
|
14366
|
+
:param list tm_list: 账户列表
|
|
14367
|
+
:param DatetimeList ref_dates: 获取时刻列表
|
|
14368
|
+
:return: 账户资金列表
|
|
13953
14369
|
"""
|
|
13954
14370
|
@typing.overload
|
|
13955
|
-
def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
|
|
13956
|
-
...
|
|
13957
|
-
@typing.overload
|
|
13958
|
-
def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
|
|
13959
|
-
...
|
|
13960
|
-
@typing.overload
|
|
13961
14371
|
def get_kdata(arg0: str, arg1: Query) -> KData:
|
|
13962
14372
|
...
|
|
13963
14373
|
@typing.overload
|
|
@@ -13988,23 +14398,6 @@ def get_log_level() -> LOG_LEVEL:
|
|
|
13988
14398
|
"""
|
|
13989
14399
|
获取当前日志级别
|
|
13990
14400
|
"""
|
|
13991
|
-
def get_market_view(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
|
|
13992
|
-
"""
|
|
13993
|
-
get_market_view(stks[, date=Datetime(), market='SH']) -> pandas.DataFrame
|
|
13994
|
-
|
|
13995
|
-
获取指定股票集合在指定交易日的行情数据,不包含当日停牌无数据的股票。如未指定日期,则返回最后交易日行情数据,
|
|
13996
|
-
如同时接收了行情数据,则为实时行情。
|
|
13997
|
-
|
|
13998
|
-
注: 此函数依赖于日线数据
|
|
13999
|
-
|
|
14000
|
-
:param list[Stock] stks: 股票列表
|
|
14001
|
-
:param Datetime date: 获取指定日期的行情数据
|
|
14002
|
-
:param str market: 市场代码
|
|
14003
|
-
:return: 指定股票列表最后行情数据
|
|
14004
|
-
:rtype: pandas.DataFrame
|
|
14005
|
-
"""
|
|
14006
|
-
def get_market_view_pyarrow(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
|
|
14007
|
-
...
|
|
14008
14401
|
def get_spot_from_buffer_server(arg0: str, arg1: str, arg2: str, arg3: Datetime) -> list[SpotRecord]:
|
|
14009
14402
|
"""
|
|
14010
14403
|
get_spot_from_buffer_server(addr: str, market: str, code: str, datetime: str)
|
|
@@ -14091,16 +14484,33 @@ def krecords_to_df(arg0: KRecordList) -> typing.Any:
|
|
|
14091
14484
|
...
|
|
14092
14485
|
def krecords_to_np(arg0: KRecordList) -> numpy.ndarray:
|
|
14093
14486
|
...
|
|
14094
|
-
def krecords_to_pa(arg0: KRecordList) -> typing.Any:
|
|
14095
|
-
"""
|
|
14096
|
-
将KRecordList转换为parraw.Table
|
|
14097
|
-
"""
|
|
14098
14487
|
def open_ostream_to_python() -> None:
|
|
14099
14488
|
...
|
|
14100
14489
|
def open_spend_time() -> None:
|
|
14101
14490
|
"""
|
|
14102
14491
|
全局开启 c++ 部分耗时打印
|
|
14103
14492
|
"""
|
|
14493
|
+
def parallel_run_pf(pf_list: collections.abc.Sequence[...], query: Query, force: bool = False) -> list[list[...]]:
|
|
14494
|
+
"""
|
|
14495
|
+
parallel_run_pf(pf_list, query[, force=False])
|
|
14496
|
+
|
|
14497
|
+
并行执行多个投资组合策略, 并返回 list FundsList, 各账户对应资产(按query时间段)
|
|
14498
|
+
|
|
14499
|
+
:param list pf_list: 投资组合列表
|
|
14500
|
+
:param Query query: 查询条件
|
|
14501
|
+
:param bool force: 强制重新计算
|
|
14502
|
+
"""
|
|
14503
|
+
def parallel_run_sys(sys_list: collections.abc.Sequence[...], query: Query, reset: bool = False, reset_all: bool = False) -> list[list[...]]:
|
|
14504
|
+
"""
|
|
14505
|
+
parallel_run_sys(sys_list, query[, reset=False, reset_all=False])
|
|
14506
|
+
|
|
14507
|
+
并行运行多个系系统, 并返回 list FundsList, 各账户对应资产(按query时间段)
|
|
14508
|
+
|
|
14509
|
+
:param sys_list: 系统列表
|
|
14510
|
+
:param query: 查询条件
|
|
14511
|
+
:param bool reset: 执行前是否依据系统部件共享属性复位
|
|
14512
|
+
:param bool reset_all: 强制复位所有部件
|
|
14513
|
+
"""
|
|
14104
14514
|
def positions_to_df(arg0: PositionRecordList) -> typing.Any:
|
|
14105
14515
|
"""
|
|
14106
14516
|
positions_to_df(positions)
|
|
@@ -14119,10 +14529,6 @@ def positions_to_np(arg0: PositionRecordList) -> numpy.ndarray:
|
|
|
14119
14529
|
|
|
14120
14530
|
注意: 其中的当前市值、利润、盈亏等计算值均以日线计算, 如使用日线一下级别回测时, 对未清仓的持仓记录需要自行重新计算!
|
|
14121
14531
|
"""
|
|
14122
|
-
def positions_to_pa(arg0: PositionRecordList) -> typing.Any:
|
|
14123
|
-
"""
|
|
14124
|
-
将交易记录列表转换为 pyarrow.Table 对象
|
|
14125
|
-
"""
|
|
14126
14532
|
@typing.overload
|
|
14127
14533
|
def register_extra_ktype(ktype: str, basetype: str, minutes: typing.SupportsInt, get_phase_end: collections.abc.Callable[[Datetime], Datetime]) -> None:
|
|
14128
14534
|
...
