hikyuu 2.6.8.4__py3-none-manylinux2014_x86_64.whl → 2.6.9__py3-none-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. hikyuu/__init__.py +5 -12
  2. hikyuu/__init__.pyi +612 -587
  3. hikyuu/analysis/__init__.pyi +589 -563
  4. hikyuu/analysis/analysis.pyi +590 -564
  5. hikyuu/core.py +2 -0
  6. hikyuu/core.pyi +591 -565
  7. hikyuu/cpp/__init__.pyi +2 -2
  8. hikyuu/cpp/core310.pyi +446 -13
  9. hikyuu/cpp/core310.so +0 -0
  10. hikyuu/cpp/core311.pyi +440 -13
  11. hikyuu/cpp/core311.so +0 -0
  12. hikyuu/cpp/core312.pyi +440 -13
  13. hikyuu/cpp/core312.so +0 -0
  14. hikyuu/cpp/core313.pyi +446 -13
  15. hikyuu/cpp/core313.so +0 -0
  16. hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
  17. hikyuu/cpp/libboost_charconv-mt.so +0 -0
  18. hikyuu/cpp/libboost_charconv-mt.so.1.88.0 +0 -0
  19. hikyuu/cpp/libboost_chrono-mt.so +0 -0
  20. hikyuu/cpp/libboost_chrono-mt.so.1.88.0 +0 -0
  21. hikyuu/cpp/libboost_date_time-mt.so +0 -0
  22. hikyuu/cpp/libboost_date_time-mt.so.1.88.0 +0 -0
  23. hikyuu/cpp/libboost_serialization-mt.so +0 -0
  24. hikyuu/cpp/libboost_serialization-mt.so.1.88.0 +0 -0
  25. hikyuu/cpp/libboost_system-mt.so +0 -0
  26. hikyuu/cpp/libboost_system-mt.so.1.88.0 +0 -0
  27. hikyuu/cpp/libboost_thread-mt.so +0 -0
  28. hikyuu/cpp/libboost_thread-mt.so.1.88.0 +0 -0
  29. hikyuu/cpp/libboost_wserialization-mt.so +0 -0
  30. hikyuu/cpp/libboost_wserialization-mt.so.1.88.0 +0 -0
  31. hikyuu/cpp/libhikyuu.so +0 -0
  32. hikyuu/cpp/libsqlite3.so +0 -0
  33. hikyuu/data/clickhouse_upgrade/createdb.sql +105 -105
  34. hikyuu/data/common.py +3 -3
  35. hikyuu/data/common_clickhouse.py +1 -1
  36. hikyuu/data/download_block.py +318 -0
  37. hikyuu/data/em_block_to_clickhouse.py +26 -74
  38. hikyuu/data/em_block_to_mysql.py +25 -75
  39. hikyuu/data/em_block_to_sqlite.py +26 -78
  40. hikyuu/data/hku_config_template.py +3 -3
  41. hikyuu/data/pytdx_to_clickhouse.py +15 -11
  42. hikyuu/data/pytdx_to_h5.py +6 -2
  43. hikyuu/data/pytdx_to_mysql.py +5 -1
  44. hikyuu/data/pytdx_weight_to_clickhouse.py +1 -1
  45. hikyuu/data/pytdx_weight_to_mysql.py +1 -1
  46. hikyuu/data/pytdx_weight_to_sqlite.py +1 -1
  47. hikyuu/data/zh_bond10_to_clickhouse.py +1 -1
  48. hikyuu/draw/drawplot/__init__.pyi +8 -8
  49. hikyuu/draw/drawplot/bokeh_draw.pyi +603 -578
  50. hikyuu/draw/drawplot/common.pyi +1 -1
  51. hikyuu/draw/drawplot/echarts_draw.pyi +605 -580
  52. hikyuu/draw/drawplot/matplotlib_draw.py +4 -74
  53. hikyuu/draw/drawplot/matplotlib_draw.pyi +615 -590
  54. hikyuu/draw/elder.pyi +11 -11
  55. hikyuu/draw/kaufman.pyi +18 -18
  56. hikyuu/draw/volume.pyi +10 -10
  57. hikyuu/examples/notebook/Demo/Demo1.ipynb +48 -33
  58. hikyuu/extend.pyi +599 -573
  59. hikyuu/fetcher/stock/zh_block_em.py +50 -18
  60. hikyuu/gui/HikyuuTDX.py +81 -30
  61. hikyuu/gui/data/CollectSpotThread.py +1 -1
  62. hikyuu/gui/data/EscapetimeThread.py +8 -14
  63. hikyuu/gui/data/ImportBlockInfoTask.py +3 -10
  64. hikyuu/gui/data/MainWindow.py +1168 -715
  65. hikyuu/gui/data/SchedImportThread.py +2 -2
  66. hikyuu/gui/data/UsePytdxImportToH5Thread.py +3 -3
  67. hikyuu/gui/data/UseQmtImportToH5Thread.py +2 -2
  68. hikyuu/gui/data/UseTdxImportToH5Thread.py +3 -3
  69. hikyuu/gui/data/tool.py +32 -25
  70. hikyuu/gui/dataserver.py +5 -3
  71. hikyuu/hub.pyi +6 -6
  72. hikyuu/include/hikyuu/DataType.h +4 -16
  73. hikyuu/include/hikyuu/KData.h +6 -3
