hikyuu 2.6.8.4__py3-none-manylinux2014_x86_64.whl → 2.7.0__py3-none-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (209) hide show
  1. hikyuu/__init__.py +31 -17
  2. hikyuu/__init__.pyi +610 -590
  3. hikyuu/analysis/__init__.pyi +584 -563
  4. hikyuu/analysis/analysis.pyi +585 -564
  5. hikyuu/core.py +2 -0
  6. hikyuu/core.pyi +586 -565
  7. hikyuu/cpp/__init__.pyi +2 -2
  8. hikyuu/cpp/core310.pyi +501 -108
  9. hikyuu/cpp/core310.so +0 -0
  10. hikyuu/cpp/core311.pyi +495 -108
  11. hikyuu/cpp/core311.so +0 -0
  12. hikyuu/cpp/core312.pyi +495 -108
  13. hikyuu/cpp/core312.so +0 -0
  14. hikyuu/cpp/core313.pyi +501 -108
  15. hikyuu/cpp/core313.so +0 -0
  16. hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
  17. hikyuu/cpp/libboost_charconv-mt.so +0 -0
  18. hikyuu/cpp/libboost_charconv-mt.so.1.88.0 +0 -0
  19. hikyuu/cpp/libboost_chrono-mt.so +0 -0
  20. hikyuu/cpp/libboost_chrono-mt.so.1.88.0 +0 -0
  21. hikyuu/cpp/libboost_date_time-mt.so +0 -0
  22. hikyuu/cpp/libboost_date_time-mt.so.1.88.0 +0 -0
  23. hikyuu/cpp/libboost_serialization-mt.so +0 -0
  24. hikyuu/cpp/libboost_serialization-mt.so.1.88.0 +0 -0
  25. hikyuu/cpp/libboost_system-mt.so +0 -0
  26. hikyuu/cpp/libboost_system-mt.so.1.88.0 +0 -0
  27. hikyuu/cpp/libboost_thread-mt.so +0 -0
  28. hikyuu/cpp/libboost_thread-mt.so.1.88.0 +0 -0
  29. hikyuu/cpp/libboost_wserialization-mt.so +0 -0
  30. hikyuu/cpp/libboost_wserialization-mt.so.1.88.0 +0 -0
  31. hikyuu/cpp/libhikyuu.so +0 -0
  32. hikyuu/cpp/libsqlite3.so +0 -0
  33. hikyuu/data/clickhouse_upgrade/createdb.sql +105 -105
  34. hikyuu/data/common.py +3 -3
  35. hikyuu/data/common_clickhouse.py +1 -1
  36. hikyuu/data/download_block.py +351 -0
  37. hikyuu/data/em_block_to_clickhouse.py +26 -74
  38. hikyuu/data/em_block_to_mysql.py +25 -75
  39. hikyuu/data/em_block_to_sqlite.py +26 -78
  40. hikyuu/data/hku_config_template.py +3 -3
  41. hikyuu/data/pytdx_to_clickhouse.py +15 -11
  42. hikyuu/data/pytdx_to_h5.py +6 -2
  43. hikyuu/data/pytdx_to_mysql.py +5 -1
  44. hikyuu/data/pytdx_weight_to_clickhouse.py +1 -1
  45. hikyuu/data/pytdx_weight_to_mysql.py +1 -1
  46. hikyuu/data/pytdx_weight_to_sqlite.py +1 -1
  47. hikyuu/data/zh_bond10_to_clickhouse.py +1 -1
  48. hikyuu/draw/__init__.pyi +1 -1
  49. hikyuu/draw/drawplot/__init__.pyi +9 -9
  50. hikyuu/draw/drawplot/bokeh_draw.pyi +600 -580
  51. hikyuu/draw/drawplot/common.pyi +1 -1
  52. hikyuu/draw/drawplot/echarts_draw.pyi +602 -582
  53. hikyuu/draw/drawplot/matplotlib_draw.py +4 -74
  54. hikyuu/draw/drawplot/matplotlib_draw.pyi +612 -592
  55. hikyuu/draw/elder.pyi +11 -11
  56. hikyuu/draw/kaufman.pyi +18 -18
  57. hikyuu/draw/volume.pyi +10 -10
  58. hikyuu/examples/notebook/Demo/Demo1.ipynb +48 -33
  59. hikyuu/extend.py +0 -7
  60. hikyuu/extend.pyi +594 -573
  61. hikyuu/fetcher/stock/zh_block_em.py +12 -40
  62. hikyuu/gui/HikyuuTDX.py +99 -31
  63. hikyuu/gui/data/CollectSpotThread.py +1 -1
  64. hikyuu/gui/data/EscapetimeThread.py +8 -14
  65. hikyuu/gui/data/ImportBlockInfoTask.py +3 -10
  66. hikyuu/gui/data/MainWindow.py +1196 -717
  67. hikyuu/gui/data/SchedImportThread.py +2 -2
  68. hikyuu/gui/data/UsePytdxImportToH5Thread.py +3 -3
  69. hikyuu/gui/data/UseQmtImportToH5Thread.py +2 -2
  70. hikyuu/gui/data/UseTdxImportToH5Thread.py +3 -3
  71. hikyuu/gui/data/tool.py +32 -25
  72. hikyuu/gui/dataserver.py +5 -3
  73. hikyuu/gui/images/liandongxiaopu.png +0 -0
  74. hikyuu/hub.pyi +6 -6
  75. hikyuu/include/hikyuu/DataType.h +4 -16
  76. hikyuu/include/hikyuu/KData.h +6 -3
  77. hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +1 -1
  78. hikyuu/include/hikyuu/KDataSharedBufferImp.h +1 -1
  79. hikyuu/include/hikyuu/KQuery.h +2 -2
  80. hikyuu/include/hikyuu/Stock.h +4 -1
  81. hikyuu/include/hikyuu/StockManager.h +13 -3
  82. hikyuu/include/hikyuu/data_driver/BaseInfoDriver.h +8 -0
  83. hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
  84. hikyuu/include/hikyuu/data_driver/KDataDriver.h +26 -1
  85. hikyuu/include/hikyuu/data_driver/base_info/mysql/MySQLBaseInfoDriver.h +1 -1
  86. hikyuu/include/hikyuu/data_driver/base_info/sqlite/SQLiteBaseInfoDriver.h +1 -1
  87. hikyuu/include/hikyuu/data_driver/block_info/mysql/MySQLBlockInfoDriver.h +2 -1
  88. hikyuu/include/hikyuu/data_driver/block_info/qianlong/QLBlockInfoDriver.h +2 -1
  89. hikyuu/include/hikyuu/data_driver/block_info/sqlite/SQLiteBlockInfoDriver.h +2 -1
  90. hikyuu/include/hikyuu/data_driver/kdata/DoNothingKDataDriver.h +1 -1
  91. hikyuu/include/hikyuu/data_driver/kdata/cvs/KDataTempCsvDriver.h +1 -1
  92. hikyuu/include/hikyuu/data_driver/kdata/hdf5/H5KDataDriver.h +1 -1
  93. hikyuu/include/hikyuu/data_driver/kdata/mysql/MySQLKDataDriver.h +1 -1
  94. hikyuu/include/hikyuu/data_driver/kdata/sqlite/SQLiteKDataDriver.h +1 -1
  95. hikyuu/include/hikyuu/data_driver/kdata/tdx/TdxKDataDriver.h +1 -1
  96. hikyuu/include/hikyuu/hikyuu.h +1 -1
  97. hikyuu/include/hikyuu/indicator/build_in.h +1 -0
  98. hikyuu/include/hikyuu/indicator/crt/CYCLE.h +4 -4
  99. hikyuu/include/hikyuu/indicator/crt/HSL.h +2 -2
  100. hikyuu/include/hikyuu/indicator/crt/QUANTILE_TRUNC.h +30 -0
  101. hikyuu/include/hikyuu/indicator/crt/TURNOVER.h +1 -0
  102. hikyuu/include/hikyuu/indicator/crt/ZSCORE.h +2 -2
  103. hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +25 -0
  104. hikyuu/include/hikyuu/misc.h +38 -0
  105. hikyuu/include/hikyuu/plugin/dataserver.h +2 -1
  106. hikyuu/include/hikyuu/plugin/device.h +10 -0
  107. hikyuu/include/hikyuu/plugin/extind.h +37 -0
  108. hikyuu/include/hikyuu/plugin/hkuextra.h +0 -18
  109. hikyuu/include/hikyuu/plugin/interface/DataServerPluginInterface.h +2 -2
  110. hikyuu/include/hikyuu/plugin/interface/DevicePluginInterface.h +2 -0
  111. hikyuu/include/hikyuu/plugin/interface/ExtendIndicatorsPluginInterface.h +12 -0
  112. hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +0 -14