|
|
@@ -14166,7 +14572,7 @@ def release_extra_ktype() -> None:
|
|
|
14166
14572
|
def remove_license() -> None:
|
|
14167
14573
|
"""
|
|
14168
14574
|
remove_license()
|
|
14169
|
-
|
|
14575
|
+
|
|
14170
14576
|
移除当前授权
|
|
14171
14577
|
"""
|
|
14172
14578
|
@typing.overload
|
|
@@ -14260,16 +14666,19 @@ def spot_agent_is_running() -> bool:
|
|
|
14260
14666
|
"""
|
|
14261
14667
|
判断行情数据接收代理是否在运行
|
|
14262
14668
|
"""
|
|
14263
|
-
def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt =
|
|
14669
|
+
def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 3, save_tick: bool = False, buf_tick: bool = False, parquet_path: str = '') -> None:
|
|
14264
14670
|
"""
|
|
14265
|
-
start_data_server(addr: str[, work_num: int=
|
|
14671
|
+
start_data_server(addr: str[, work_num: int=3, save_tick: bool=False, buf_tick: bool=False, parquet_path: str=''])
|
|
14266
14672
|
|
|
14267
|
-
|
|
14268
|
-
|
|
14673
|
+
启动数据缓存服务。其中save_tick 参数和 parquet_path 有关联:
|
|
14674
|
+
- 如果 save_tick=True, parquet_path 不为空时, 使用 parquet_path 保存数据;
|
|
14675
|
+
- 如果 save_tick=True, parquet_path 为空时, 则使用 clickhouse K线存储引擎保存数据(需配置使用 clickhouse K线存储引擎)
|
|
14676
|
+
|
|
14269
14677
|
:param str addr: 服务器地址
|
|
14270
14678
|
:param int work_num: 工作线程数
|
|
14271
|
-
:param bool save_tick: 是否保存tick数据至数据库(
|
|
14679
|
+
:param bool save_tick: 是否保存tick数据至数据库(如果 parquet_path 不为空时, 使用 parquet 文件进行保存;否则,需使用 clickhouse K线存储引擎)
|
|
14272
14680
|
:param bool buf_tick: 是否缓存tick数据
|
|
14681
|
+
:param str parquet_path: 保存tick数据至parquet文件路径, 仅在 save_tick=True 时有效
|
|
14273
14682
|
:return: None
|
|
14274
14683
|
"""
|
|
14275
14684
|
def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None:
|
|
@@ -14304,10 +14713,6 @@ def timeline_to_np(arg0: TimeLineList) -> numpy.ndarray:
|
|
|
14304
14713
|
"""
|
|
14305
14714
|
将分时线记录转换为NumPy元组
|
|
14306
14715
|
"""
|
|
14307
|
-
def timeline_to_pa(arg0: TimeLineList) -> typing.Any:
|
|
14308
|
-
"""
|
|
14309
|
-
将分时线记录转换为 pyarrow.Table 对象
|
|
14310
|
-
"""
|
|
14311
14716
|
def toPriceList(arg0: collections.abc.Sequence) -> list[float]:
|
|
14312
14717
|
"""
|
|
14313
14718
|
将 python list/tuple/np.arry 对象转化为 PriceList 对象
|
|
@@ -14324,10 +14729,6 @@ def trades_to_df(arg0: TradeRecordList) -> typing.Any:
|
|
|
14324
14729
|
"""
|
|
14325
14730
|
def trades_to_np(arg0: TradeRecordList) -> numpy.ndarray:
|
|
14326
14731
|
...
|
|
14327
|
-
def trades_to_pa(arg0: TradeRecordList) -> typing.Any:
|
|
14328
|
-
"""
|
|
14329
|
-
将交易记录列表转换为 pyarrow.Table 对象
|
|
14330
|
-
"""
|
|
14331
14732
|
def translist_to_df(arg0: TransList) -> typing.Any:
|
|
14332
14733
|
"""
|
|
14333
14734
|
将分笔记录转换为 DataFrame
|
|
@@ -14336,10 +14737,6 @@ def translist_to_np(arg0: TransList) -> numpy.ndarray:
|
|
|
14336
14737
|
"""
|
|
14337
14738
|
将分笔记录转换为NumPy元组
|
|
14338
14739
|
"""
|
|
14339
|
-
def translist_to_pa(arg0: TransList) -> typing.Any:
|
|
14340
|
-
"""
|
|
14341
|
-
将分笔记录转换为 pyarrow.Table 对象
|
|
14342
|
-
"""
|
|
14343
14740
|
def view_license() -> str:
|
|
14344
14741
|
"""
|
|
14345
14742
|
view_license()
|
|
@@ -14350,10 +14747,6 @@ def weights_to_df(arg0: StockWeightList) -> typing.Any:
|
|
|
14350
14747
|
...
|
|
14351
14748
|
def weights_to_np(arg0: StockWeightList) -> numpy.ndarray:
|
|
14352
14749
|
...
|
|
14353
|
-
def weights_to_pa(arg0: StockWeightList) -> typing.Any:
|
|
14354
|
-
"""
|
|
14355
|
-
将权息记录列表转换为 pyarrow.Table 对象
|
|
14356
|
-
"""
|
|
14357
14750
|
DEBUG: LOG_LEVEL # value = <LOG_LEVEL.DEBUG: 1>
|
|
14358
14751
|
ERROR: LOG_LEVEL # value = <LOG_LEVEL.ERROR: 4>
|
|
14359
14752
|
FATAL: LOG_LEVEL # value = <LOG_LEVEL.FATAL: 5>
|