  74. hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +1 -1
  75. hikyuu/include/hikyuu/KDataSharedBufferImp.h +1 -1
  76. hikyuu/include/hikyuu/KQuery.h +2 -2
  77. hikyuu/include/hikyuu/Stock.h +3 -0
  78. hikyuu/include/hikyuu/StockManager.h +13 -3
  79. hikyuu/include/hikyuu/config.h +3 -0
  80. hikyuu/include/hikyuu/data_driver/BaseInfoDriver.h +8 -0
  81. hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
  82. hikyuu/include/hikyuu/data_driver/KDataDriver.h +26 -1
  83. hikyuu/include/hikyuu/data_driver/base_info/mysql/MySQLBaseInfoDriver.h +1 -1
  84. hikyuu/include/hikyuu/data_driver/base_info/sqlite/SQLiteBaseInfoDriver.h +1 -1
  85. hikyuu/include/hikyuu/data_driver/block_info/mysql/MySQLBlockInfoDriver.h +2 -1
  86. hikyuu/include/hikyuu/data_driver/block_info/qianlong/QLBlockInfoDriver.h +2 -1
  87. hikyuu/include/hikyuu/data_driver/block_info/sqlite/SQLiteBlockInfoDriver.h +2 -1
  88. hikyuu/include/hikyuu/data_driver/kdata/DoNothingKDataDriver.h +1 -1
  89. hikyuu/include/hikyuu/data_driver/kdata/cvs/KDataTempCsvDriver.h +1 -1
  90. hikyuu/include/hikyuu/data_driver/kdata/hdf5/H5KDataDriver.h +1 -1
  91. hikyuu/include/hikyuu/data_driver/kdata/mysql/MySQLKDataDriver.h +1 -1
  92. hikyuu/include/hikyuu/data_driver/kdata/sqlite/SQLiteKDataDriver.h +1 -1
  93. hikyuu/include/hikyuu/data_driver/kdata/tdx/TdxKDataDriver.h +1 -1
  94. hikyuu/include/hikyuu/hikyuu.h +1 -1
  95. hikyuu/include/hikyuu/indicator/build_in.h +1 -0
  96. hikyuu/include/hikyuu/indicator/crt/CYCLE.h +4 -4
  97. hikyuu/include/hikyuu/indicator/crt/HSL.h +2 -2
  98. hikyuu/include/hikyuu/indicator/crt/QUANTILE_TRUNC.h +30 -0
  99. hikyuu/include/hikyuu/indicator/crt/TURNOVER.h +1 -0
  100. hikyuu/include/hikyuu/indicator/crt/ZSCORE.h +2 -2
  101. hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +25 -0
  102. hikyuu/include/hikyuu/misc.h +38 -0
  103. hikyuu/include/hikyuu/plugin/dataserver.h +2 -1
  104. hikyuu/include/hikyuu/plugin/extind.h +37 -0
  105. hikyuu/include/hikyuu/plugin/hkuextra.h +0 -18
  106. hikyuu/include/hikyuu/plugin/hkuviews.h +36 -0
  107. hikyuu/include/hikyuu/plugin/interface/DataServerPluginInterface.h +2 -2
  108. hikyuu/include/hikyuu/plugin/interface/ExtendIndicatorsPluginInterface.h +12 -0
  109. hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +0 -14
  110. hikyuu/include/hikyuu/plugin/interface/HkuViewsPluginInterface.h +34 -0
  111. hikyuu/include/hikyuu/plugin/interface/plugins.h +8 -1
  112. hikyuu/include/hikyuu/python/pybind_utils.h +6 -1
  113. hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +3 -0
  114. hikyuu/include/hikyuu/trade_manage/Performance.h +4 -4
  115. hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
  116. hikyuu/include/hikyuu/trade_sys/moneymanager/imp/FixedCapitalFundsMM.h +0 -4
  117. hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +36 -3
  118. hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +125 -0
  119. hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +125 -0
  120. hikyuu/include/hikyuu/trade_sys/multifactor/build_in.h +3 -0
  121. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_norm.h +36 -0
  122. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_scfilter.h +51 -0
  123. hikyuu/include/hikyuu/trade_sys/multifactor/filter/GroupSCFilter.h +24 -0
  124. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreLessOrEqualValueSCFilter.h +24 -0
  125. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreNanSCFilter.h +24 -0