  113. hikyuu/include/hikyuu/plugin/interface/plugins.h +3 -1
  114. hikyuu/include/hikyuu/python/pybind_utils.h +1 -8
  115. hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +3 -0
  116. hikyuu/include/hikyuu/trade_manage/Performance.h +4 -4
  117. hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
  118. hikyuu/include/hikyuu/trade_sys/moneymanager/imp/FixedCapitalFundsMM.h +0 -4
  119. hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +36 -3
  120. hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +125 -0
  121. hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +125 -0
  122. hikyuu/include/hikyuu/trade_sys/multifactor/build_in.h +3 -0
  123. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_norm.h +36 -0
  124. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_scfilter.h +51 -0
  125. hikyuu/include/hikyuu/trade_sys/multifactor/filter/GroupSCFilter.h +24 -0
  126. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreLessOrEqualValueSCFilter.h +24 -0
  127. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreNanSCFilter.h +24 -0
  128. hikyuu/include/hikyuu/trade_sys/multifactor/filter/MinAmountPercentSCFilter.h +25 -0
  129. hikyuu/include/hikyuu/trade_sys/multifactor/filter/PriceSCFilter.h +24 -0
  130. hikyuu/include/hikyuu/trade_sys/multifactor/filter/TopNSCFilter.h +24 -0
  131. hikyuu/include/hikyuu/trade_sys/multifactor/imp/EqualWeightMultiFactor.h +1 -1
  132. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICIRMultiFactor.h +1 -1
  133. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICMultiFactor.h +1 -1
  134. hikyuu/include/hikyuu/trade_sys/multifactor/imp/WeightMultiFactor.h +1 -1
  135. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormMinMax.h +23 -0
  136. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantile.h +28 -0
  137. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantileUniform.h +28 -0
  138. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormZScore.h +25 -0
  139. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/__init__.py +1 -0
  140. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/quantile_trunc.h +16 -0
  141. hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +7 -0
  142. hikyuu/include/hikyuu/trade_sys/portfolio/imp/SimplePortfolio.h +7 -0
  143. hikyuu/include/hikyuu/trade_sys/portfolio/imp/WithoutAFPortfolio.h +7 -0
  144. hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +49 -0
  145. hikyuu/include/hikyuu/trade_sys/selector/build_in.h +1 -0
  146. hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +40 -0
  147. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +0 -3
  148. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +49 -0
  149. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorSelector.h +1 -1
  150. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorValueSelector.h +1 -1
  151. hikyuu/include/hikyuu/trade_sys/signal/imp/BandSignal2.h +0 -4
  152. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/AddValueSignal.h +2 -2
  153. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/DivValueSignal.h +2 -2
  154. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/MulValueSignal.h +2 -2
  155. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorSignal.h +1 -1
  156. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorValueSignal.h +4 -4
  157. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/SubValueSignal.h +2 -2
  158. hikyuu/include/hikyuu/trade_sys/slippage/build_in.h +5 -1
  159. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_LogNormal.h +22 -0
  160. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Normal.h +22 -0
  161. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_TruncNormal.h +25 -0
  162. hikyuu/include/hikyuu/trade_sys/slippage/crt/SP_Uniform.h +23 -0
  163. hikyuu/include/hikyuu/trade_sys/slippage/imp/LogNormalSlippage.h +28 -0
  164. hikyuu/include/hikyuu/trade_sys/slippage/imp/NormalSlippage.h +28 -0
  165. hikyuu/include/hikyuu/trade_sys/slippage/imp/TruncNormalSlippage.h +28 -0
  166. hikyuu/include/hikyuu/trade_sys/slippage/imp/UniformSlippage.h +24 -0
  167. hikyuu/include/hikyuu/trade_sys/system/System.h +14 -1
  168. hikyuu/include/hikyuu/utilities/SpendTimer.h +17 -7
  169. hikyuu/include/hikyuu/utilities/arithmetic.h +55 -0
  170. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +1 -1
  171. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +1 -1
  172. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +1 -1
  173. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +1 -1
  174. hikyuu/include/hikyuu/utilities/plugin/PluginLoader.h +4 -1
  175. hikyuu/include/hikyuu/version.h +5 -5
  176. hikyuu/plugin/libbacktest.so +0 -0
  177. hikyuu/plugin/libclickhousedriver.so +0 -0
  178. hikyuu/plugin/libdataserver.so +0 -0
  179. hikyuu/{cpp/core39.so → plugin/libdataserver_parquet.so} +0 -0
  180. hikyuu/plugin/libdevice.so +0 -0
  181. hikyuu/plugin/libextind.so +0 -0
  182. hikyuu/plugin/libhkuextra.so +0 -0
  183. hikyuu/plugin/libimport2hdf5.so +0 -0
  184. hikyuu/plugin/libtmreport.so +0 -0
  185. hikyuu/trade_manage/__init__.pyi +599 -579
  186. hikyuu/trade_manage/broker.pyi +3 -3
  187. hikyuu/trade_manage/broker_easytrader.pyi +1 -1
  188. hikyuu/trade_manage/trade.py +0 -2
  189. hikyuu/trade_manage/trade.pyi +599 -579
  190. hikyuu/util/__init__.pyi +1 -1
  191. hikyuu/util/singleton.pyi +1 -1
  192. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/METADATA +36 -32
  193. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/RECORD +197 -164
  194. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/top_level.txt +2 -2
  195. hikyuu/cpp/core39.pyi +0 -14385
  196. hikyuu/data_driver/__init__.py +0 -49
  197. hikyuu/data_driver/jqdata_data_driver.py +0 -277
  198. hikyuu/data_driver/pytdx_data_driver.py +0 -292
  199. hikyuu/fetcher/stock/zh_stock_a_huatai.py +0 -51
  200. hikyuu/fetcher/stock/zh_stock_a_pytdx.py +0 -129
  201. hikyuu/gui/data/CollectToMemThread.py +0 -123
  202. hikyuu/gui/data/CollectToMySQLThread.py +0 -178
  203. hikyuu/gui/start_huatai_insight.py +0 -510
  204. hikyuu/include/hikyuu/views/arrow_common.h +0 -38
  205. hikyuu/include/hikyuu/views/arrow_views.h +0 -117
  206. hikyuu/tools/update_block_info.py +0 -168
  207. /hikyuu/include/hikyuu/{views → trade_sys/multifactor/filter}/__init__.py +0 -0
  208. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/WHEEL +0 -0
  209. {hikyuu-2.6.8.4.dist-info → hikyuu-2.7.0.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core313.pyi CHANGED
@@ -3,7 +3,7 @@ import collections.abc
3
3
  import numpy
4
4
  import numpy.typing
5
5
  import typing
6
- __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
6
+ __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_FUNC', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'GROUP_COUNT', 'GROUP_FUNC', 'GROUP_MAX', 'GROUP_MEAN', 'GROUP_MIN', 'GROUP_PROD', 'GROUP_SUM', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NORM_MinMax', 'NORM_NOTHING', 'NORM_Quantile', 'NORM_Quantile_Uniform', 'NORM_Zscore', 'NOT', 'NormalizeBase', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'QUANTILE_TRUNC', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SCFilter_AmountLimit', 'SCFilter_Group', 'SCFilter_IgnoreNan', 'SCFilter_LessOrEqualValue', 'SCFilter_Price', 'SCFilter_TopN', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_MultiFactor2', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SP_LogNormal', 'SP_Normal', 'SP_TruncNormal', 'SP_Uniform', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'ScoresFilterBase', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'bind_email', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_expire_date', 'get_funds_list', 'get_kdata', 'get_last_version', 'get_log_level', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'open_ostream_to_python', 'open_spend_time', 'parallel_run_pf', 'parallel_run_sys', 'positions_to_df', 'positions_to_np', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'toPriceList', 'trades_to_df', 'trades_to_np', 'translist_to_df', 'translist_to_np', 'view_license', 'weights_to_df', 'weights_to_np']
7
7
  class AllocateFundsBase:
8
8
  """
9
9
  资产分配算法基类, 子类接口:
@@ -229,7 +229,10 @@ class Block:
229
229
  def __init__(self) -> None:
230
230
  ...
231
231
  @typing.overload
232
- def __init__(self, arg0: str, arg1: str) -> None:
232
+ def __init__(self, category: str, name: str) -> None:
233
+ ...
234
+ @typing.overload
235
+ def __init__(self, category: str, name: str, index_code: str) -> None:
233
236
  ...
234
237
  @typing.overload
235
238
  def __init__(self, arg0: Block) -> None:
@@ -1207,9 +1210,6 @@ class DatetimeList:
1207
1210
  @staticmethod
1208
1211
  def to_pandas(data: DatetimeList):
1209
1212
  ...
1210
- @staticmethod
1211
- def to_pyarrow(data):
1212
- ...
1213
1213
  def __bool__(self) -> bool:
1214
1214
  """
1215
1215
  Check whether the list is nonempty
@@ -2009,8 +2009,6 @@ class Indicator:
2009
2009
  """
2010
2010
  转化为np.array, 如果为时间序列, 则包含 datetime 日期列
2011
2011
  """
2012
- def to_pyarrow(self) -> typing.Any:
2013
- ...
2014
2012
  def value_to_df(self) -> typing.Any:
2015
2013
  """
2016
2014
  转换为 DataFrame, 仅包含值
@@ -2019,8 +2017,6 @@ class Indicator:
2019
2017
  """
2020
2018
  仅转化值为np.array, 不包含日期列
2021
2019
  """
2022
- def value_to_pyarrow(self) -> typing.Any:
2023
- ...
2024
2020
  @property
2025
2021
  def discard(self) -> int:
2026
2022
  """
@@ -2336,8 +2332,6 @@ class KData:
2336
2332
  """
2337
2333
  将 KData 转换为 NumPy 数组
2338
2334
  """
2339
- def to_pyarrow(self) -> typing.Any:
2340
- ...
2341
2335
  def tocsv(self, arg0: str) -> None:
2342
2336
  """
2343
2337
  tocsv(self, filename)
@@ -2597,9 +2591,6 @@ class KRecordList:
2597
2591
  @staticmethod
2598
2592
  def to_pandas(data):
2599
2593
  ...
2600
- @staticmethod
2601
- def to_pyarrow(data):
2602
- ...
2603
2594
  def __bool__(self) -> bool:
2604
2595
  """
2605
2596
  Check whether the list is nonempty
@@ -3074,6 +3065,17 @@ class MultiFactorBase:
3074
3065
  ...
3075
3066
  def __str__(self) -> str:
3076
3067
  ...
3068
+ def add_special_normalize(self, name: str, norm: NormalizeBase = None, category: str = '', style_inds: collections.abc.Sequence[Indicator] = []) -> None:
3069
+ """
3070
+ add_special_normalize(self, name[, norm=None, category="", style_inds=[]])
3071
+
3072
+ 对指定名称的指标应用特定的标准化/归一化、行业中性化、风格因子中性化操作。标准化操作、行业中性化、风格因子中性化彼此无关,可同时指定也可分开指定。
3073
+
3074
+ :param str name: 特殊归一化方法名称
3075
+ :param Normalize norm: 特殊归一化方法
3076
+ :param str category: 行业中性化时,指定板块类别
3077
+ :param list[Indicator] style_inds: 用于中性化的风格指标列表
3078
+ """
3077
3079
  def clone(self) -> MultiFactorBase:
3078
3080
  """
3079
3081
  克隆操作
@@ -3095,7 +3097,14 @@ class MultiFactorBase:
3095
3097
  :return: ScoreRecordList
3096
3098
  """
3097
3099
  def get_all_src_factors(self) -> list[list[Indicator]]:
3098
- ...
3100
+ """
3101
+ get_all_src_factors(self)
3102
+
3103
+ 获取所有原始因子列表(如果指定了标准化、行业中性化, 返回为已处理的因子列表)
3104
+
3105
+ :rtype: list
3106
+ :return: list IndicatorList stks x inds
3107
+ """
3099
3108
  def get_datetime_list(self) -> DatetimeList:
3100
3109
  """
3101
3110
  获取参考日期列表(由参考证券通过查询条件获得)
@@ -3171,6 +3180,14 @@ class MultiFactorBase:
3171
3180
  """
3172
3181
  是否存在指定参数
3173
3182
  """
3183
+ def set_normalize(self, norm: NormalizeBase) -> None:
3184
+ """
3185
+ set_normalize(self, norm)
3186
+
3187
+ 设置标准化或归一化方法(影响全部因子)
3188
+
3189
+ :param NormalizeBase norm: 标准化或归一化方法实例
3190
+ """
3174
3191
  def set_param(self, arg0: str, arg1: any) -> None:
3175
3192
  """
3176
3193
  set_param(self, name, value)
@@ -3221,6 +3238,74 @@ class MultiFactorBase:
3221
3238
  @query.setter
3222
3239
  def query(self, arg1: Query) -> None:
3223
3240
  ...
3241
+ class NormalizeBase:
3242
+ """
3243
+ 用于 MF 的截面标准化操作
3244
+ """
3245
+ @staticmethod
3246
+ def _pybind11_conduit_v1_(*args, **kwargs):
3247
+ ...