  126. hikyuu/include/hikyuu/trade_sys/multifactor/filter/MinAmountPercentSCFilter.h +25 -0
  127. hikyuu/include/hikyuu/trade_sys/multifactor/filter/PriceSCFilter.h +24 -0
  128. hikyuu/include/hikyuu/trade_sys/multifactor/filter/TopNSCFilter.h +24 -0
  129. hikyuu/include/hikyuu/trade_sys/multifactor/filter/__init__.py +1 -0
  130. hikyuu/include/hikyuu/trade_sys/multifactor/imp/EqualWeightMultiFactor.h +1 -1
  131. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICIRMultiFactor.h +1 -1
  132. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICMultiFactor.h +1 -1
  133. hikyuu/include/hikyuu/trade_sys/multifactor/imp/WeightMultiFactor.h +1 -1
  134. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormMinMax.h +23 -0
  135. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantile.h +28 -0
  136. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantileUniform.h +28 -0
  137. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormZScore.h +25 -0
  138. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/__init__.py +1 -0
  139. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/quantile_trunc.h +16 -0
  140. hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +7 -0
  141. hikyuu/include/hikyuu/trade_sys/portfolio/imp/SimplePortfolio.h +7 -0
  142. hikyuu/include/hikyuu/trade_sys/portfolio/imp/WithoutAFPortfolio.h +7 -0
  143. hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +49 -0
  144. hikyuu/include/hikyuu/trade_sys/selector/build_in.h +1 -0
  145. hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +40 -0
  146. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +0 -3
  147. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +49 -0
  148. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorSelector.h +1 -1
  149. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorValueSelector.h +1 -1
  150. hikyuu/include/hikyuu/trade_sys/signal/imp/BandSignal2.h +0 -4
  151. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/AddValueSignal.h +2 -2
  152. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/DivValueSignal.h +2 -2
  153. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/MulValueSignal.h +2 -2
  154. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorSignal.h +1 -1
  155. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorValueSignal.h +4 -4
  156. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/SubValueSignal.h +2 -2
  157. hikyuu/include/hikyuu/trade_sys/system/System.h +14 -1
  158. hikyuu/include/hikyuu/utilities/SpendTimer.h +17 -7
  159. hikyuu/include/hikyuu/utilities/arithmetic.h +55 -0
  160. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +1 -1
  161. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +1 -1
  162. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +1 -1
  163. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +1 -1
  164. hikyuu/include/hikyuu/utilities/plugin/PluginLoader.h +4 -1
  165. hikyuu/include/hikyuu/version.h +4 -4
  166. hikyuu/plugin/libbacktest.so +0 -0
  167. hikyuu/plugin/libclickhousedriver.so +0 -0
  168. hikyuu/plugin/libdataserver.so +0 -0
  169. hikyuu/plugin/libdevice.so +0 -0
  170. hikyuu/plugin/libextind.so +0 -0
  171. hikyuu/plugin/libhkuextra.so +0 -0
  172. hikyuu/plugin/libhkuviews.so +0 -0
  173. hikyuu/plugin/libimport2hdf5.so +0 -0
  174. hikyuu/plugin/libtmreport.so +0 -0
  175. hikyuu/trade_manage/__init__.pyi +603 -578