3248
+ def __getstate__(self) -> tuple:
3249
+ ...
3250
+ @typing.overload
3251
+ def __init__(self) -> None:
3252
+ ...
3253
+ @typing.overload
3254
+ def __init__(self, arg0: NormalizeBase) -> None:
3255
+ ...
3256
+ @typing.overload
3257
+ def __init__(self, arg0: str) -> None:
3258
+ """
3259
+ 初始化构造函数
3260
+
3261
+ :param str name: 名称
3262
+ """
3263
+ def __repr__(self) -> str:
3264
+ ...
3265
+ def __setstate__(self, arg0: tuple) -> None:
3266
+ ...
3267
+ def __str__(self) -> str:
3268
+ ...
3269
+ def clone(self) -> NormalizeBase:
3270
+ """
3271
+ 克隆操作
3272
+ """
3273
+ def get_param(self, arg0: str) -> any:
3274
+ """
3275
+ get_param(self, name)
3276
+
3277
+ 获取指定的参数
3278
+
3279
+ :param str name: 参数名称
3280
+ :return: 参数值
3281
+ :raises out_of_range: 无此参数
3282
+ """
3283
+ def have_param(self, arg0: str) -> bool:
3284
+ """
3285
+ 是否存在指定参数
3286
+ """
3287
+ def normalize(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> list[float]:
3288
+ """
3289
+ 【重载接口】子类计算接口
3290
+ """
3291
+ def set_param(self, arg0: str, arg1: any) -> None:
3292
+ """
3293
+ set_param(self, name, value)
3294
+
3295
+ 设置参数
3296
+
3297
+ :param str name: 参数名称
3298
+ :param value: 参数值
3299
+ :raises logic_error: Unsupported type! 不支持的参数类型
3300
+ """
3301
+ @property
3302
+ def name(self) -> str:
3303
+ """
3304
+ 名称
3305
+ """
3306
+ @name.setter
3307
+ def name(self, arg1: str) -> None:
3308
+ ...
3224
3309
  class OrderBrokerBase:
3225
3310
  """
3226
3311
  订单代理包装基类,用户可以参考自定义自己的订单代理,加入额外的处理
@@ -3494,6 +3579,10 @@ class Portfolio:
3494
3579
  """
3495
3580
  是否存在指定参数
3496
3581
  """
3582
+ def last_suggestion(self) -> typing.Any:
3583
+ """
3584
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
3585
+ """
3497
3586
  def reset(self) -> None:
3498
3587
  """
3499
3588
  复位操作
@@ -3790,8 +3879,6 @@ class PositionRecordList:
3790
3879
  ...
3791
3880
  def to_pandas(self):
3792
3881
  ...
3793
- def to_pyarrow(self):
3794
- ...
3795
3882
  class ProfitGoalBase:
3796
3883
  """
3797
3884
  盈利目标策略基类
@@ -4270,6 +4357,87 @@ class ScoreRecordList:
4270
4357
  ...
4271
4358
  def to_pandas(self):
4272
4359
  ...
4360
+ class ScoresFilterBase:
4361
+ """
4362
+ 用于 MF 的截面标准化操作
4363
+ """
4364
+ @staticmethod
4365
+ def _pybind11_conduit_v1_(*args, **kwargs):
4366
+ ...
4367
+ def __getstate__(self) -> tuple:
4368
+ ...
4369
+ @typing.overload
4370
+ def __init__(self) -> None:
4371
+ ...
4372
+ @typing.overload
4373
+ def __init__(self, arg0: ScoresFilterBase) -> None:
4374
+ ...
4375
+ @typing.overload
4376
+ def __init__(self, arg0: str) -> None:
4377
+ """
4378
+ 初始化构造函数
4379
+
4380
+ :param str name: 名称
4381
+ """
4382
+ def __or__(self, arg0: ScoresFilterBase) -> ScoresFilterBase:
4383
+ ...
4384
+ def __repr__(self) -> str:
4385
+ ...
4386
+ def __setstate__(self, arg0: tuple) -> None:
4387
+ ...
4388
+ def __str__(self) -> str:
4389
+ ...
4390
+ def _filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4391
+ """
4392
+ 【重载接口】子类计算接口
4393
+ """
4394
+ def clone(self) -> ScoresFilterBase:
4395
+ """
4396
+ 克隆操作
4397
+ """
4398
+ def filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4399
+ """
4400
+ filter(self, scores, date, query)
4401
+
4402
+ 截面过滤
4403
+ :param list scores: 截面数据
4404
+ :param Datetime date: 截面日期
4405
+ :param KQuery query: 查询参数
4406
+ :return: 截面数据
4407
+ :rtype: ScoreRecordList
4408
+ """
4409
+ def get_param(self, arg0: str) -> any:
4410
+ """
4411
+ get_param(self, name)
4412
+
4413
+ 获取指定的参数
4414
+
4415
+ :param str name: 参数名称
4416
+ :return: 参数值
4417
+ :raises out_of_range: 无此参数
4418
+ """
4419
+ def have_param(self, arg0: str) -> bool:
4420
+ """
4421
+ 是否存在指定参数
4422
+ """
4423
+ def set_param(self, arg0: str, arg1: any) -> None:
4424
+ """
4425
+ set_param(self, name, value)
4426
+
4427
+ 设置参数
4428
+
4429
+ :param str name: 参数名称
4430
+ :param value: 参数值
4431
+ :raises logic_error: Unsupported type! 不支持的参数类型
4432
+ """
4433
+ @property
4434
+ def name(self) -> str:
4435
+ """
4436
+ 名称
4437
+ """
4438
+ @name.setter
4439
+ def name(self, arg1: str) -> None:
4440
+ ...
4273
4441
  class SelectorBase:
4274
4442
  """
4275
4443
  选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
@@ -4347,6 +4515,14 @@ class SelectorBase:
4347
4515
  """
4348
4516
  子类复位操作实现
4349
4517
  """
4518
+ def add_scores_filter(self, arg0: ScoresFilterBase) -> None:
4519
+ """
4520
+ add_scores_filter(self, filter)
4521
+
4522
+ 在已有过滤基础上新增过滤, 仅适用于 SE_MultiFactor
4523
+
4524
+ :param ScoresFilter filter: 新的过滤器
4525
+ """
4350
4526
  def add_stock(self, stock: Stock, sys: ...) -> None:
4351
4527
  """
4352
4528
  add_stock(self, stock, sys)
@@ -4429,6 +4605,19 @@ class SelectorBase:
4429
4605
  :param value: 参数值
4430
4606
  :raises logic_error: Unsupported type! 不支持的参数类型
4431
4607
  """
4608
+ def set_scores_filter(self, arg0: ScoresFilterBase) -> None:
4609
+ """
4610
+ set_scores_filter(self, filter)
4611
+
4612
+ 设置 ScoresFilter, 将替换现有的过滤器. 仅适用于 SE_MultiFactor
4613
+
4614
+ :param ScoresFilter filter: ScoresFilter
4615
+ """
4616
+ @property
4617
+ def mf(self) -> ...:
4618
+ """
4619
+ 获取关联的 MF
4620
+ """
4432
4621
  @property
4433
4622
  def name(self) -> str:
4434
4623
  """
@@ -4447,6 +4636,11 @@ class SelectorBase:
4447
4636
  """
4448
4637
  由 PF 运行时设定的实际运行系统列表
4449
4638
  """
4639
+ @property
4640
+ def scfilter(self) -> ScoresFilterBase:
4641
+ """
4642
+ 获取 ScoresFilter
4643
+ """
4450
4644
  class SignalBase:
4451
4645
  """
4452
4646
  信号指示器基类
@@ -5296,6 +5490,15 @@ class StockManager:
5296
5490
  """
5297
5491
  获取当前板块信息驱动参数
5298
5492
  """
5493
+ def get_category_list(self) -> list[str]:
5494
+ """
5495
+ get_category_list(self)
5496
+
5497
+ 获取所有板块分类
5498
+
5499
+ :return: 所有板块分类
5500
+ :rtype: StringList
5501
+ """
5299
5502
  def get_context(self) -> StrategyContext:
5300
5503
  """
5301
5504
  获取当前上下文
@@ -5653,9 +5856,6 @@ class StockWeightList:
5653
5856
  @staticmethod
5654
5857
  def to_pandas(data):
5655
5858
  ...
5656
- @staticmethod
5657
- def to_pyarrow(data):
5658
- ...
5659
5859
  def __bool__(self) -> bool:
5660
5860
  """
5661
5861
  Check whether the list is nonempty
@@ -6249,6 +6449,10 @@ class System:
6249
6449
  """
6250
6450
  是否存在指定参数
6251
6451
  """
6452
+ def last_suggestion(self) -> typing.Any:
6453
+ """
6454
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
6455
+ """
6252
6456
  def ready(self) -> None:
6253
6457
  ...
6254
6458
  def reset(self) -> None:
@@ -6863,9 +7067,6 @@ class TimeLineList:
6863
7067
  @staticmethod
6864
7068
  def to_pandas(data):
6865
7069
  ...
6866
- @staticmethod
6867
- def to_pyarrow(data):
6868
- ...
6869
7070
  def __bool__(self) -> bool:
6870
7071
  """
6871
7072
  Check whether the list is nonempty
@@ -7826,8 +8027,6 @@ class TradeRecordList:
7826
8027
  ...
7827
8028
  def to_pandas(self):
7828
8029
  ...
7829
- def to_pyarrow(self):
7830
- ...
7831
8030
  class TradeRequest:
7832
8031
  """
7833
8032
  交易请求记录。系统内部在实现延迟操作时登记的交易请求信息。暴露该结构的主要目的是用于
@@ -7914,9 +8113,6 @@ class TransList:
7914
8113
  @staticmethod
7915
8114
  def to_pandas(data):
7916
8115
  ...
7917
- @staticmethod
7918
- def to_pyarrow(data):
7919
- ...
7920
8116
  def __bool__(self) -> bool:
7921
8117
  """
7922
8118
  Check whether the list is nonempty
@@ -8157,6 +8353,26 @@ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit:
8157
8353
  """
8158
8354
  聚合函数: 非空值计数, 可参考 AGG_STD 帮助
8159
8355
  """
8356
+ def AGG_FUNC(ind: Indicator, agg_func: typing.Any, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8357
+ """
8358
+ AGG_FUNC(ind, agg_func[, ktype=Query.MIN, fill_null=False, unit=1]
8359
+
8360
+ 使用自定函数聚合其他K线周期的指标。虽然支持python自定义函数, 但python函数需要GIL, 速度会慢。建议最好直接使用 C++ 自定义聚合函数。
8361
+
8362
+ 示例, 计算日线时聚合分钟线收盘价的和:
8363
+
8364
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
8365
+ >>> ind = AGG_FUNC(CLOSE(), lambda ds, x: np.sum(x))
8366
+ >>> ind(k)
8367
+
8368
+ :param Indicator ind: 待计算指标
8369
+ :param callable agg_func: 自定义聚合函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回针对list的聚合结果, 注意是单个值
8370
+ :param KQuery.KType ktype: 聚合的K线周期
8371
+ :param bool fill_null: 是否填充缺失值
8372
+ :param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8373
+ :return: 聚合结果
8374
+ :rtype: Indicator
8375
+ """
8160
8376
  def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8161
8377
  """
8162
8378
  聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
@@ -9132,6 +9348,48 @@ def FLOOR(arg0: typing.SupportsFloat) -> Indicator:
9132
9348
  :param data: 输入数据
9133
9349
  :rtype: Indicator
9134
9350
  """
9351
+ def GROUP_COUNT(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9352
+ """
9353
+ 分组累积计数
9354
+ """
9355
+ def GROUP_FUNC(ind: Indicator, group_func: typing.Any, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9356
+ """
9357
+ GROUP_FUNC(ind, group_func[, ktype=Query.DAY, unit=1])
9358
+
9359
+ 自定义分组累积计算指标。虽然支持python自定义函数, 但python函数需要GIL, 速度较慢。建议最好直接使用 C++ 自定义分组累积函数。
9360
+
9361
+ 示例, 计算日线时聚合分钟线收盘价的和:
9362
+
9363
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
9364
+ >>> ind = GROUP_FUNC(CLOSE(), lambda dates, data: data/2.0)
9365
+ >>> ind(k)
9366
+
9367
+ :param Indicator ind: 待计算指标
9368
+ :param callable group_func: 自定义分组累积函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回和输入等长的累积计算结果, 类型同样须为 np.array
9369
+ :param KQuery.KType ktype: 分组的K线周期
9370
+ :param int unit: 分组周期单位 (分组的K线周期单位, 使用日线计算分钟线, unit=2代表按2天累积计算的分钟线)
9371
+ :rtype: Indicator
9372
+ """
9373
+ def GROUP_MAX(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9374
+ """
9375
+ 分组累积最大值
9376
+ """
9377
+ def GROUP_MEAN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9378
+ """
9379
+ 分组累积平均
9380
+ """
9381
+ def GROUP_MIN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9382
+ """
9383
+ 分组累积最小值
9384
+ """
9385
+ def GROUP_PROD(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9386
+ """
9387
+ 分组累积乘积
9388
+ """
9389
+ def GROUP_SUM(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9390
+ """
9391
+ 分组累积和
9392
+ """
9135
9393
  @typing.overload
9136
9394
  def HHV(n: typing.SupportsInt = 20) -> Indicator:
9137
9395
  ...
@@ -10103,6 +10361,36 @@ def NDAY(x: Indicator, y: Indicator, n: IndParam) -> Indicator:
10103
10361
  :param int|Indicator|IndParam n: 时间窗口
10104
10362
  :rtype: Indicator
10105
10363
  """
10364
+ def NORM_MinMax() -> NormalizeBase:
10365
+ """
10366
+ 最小-最大标准化操作
10367
+ """
10368
+ def NORM_NOTHING() -> NormalizeBase:
10369
+ """
10370
+ 无截面标准化操作
10371
+ """
10372
+ def NORM_Quantile(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10373
+ """
10374
+ 分位数截面标准化操作
10375
+
10376
+ :param quantile_min: 最小分位数
10377
+ :param quantile_max: 最大分位数
10378
+ """
10379
+ def NORM_Quantile_Uniform(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10380
+ """
10381
+ 分位数截面均匀分布标准化操作
10382
+
10383
+ :param quantile_min: 最小分位数
10384
+ :param quantile_max: 最大分位数
10385
+ """
10386
+ def NORM_Zscore(out_extreme: bool = False, nsigma: typing.SupportsFloat = 3.0, recursive: bool = False) -> NormalizeBase:
10387
+ """
10388
+ Z-score 标准化操作
10389
+
10390
+ :param out_extreme: 是否剔除异常值
10391
+ :param nsigma: 异常值判断倍数±3.0
10392
+ :param recursive: 是否递归处理异常值
10393
+ """
10106
10394
  @typing.overload
10107
10395
  def NOT() -> Indicator:
10108
10396
  ...