  176. hikyuu/trade_manage/broker.pyi +3 -3
  177. hikyuu/trade_manage/broker_easytrader.pyi +1 -1
  178. hikyuu/trade_manage/trade.pyi +603 -578
  179. hikyuu/util/__init__.pyi +2 -2
  180. hikyuu/util/singleton.pyi +1 -1
  181. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/METADATA +13 -13
  182. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/RECORD +185 -156
  183. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/top_level.txt +2 -1
  184. hikyuu/cpp/core39.pyi +0 -14385
  185. hikyuu/cpp/core39.so +0 -0
  186. hikyuu/data_driver/__init__.py +0 -49
  187. hikyuu/data_driver/jqdata_data_driver.py +0 -277
  188. hikyuu/data_driver/pytdx_data_driver.py +0 -292
  189. hikyuu/fetcher/stock/zh_stock_a_huatai.py +0 -51
  190. hikyuu/fetcher/stock/zh_stock_a_pytdx.py +0 -129
  191. hikyuu/gui/data/CollectToMemThread.py +0 -123
  192. hikyuu/gui/data/CollectToMySQLThread.py +0 -178
  193. hikyuu/gui/start_huatai_insight.py +0 -510
  194. hikyuu/tools/update_block_info.py +0 -168
  195. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/WHEEL +0 -0
  196. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core313.pyi CHANGED
@@ -3,7 +3,7 @@ import collections.abc
3
3
  import numpy
4
4
  import numpy.typing
5
5
  import typing
6
- __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
6
+ __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_FUNC', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'GROUP_COUNT', 'GROUP_FUNC', 'GROUP_MAX', 'GROUP_MEAN', 'GROUP_MIN', 'GROUP_PROD', 'GROUP_SUM', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NORM_MinMax', 'NORM_NOTHING', 'NORM_Quantile', 'NORM_Quantile_Uniform', 'NORM_Zscore', 'NOT', 'NormalizeBase', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'QUANTILE_TRUNC', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SCFilter_AmountLimit', 'SCFilter_Group', 'SCFilter_IgnoreNan', 'SCFilter_LessOrEqualValue', 'SCFilter_Price', 'SCFilter_TopN', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_MultiFactor2', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'ScoresFilterBase', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_funds_list', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'parallel_run_pf', 'parallel_run_sys', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
7
7
  class AllocateFundsBase:
8
8
  """
9
9
  资产分配算法基类, 子类接口:
@@ -229,7 +229,10 @@ class Block:
229
229
  def __init__(self) -> None:
230
230
  ...
231
231
  @typing.overload
232
- def __init__(self, arg0: str, arg1: str) -> None:
232
+ def __init__(self, category: str, name: str) -> None:
233
+ ...
234
+ @typing.overload
235
+ def __init__(self, category: str, name: str, index_code: str) -> None:
233
236
  ...
234
237
  @typing.overload
235
238
  def __init__(self, arg0: Block) -> None:
@@ -2009,8 +2012,6 @@ class Indicator:
2009
2012
  """
2010
2013
  转化为np.array, 如果为时间序列, 则包含 datetime 日期列
2011
2014
  """
2012
- def to_pyarrow(self) -> typing.Any:
2013
- ...
2014
2015
  def value_to_df(self) -> typing.Any:
2015
2016
  """
2016
2017
  转换为 DataFrame, 仅包含值
@@ -2019,8 +2020,6 @@ class Indicator:
2019
2020
  """
2020
2021
  仅转化值为np.array, 不包含日期列
2021
2022
  """
2022
- def value_to_pyarrow(self) -> typing.Any:
2023
- ...
2024
2023
  @property
2025
2024
  def discard(self) -> int:
2026
2025
  """
@@ -3074,6 +3073,17 @@ class MultiFactorBase:
3074
3073
  ...
3075
3074
  def __str__(self) -> str:
3076
3075
  ...