@@ -10241,6 +10529,22 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
10241
10529
  :rtype: Indicator
10242
10530
  """
10243
10531
  @typing.overload
10532
+ def QUANTILE_TRUNC(n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10533
+ ...
10534
+ @typing.overload
10535
+ def QUANTILE_TRUNC(data: Indicator, n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10536
+ """
10537
+ QUANTILE_TRUNC(data[, n=60, quantial_min=0.01, quantial_max=0.99])
10538
+
10539
+ 对数据进行分位数截断处理。非窗口滚动。
10540
+
10541
+ :param Indicator data: 待剔除异常值数据
10542
+ :param int n: 时间窗口
10543
+ :param float quantial_min: 剔除极值时使用的百分位数下限,默认 0.01
10544
+ :param float quantial_max: 剔除极值时使用的百分位数上限,默认 0.99
10545
+ :rtype: Indicator
10546
+ """
10547
+ @typing.overload
10244
10548
  def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
10245
10549
  ...
10246
10550
  @typing.overload
@@ -10598,6 +10902,59 @@ def SAFTYLOSS(data: Indicator, n1: Indicator, n2: Indicator, p: Indicator) -> In
10598
10902
  :param float|Indicator|IndParam p: 噪音系数
10599
10903
  :rtype: Indicator
10600
10904
  """
10905
+ def SCFilter_AmountLimit(min_amount_percent_limit: typing.SupportsFloat = 0.1) -> ScoresFilterBase:
10906
+ """
10907
+ SCFilter_AmountLimit([min_amount_percent_limit: float = 0.1])
10908
+
10909
+ 过滤掉成交金额在评分列表末尾百分比范围内的截面
10910
+
10911
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是成交金额较小的系统评分记录;反之,则是金额较大的系统评分记录
10912
+
10913
+ :param double min_amount_percent_limit: 最小金额百分比限制
10914
+ :return: 截面过滤器
10915
+ :rtype: ScoresFilterPtr
10916
+ """
10917
+ def SCFilter_Group(group: typing.SupportsInt = 10, group_index: typing.SupportsInt = 0) -> ScoresFilterBase:
10918
+ """
10919
+ SCFilter_Group([group: int=10, group_index: int=0])
10920
+
10921
+ 按截面进行分组过滤
10922
+ :param int group: 分组数量
10923
+ :param int group_index: 分组索引
10924
+ :return: 截面过滤器
10925
+ :rtype: ScoresFilterPtr
10926
+ """
10927
+ def SCFilter_IgnoreNan() -> ScoresFilterBase:
10928
+ """
10929
+ SCFilter_IgnoreNan() -> ScoresFilterPtr
10930
+
10931
+ 忽略截面中的NAN值
10932
+ """
10933
+ def SCFilter_LessOrEqualValue(value: typing.SupportsFloat = 0.0) -> ScoresFilterBase:
10934
+ """
10935
+ SCFilter_LessOrEqualValue([value = 0.0])
10936
+
10937
+ 过滤掉评分小于等于指定值的截面
10938
+ """
10939
+ def SCFilter_Price(min_price: typing.SupportsFloat = 10.0, max_price: typing.SupportsFloat = 100000.0) -> ScoresFilterBase:
10940
+ """
10941
+ SCFilter_Price([min_price = 10., max_price = 100000.])
10942
+
10943
+ 仅保留价格在 [min_price, max_price] 之间的标的
10944
+
10945
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是价格较小的系统评分记录;反之,则是价格较大的系统评分记录
10946
+
10947
+ :param double min_price: 最小价格限制
10948
+ :param double max_price: 最大价格限制
10949
+ """
10950
+ def SCFilter_TopN(topn: typing.SupportsInt = 10) -> ScoresFilterBase:
10951
+ """
10952
+ SCFilter_TopN([topn: int=10])
10953
+
10954
+ 获取评分列表中的前 topn 个
10955
+
10956
+ :param int topn: 前 topn 个
10957
+ """
10601
10958
  def SE_EvaluateOptimal(arg0: typing.Any) -> SelectorBase:
10602
10959
  """
10603
10960
  SE_EvaluateOptimal(evalulate_func)
@@ -10648,6 +11005,27 @@ def SE_MultiFactor(inds: collections.abc.Sequence, topn: typing.SupportsInt = 10
10648
11005
  :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
10649
11006
  :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
10650
11007
  """
11008
+ @typing.overload
11009
+ def SE_MultiFactor2(mf: ..., filter: ScoresFilterBase = ...) -> SelectorBase:
11010
+ ...
11011
+ @typing.overload
11012
+ def SE_MultiFactor2(inds: collections.abc.Sequence, ic_n: typing.SupportsInt = 5, ic_rolling_n: typing.SupportsInt = 120, ref_stk: typing.Any = None, spearman: bool = True, mode: str = 'MF_ICIRWeight', filter: ScoresFilterBase = ...) -> SelectorBase:
11013
+ """
11014
+ SE_MultiFactor2([inds, ic_n, ic_rolling_n, ref_stk, spearman, mode, filter])
11015
+
11016
+ 创建基于多因子评分的选择器,两种创建方式
11017
+
11018
+ - 直接指定 MF:
11019
+ :param MultiFactorBase mf: 直接指定的多因子合成算法
11020
+
11021
+ - 参数直接创建:
11022
+ :param sequense(Indicator) inds: 原始因子列表
11023
+ :param int ic_n: 默认 IC 对应的 N 日收益率
11024
+ :param int ic_rolling_n: IC 滚动周期
11025
+ :param Stock ref_stk: 参考证券 (未指定时,默认为 sh000300 沪深300)
11026
+ :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
11027
+ :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
11028
+ """
10651
11029
  def SE_PerformanceOptimal(key: str = '帐户平均年收益率%', mode: typing.SupportsInt = 0) -> SelectorBase:
10652
11030
  """
10653
11031
  SE_PerformanceOptimal(key="帐户平均年收益率%", mode=0)
@@ -11058,6 +11436,48 @@ def SP_FixedValue(value: typing.SupportsFloat = 0.01) -> SlippageBase:
11058
11436
  :param float p: 偏移价格
11059
11437
  :return: 移滑价差算法实例
11060
11438
  """
11439
+ def SP_LogNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
11440
+ """
11441
+ SP_LogNormal([mean=0.0, stddev=0.05])
11442
+
11443
+ 对数正态分布随机价格移滑价差算法, 买入和卖出操作是价格在对数正态分布[mean, stddev]范围内的随机偏移
11444
+
11445
+ :param float mean: 对数正态分布的均值
11446
+ :param float stddev: 对数正态分布的标准差
11447
+ :return: 移滑价差算法实例
11448
+ """
11449
+ def SP_Normal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05) -> SlippageBase:
11450
+ """
11451
+ SP_Normal([mean=0.0, stddev=0.05])
11452
+
11453
+ 正态分布随机价格移滑价差算法, 买入和卖出操作是价格在正态分布[mean, stddev]范围内的随机偏移
11454
+
11455
+ :param float mean: 正态分布的均值
11456
+ :param float stddev: 正态分布的标准差
11457
+ :return: 移滑价差算法实例
11458
+ """
11459
+ def SP_TruncNormal(mean: typing.SupportsFloat = 0.0, stddev: typing.SupportsFloat = 0.05, min_value: typing.SupportsFloat = -0.11, max_value: typing.SupportsFloat = 0.1) -> SlippageBase:
11460
+ """
11461
+ SP_TruncNormal([mean=0.0, stddev=0.05, min_value=-0.1, max_value=0.1])
11462
+
11463
+ 截断正态分布随机价格移滑价差算法, 买入和卖出操作是价格在截断正态分布[mean, stddev, min_value, max_value]范围内的随机偏移
11464
+
11465
+ :param float mean: 截断正态分布的均值
11466
+ :param float stddev: 截断正态分布的标准差
11467
+ :param float min_value: 最小截断值
11468
+ :param float max_value: 最大截断值
11469
+ :return: 移滑价差算法实例
11470
+ """
11471
+ def SP_Uniform(min_value: typing.SupportsFloat = -0.05, max_value: typing.SupportsFloat = 0.05) -> SlippageBase:
11472
+ """
11473
+ SP_Uniform([min_value=-0.05, max_value=0.05])
11474
+
11475
+ 均匀分布随机价格移滑价差算法, 买入和卖出操作是价格在[min_value, max_value]范围内的均匀分布随机偏移
11476
+
11477
+ :param float min_value: 最小偏移价格
11478
+ :param float max_value: 最大偏移价格
11479
+ :return: 移滑价差算法实例
11480
+ """
11061
11481
  @typing.overload
11062
11482
  def SQRT() -> Indicator:
11063
11483
  ...