3076
+ def add_special_normalize(self, name: str, norm: NormalizeBase = None, category: str = '', style_inds: collections.abc.Sequence[Indicator] = []) -> None:
3077
+ """
3078
+ add_special_normalize(self, name[, norm=None, category="", style_inds=[]])
3079
+
3080
+ 对指定名称的指标应用特定的标准化/归一化、行业中性化、风格因子中性化操作。标准化操作、行业中性化、风格因子中性化彼此无关,可同时指定也可分开指定。
3081
+
3082
+ :param str name: 特殊归一化方法名称
3083
+ :param Normalize norm: 特殊归一化方法
3084
+ :param str category: 行业中性化时,指定板块类别
3085
+ :param list[Indicator] style_inds: 用于中性化的风格指标列表
3086
+ """
3077
3087
  def clone(self) -> MultiFactorBase:
3078
3088
  """
3079
3089
  克隆操作
@@ -3095,7 +3105,14 @@ class MultiFactorBase:
3095
3105
  :return: ScoreRecordList
3096
3106
  """
3097
3107
  def get_all_src_factors(self) -> list[list[Indicator]]:
3098
- ...
3108
+ """
3109
+ get_all_src_factors(self)
3110
+
3111
+ 获取所有原始因子列表(如果指定了标准化、行业中性化, 返回为已处理的因子列表)
3112
+
3113
+ :rtype: list
3114
+ :return: list IndicatorList stks x inds
3115
+ """
3099
3116
  def get_datetime_list(self) -> DatetimeList:
3100
3117
  """
3101
3118
  获取参考日期列表(由参考证券通过查询条件获得)
@@ -3171,6 +3188,14 @@ class MultiFactorBase:
3171
3188
  """
3172
3189
  是否存在指定参数
3173
3190
  """
3191
+ def set_normalize(self, norm: NormalizeBase) -> None:
3192
+ """
3193
+ set_normalize(self, norm)
3194
+
3195
+ 设置标准化或归一化方法(影响全部因子)
3196
+
3197
+ :param NormalizeBase norm: 标准化或归一化方法实例
3198
+ """
3174
3199
  def set_param(self, arg0: str, arg1: any) -> None:
3175
3200
  """
3176
3201
  set_param(self, name, value)
@@ -3221,6 +3246,74 @@ class MultiFactorBase:
3221
3246
  @query.setter
3222
3247
  def query(self, arg1: Query) -> None:
3223
3248
  ...
3249
+ class NormalizeBase:
3250
+ """
3251
+ 用于 MF 的截面标准化操作
3252
+ """
3253
+ @staticmethod
3254
+ def _pybind11_conduit_v1_(*args, **kwargs):
3255
+ ...
3256
+ def __getstate__(self) -> tuple:
3257
+ ...
3258
+ @typing.overload
3259
+ def __init__(self) -> None:
3260
+ ...
3261
+ @typing.overload
3262
+ def __init__(self, arg0: NormalizeBase) -> None:
3263
+ ...
3264
+ @typing.overload
3265
+ def __init__(self, arg0: str) -> None:
3266
+ """
3267
+ 初始化构造函数
3268
+
3269
+ :param str name: 名称
3270
+ """
3271
+ def __repr__(self) -> str:
3272
+ ...
3273
+ def __setstate__(self, arg0: tuple) -> None:
3274
+ ...
3275
+ def __str__(self) -> str:
3276
+ ...
3277
+ def clone(self) -> NormalizeBase:
3278
+ """
3279
+ 克隆操作
3280
+ """
3281
+ def get_param(self, arg0: str) -> any:
3282
+ """
3283
+ get_param(self, name)
3284
+
3285
+ 获取指定的参数
3286
+
3287
+ :param str name: 参数名称
3288
+ :return: 参数值
3289
+ :raises out_of_range: 无此参数
3290
+ """
3291
+ def have_param(self, arg0: str) -> bool:
3292
+ """
3293
+ 是否存在指定参数
3294
+ """
3295
+ def normalize(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> list[float]:
3296
+ """
3297
+ 【重载接口】子类计算接口
3298
+ """
3299
+ def set_param(self, arg0: str, arg1: any) -> None:
3300
+ """
3301
+ set_param(self, name, value)
3302
+
3303
+ 设置参数
3304
+
3305
+ :param str name: 参数名称
3306
+ :param value: 参数值
3307
+ :raises logic_error: Unsupported type! 不支持的参数类型
3308
+ """
3309
+ @property
3310
+ def name(self) -> str:
3311
+ """
3312
+ 名称
3313
+ """
3314
+ @name.setter
3315
+ def name(self, arg1: str) -> None:
3316
+ ...