@@ -13747,7 +14167,7 @@ def ZSCORE(data: Indicator, out_extreme: bool = False, nsigma: typing.SupportsFl
13747
14167
  """
13748
14168
  ZSCORE(data[, out_extreme, nsigma, recursive])
13749
14169
 
13750
- 对数据进行标准化(归一),可选进行极值排除
14170
+ 对数据进行标准化(归一),可选进行极值处理
13751
14171
 
13752
14172
  注:非窗口滚动,如需窗口滚动的标准化,直接 (x - MA(x, n)) / STDEV(x, n) 即可。
13753
14173
 
@@ -13801,6 +14221,15 @@ def batch_calculate_inds(arg0: collections.abc.Sequence, arg1: KData) -> list:
13801
14221
  :return: 指标计算结果列表
13802
14222
  :rtype: list
13803
14223
  """
14224
+ def bind_email(arg0: str, arg1: str) -> None:
14225
+ """
14226
+ bind_email(email: str, code: str)
14227
+
14228
+ 绑定邮箱和授权码
14229
+
14230
+ :param str email: 邮箱地址
14231
+ :param str code: 授权码
14232
+ """
13804
14233
  def can_upgrade() -> bool:
13805
14234
  ...
13806
14235
  def close_ostream_to_python() -> None:
@@ -13861,10 +14290,6 @@ def dates_to_np(arg0: DatetimeList) -> numpy.ndarray:
13861
14290
  """
13862
14291
  将 DatetimeList 转换为 NumPy 元组
13863
14292
  """
13864
- def dates_to_pa(arg0: DatetimeList) -> typing.Any:
13865
- """
13866
- 将日期列表转换为 pyarrow.Table 对象
13867
- """
13868
14293
  def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume']) -> KRecordList:
13869
14294
  """
13870
14295
  df_to_krecords(df: pd.DataFrame[, columns: dict]) -> KRecordList
@@ -13878,7 +14303,7 @@ def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['da
13878
14303
  def fetch_trial_license(arg0: str) -> str:
13879
14304
  """
13880
14305
  fetch_trial_license(email: str)
13881
-
14306
+
13882
14307
  获取试用授权码
13883
14308
 
13884
14309
  :param str email: 邮箱地址
@@ -13926,38 +14351,23 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
13926
14351
  :param Datetime end: 结束日期
13927
14352
  :rtype: DatetimeList
13928
14353
  """
13929
- @typing.overload
13930
- def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13931
- ...
13932
- @typing.overload
13933
- def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
14354
+ def get_expire_date() -> Datetime:
14355
+ """
14356
+ get_expire_date() -> Datetime
14357
+
14358
+ 查看授权到期时间
14359
+ """
14360
+ def get_funds_list(arg0: collections.abc.Sequence[TradeManager], arg1: DatetimeList) -> list[list[FundsRecord]]:
13934
14361
  """
13935
- get_inds_view(stks, inds, date[, cal_len=100, ktype=Query.DAY, market='SH']) -> pandas.DataFrame)
14362
+ get_funds_list(tm_list: list, ref_dates: DatetimeList) -> list[Funds])
13936
14363
 
13937
- 方式1: 获取指定日期的各证券的各指标结果
13938
-
13939
- :param stks: 证券列表
13940
- :param list[Indicator] inds: 指标列表
13941
- :param Datetime date: 指定日期
13942
- :param int cal_len: 计算需要的数据长度
13943
- :param str ktype: k线类型
13944
- :param str market: 指定行情市场(用于日期对齐)
14364
+ 一次性从多个账户中获取多个指定时刻的账户资金信息
13945
14365
 
13946
- 方式2: 获取按指定Query查询计算的各证券的各指标结果, 结果中将包含指定 Query 包含的所有指定市场交易日日期
13947
- get_inds_view(stks, inds, query, market='SH'])
13948
-
13949
- :param stks: 指定证券列表
13950
- :param list[Indicator] inds: 指定指标列表
13951
- :param Query query: 查询条件
13952
- :param str market: 指定行情市场(用于日期对齐)
14366
+ :param list tm_list: 账户列表
14367
+ :param DatetimeList ref_dates: 获取时刻列表
14368
+ :return: 账户资金列表
13953
14369
  """
13954
14370
  @typing.overload
13955
- def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13956
- ...
13957
- @typing.overload
13958
- def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
13959
- ...
13960
- @typing.overload
13961
14371
  def get_kdata(arg0: str, arg1: Query) -> KData:
13962
14372
  ...
13963
14373
  @typing.overload
@@ -13988,23 +14398,6 @@ def get_log_level() -> LOG_LEVEL:
13988
14398
  """
13989
14399
  获取当前日志级别
13990
14400
  """
13991
- def get_market_view(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
13992
- """
13993
- get_market_view(stks[, date=Datetime(), market='SH']) -> pandas.DataFrame
13994
-
13995
- 获取指定股票集合在指定交易日的行情数据,不包含当日停牌无数据的股票。如未指定日期,则返回最后交易日行情数据,
13996
- 如同时接收了行情数据,则为实时行情。
13997
-
13998
- 注: 此函数依赖于日线数据
13999
-
14000
- :param list[Stock] stks: 股票列表
14001
- :param Datetime date: 获取指定日期的行情数据
14002
- :param str market: 市场代码
14003
- :return: 指定股票列表最后行情数据
14004
- :rtype: pandas.DataFrame
14005
- """
14006
- def get_market_view_pyarrow(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
14007
- ...
14008
14401
  def get_spot_from_buffer_server(arg0: str, arg1: str, arg2: str, arg3: Datetime) -> list[SpotRecord]:
14009
14402
  """
14010
14403
  get_spot_from_buffer_server(addr: str, market: str, code: str, datetime: str)
@@ -14091,16 +14484,33 @@ def krecords_to_df(arg0: KRecordList) -> typing.Any:
14091
14484
  ...
14092
14485
  def krecords_to_np(arg0: KRecordList) -> numpy.ndarray:
14093
14486
  ...
14094
- def krecords_to_pa(arg0: KRecordList) -> typing.Any:
14095
- """
14096
- 将KRecordList转换为parraw.Table
14097
- """
14098
14487
  def open_ostream_to_python() -> None:
14099
14488
  ...
14100
14489
  def open_spend_time() -> None:
14101
14490
  """
14102
14491
  全局开启 c++ 部分耗时打印
14103
14492
  """
14493
+ def parallel_run_pf(pf_list: collections.abc.Sequence[...], query: Query, force: bool = False) -> list[list[...]]:
14494
+ """
14495
+ parallel_run_pf(pf_list, query[, force=False])
14496
+
14497
+ 并行执行多个投资组合策略, 并返回 list FundsList, 各账户对应资产(按query时间段)
14498
+
14499
+ :param list pf_list: 投资组合列表
14500
+ :param Query query: 查询条件
14501
+ :param bool force: 强制重新计算
14502
+ """
14503
+ def parallel_run_sys(sys_list: collections.abc.Sequence[...], query: Query, reset: bool = False, reset_all: bool = False) -> list[list[...]]:
14504
+ """
14505
+ parallel_run_sys(sys_list, query[, reset=False, reset_all=False])
14506
+
14507
+ 并行运行多个系系统, 并返回 list FundsList, 各账户对应资产(按query时间段)
14508
+
14509
+ :param sys_list: 系统列表
14510
+ :param query: 查询条件
14511
+ :param bool reset: 执行前是否依据系统部件共享属性复位
14512
+ :param bool reset_all: 强制复位所有部件
14513
+ """
14104
14514
  def positions_to_df(arg0: PositionRecordList) -> typing.Any:
14105
14515
  """
14106
14516
  positions_to_df(positions)
@@ -14119,10 +14529,6 @@ def positions_to_np(arg0: PositionRecordList) -> numpy.ndarray:
14119
14529
 
14120
14530
  注意: 其中的当前市值、利润、盈亏等计算值均以日线计算, 如使用日线一下级别回测时, 对未清仓的持仓记录需要自行重新计算!
14121
14531
  """
14122
- def positions_to_pa(arg0: PositionRecordList) -> typing.Any:
14123
- """
14124
- 将交易记录列表转换为 pyarrow.Table 对象
14125
- """
14126
14532
  @typing.overload
14127
14533
  def register_extra_ktype(ktype: str, basetype: str, minutes: typing.SupportsInt, get_phase_end: collections.abc.Callable[[Datetime], Datetime]) -> None:
14128
14534
  ...
@@ -14166,7 +14572,7 @@ def release_extra_ktype() -> None:
14166
14572
  def remove_license() -> None:
14167
14573
  """
14168
14574
  remove_license()
14169
-
14575
+
14170
14576
  移除当前授权
14171
14577
  """
14172
14578
  @typing.overload
@@ -14260,16 +14666,19 @@ def spot_agent_is_running() -> bool:
14260
14666
  """
14261
14667
  判断行情数据接收代理是否在运行
14262
14668
  """
14263
- def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 2, save_tick: bool = False, buf_tick: bool = False) -> None:
14669
+ def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 3, save_tick: bool = False, buf_tick: bool = False, parquet_path: str = '') -> None:
14264
14670
  """
14265
- start_data_server(addr: str[, work_num: int=2])
14671
+ start_data_server(addr: str[, work_num: int=3, save_tick: bool=False, buf_tick: bool=False, parquet_path: str=''])
14266
14672
 
14267
- 启动数据缓存服务
14268
-
14673
+ 启动数据缓存服务。其中save_tick 参数和 parquet_path 有关联:
14674
+ - 如果 save_tick=True, parquet_path 不为空时, 使用 parquet_path 保存数据;
14675
+ - 如果 save_tick=True, parquet_path 为空时, 则使用 clickhouse K线存储引擎保存数据(需配置使用 clickhouse K线存储引擎)
14676
+
14269
14677
  :param str addr: 服务器地址
14270
14678
  :param int work_num: 工作线程数
14271
- :param bool save_tick: 是否保存tick数据至数据库(仅支持使用 clickhouse K线存储引擎)
14679
+ :param bool save_tick: 是否保存tick数据至数据库(如果 parquet_path 不为空时, 使用 parquet 文件进行保存;否则,需使用 clickhouse K线存储引擎)
14272
14680
  :param bool buf_tick: 是否缓存tick数据
14681
+ :param str parquet_path: 保存tick数据至parquet文件路径, 仅在 save_tick=True 时有效
14273
14682
  :return: None
14274
14683
  """
14275
14684
  def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None:
@@ -14304,10 +14713,6 @@ def timeline_to_np(arg0: TimeLineList) -> numpy.ndarray:
14304
14713
  """
14305
14714
  将分时线记录转换为NumPy元组
14306
14715
  """
14307
- def timeline_to_pa(arg0: TimeLineList) -> typing.Any:
14308
- """
14309
- 将分时线记录转换为 pyarrow.Table 对象
14310
- """
14311
14716
  def toPriceList(arg0: collections.abc.Sequence) -> list[float]:
14312
14717
  """
14313
14718
  将 python list/tuple/np.arry 对象转化为 PriceList 对象
@@ -14324,10 +14729,6 @@ def trades_to_df(arg0: TradeRecordList) -> typing.Any:
14324
14729
  """
14325
14730
  def trades_to_np(arg0: TradeRecordList) -> numpy.ndarray:
14326
14731
  ...
14327
- def trades_to_pa(arg0: TradeRecordList) -> typing.Any:
14328
- """
14329
- 将交易记录列表转换为 pyarrow.Table 对象
14330
- """
14331
14732
  def translist_to_df(arg0: TransList) -> typing.Any:
14332
14733
  """
14333
14734
  将分笔记录转换为 DataFrame
@@ -14336,10 +14737,6 @@ def translist_to_np(arg0: TransList) -> numpy.ndarray:
14336
14737
  """
14337
14738
  将分笔记录转换为NumPy元组
14338
14739
  """
14339
- def translist_to_pa(arg0: TransList) -> typing.Any:
14340
- """
14341
- 将分笔记录转换为 pyarrow.Table 对象
14342
- """
14343
14740
  def view_license() -> str:
14344
14741
  """
14345
14742
  view_license()
@@ -14350,10 +14747,6 @@ def weights_to_df(arg0: StockWeightList) -> typing.Any:
14350
14747
  ...
14351
14748
  def weights_to_np(arg0: StockWeightList) -> numpy.ndarray:
14352
14749
  ...
14353
- def weights_to_pa(arg0: StockWeightList) -> typing.Any:
14354
- """
14355
- 将权息记录列表转换为 pyarrow.Table 对象
14356
- """
14357
14750
  DEBUG: LOG_LEVEL # value = <LOG_LEVEL.DEBUG: 1>
14358
14751
  ERROR: LOG_LEVEL # value = <LOG_LEVEL.ERROR: 4>
14359
14752
  FATAL: LOG_LEVEL # value = <LOG_LEVEL.FATAL: 5>