3224
3317
  class OrderBrokerBase:
3225
3318
  """
3226
3319
  订单代理包装基类,用户可以参考自定义自己的订单代理,加入额外的处理
@@ -3494,6 +3587,10 @@ class Portfolio:
3494
3587
  """
3495
3588
  是否存在指定参数
3496
3589
  """
3590
+ def last_suggestion(self) -> typing.Any:
3591
+ """
3592
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
3593
+ """
3497
3594
  def reset(self) -> None:
3498
3595
  """
3499
3596
  复位操作
@@ -4270,6 +4367,87 @@ class ScoreRecordList:
4270
4367
  ...
4271
4368
  def to_pandas(self):
4272
4369
  ...
4370
+ class ScoresFilterBase:
4371
+ """
4372
+ 用于 MF 的截面标准化操作
4373
+ """
4374
+ @staticmethod
4375
+ def _pybind11_conduit_v1_(*args, **kwargs):
4376
+ ...
4377
+ def __getstate__(self) -> tuple:
4378
+ ...
4379
+ @typing.overload
4380
+ def __init__(self) -> None:
4381
+ ...
4382
+ @typing.overload
4383
+ def __init__(self, arg0: ScoresFilterBase) -> None:
4384
+ ...
4385
+ @typing.overload
4386
+ def __init__(self, arg0: str) -> None:
4387
+ """
4388
+ 初始化构造函数
4389
+
4390
+ :param str name: 名称
4391
+ """
4392
+ def __or__(self, arg0: ScoresFilterBase) -> ScoresFilterBase:
4393
+ ...
4394
+ def __repr__(self) -> str:
4395
+ ...
4396
+ def __setstate__(self, arg0: tuple) -> None:
4397
+ ...
4398
+ def __str__(self) -> str:
4399
+ ...
4400
+ def _filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4401
+ """
4402
+ 【重载接口】子类计算接口
4403
+ """
4404
+ def clone(self) -> ScoresFilterBase:
4405
+ """
4406
+ 克隆操作
4407
+ """
4408
+ def filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4409
+ """
4410
+ filter(self, scores, date, query)
4411
+
4412
+ 截面过滤
4413
+ :param list scores: 截面数据
4414
+ :param Datetime date: 截面日期
4415
+ :param KQuery query: 查询参数
4416
+ :return: 截面数据
4417
+ :rtype: ScoreRecordList
4418
+ """
4419
+ def get_param(self, arg0: str) -> any:
4420
+ """
4421
+ get_param(self, name)
4422
+
4423
+ 获取指定的参数
4424
+
4425
+ :param str name: 参数名称
4426
+ :return: 参数值
4427
+ :raises out_of_range: 无此参数
4428
+ """
4429
+ def have_param(self, arg0: str) -> bool:
4430
+ """
4431
+ 是否存在指定参数
4432
+ """
4433
+ def set_param(self, arg0: str, arg1: any) -> None:
4434
+ """
4435
+ set_param(self, name, value)
4436
+
4437
+ 设置参数
4438
+
4439
+ :param str name: 参数名称
4440
+ :param value: 参数值
4441
+ :raises logic_error: Unsupported type! 不支持的参数类型
4442
+ """
4443
+ @property
4444
+ def name(self) -> str:
4445
+ """
4446
+ 名称
4447
+ """
4448
+ @name.setter
4449
+ def name(self, arg1: str) -> None:
4450
+ ...
4273
4451
  class SelectorBase:
4274
4452
  """
4275
4453
  选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
@@ -4347,6 +4525,14 @@ class SelectorBase:
4347
4525
  """
4348
4526
  子类复位操作实现
4349
4527
  """
4528
+ def add_scores_filter(self, arg0: ScoresFilterBase) -> None:
4529
+ """
4530
+ add_scores_filter(self, filter)
4531
+
4532
+ 在已有过滤基础上新增过滤, 仅适用于 SE_MultiFactor
4533
+
4534
+ :param ScoresFilter filter: 新的过滤器
4535
+ """
4350
4536
  def add_stock(self, stock: Stock, sys: ...) -> None:
4351
4537
  """
4352
4538
  add_stock(self, stock, sys)
@@ -4429,6 +4615,19 @@ class SelectorBase:
4429
4615
  :param value: 参数值
4430
4616
  :raises logic_error: Unsupported type! 不支持的参数类型
4431
4617
  """
4618
+ def set_scores_filter(self, arg0: ScoresFilterBase) -> None:
4619
+ """
4620
+ set_scores_filter(self, filter)
4621
+
4622
+ 设置 ScoresFilter, 将替换现有的过滤器. 仅适用于 SE_MultiFactor
4623
+
4624
+ :param ScoresFilter filter: ScoresFilter
4625
+ """
4626
+ @property
4627
+ def mf(self) -> ...:
4628
+ """
4629
+ 获取关联的 MF
4630
+ """
4432
4631
  @property
4433
4632
  def name(self) -> str:
4434
4633
  """
@@ -4447,6 +4646,11 @@ class SelectorBase:
4447
4646
  """
4448
4647
  由 PF 运行时设定的实际运行系统列表
4449
4648
  """
4649
+ @property
4650
+ def scfilter(self) -> ScoresFilterBase:
4651
+ """
4652
+ 获取 ScoresFilter
4653
+ """
4450
4654
  class SignalBase:
4451
4655
  """
4452
4656
  信号指示器基类
@@ -5296,6 +5500,15 @@ class StockManager:
5296
5500
  """
5297
5501
  获取当前板块信息驱动参数
5298
5502
  """
5503
+ def get_category_list(self) -> list[str]:
5504
+ """
5505
+ get_category_list(self)
5506
+
5507
+ 获取所有板块分类
5508
+
5509
+ :return: 所有板块分类
5510
+ :rtype: StringList
5511
+ """
5299
5512
  def get_context(self) -> StrategyContext:
5300
5513
  """
5301
5514
  获取当前上下文
@@ -6249,6 +6462,10 @@ class System:
6249
6462
  """
6250
6463
  是否存在指定参数
6251
6464
  """
6465
+ def last_suggestion(self) -> typing.Any:
6466
+ """
6467
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
6468
+ """
6252
6469
  def ready(self) -> None:
6253
6470
  ...
6254
6471
  def reset(self) -> None:
@@ -8157,6 +8374,26 @@ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit:
8157
8374
  """
8158
8375
  聚合函数: 非空值计数, 可参考 AGG_STD 帮助
8159
8376
  """
8377
+ def AGG_FUNC(ind: Indicator, agg_func: typing.Any, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8378
+ """
8379
+ AGG_FUNC(ind, agg_func[, ktype=Query.MIN, fill_null=False, unit=1]
8380
+
8381
+ 使用自定函数聚合其他K线周期的指标。虽然支持python自定义函数, 但python函数需要GIL, 速度会慢。建议最好直接使用 C++ 自定义聚合函数。
8382
+
8383
+ 示例, 计算日线时聚合分钟线收盘价的和:
8384
+
8385
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
8386
+ >>> ind = AGG_FUNC(CLOSE(), lambda ds, x: np.sum(x))
8387
+ >>> ind(k)
8388
+
8389
+ :param Indicator ind: 待计算指标
8390
+ :param callable agg_func: 自定义聚合函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回针对list的聚合结果, 注意是单个值
8391
+ :param KQuery.KType ktype: 聚合的K线周期
8392
+ :param bool fill_null: 是否填充缺失值
8393
+ :param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8394
+ :return: 聚合结果
8395
+ :rtype: Indicator
8396
+ """
8160
8397
  def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8161
8398
  """
8162
8399
  聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
@@ -9132,6 +9369,48 @@ def FLOOR(arg0: typing.SupportsFloat) -> Indicator:
9132
9369
  :param data: 输入数据
9133
9370
  :rtype: Indicator
9134
9371
  """
9372
+ def GROUP_COUNT(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9373
+ """
9374
+ 分组累积计数
9375
+ """
9376
+ def GROUP_FUNC(ind: Indicator, group_func: typing.Any, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9377
+ """
9378
+ GROUP_FUNC(ind, group_func[, ktype=Query.DAY, unit=1])
9379
+
9380
+ 自定义分组累积计算指标。虽然支持python自定义函数, 但python函数需要GIL, 速度较慢。建议最好直接使用 C++ 自定义分组累积函数。
9381
+
9382
+ 示例, 计算日线时聚合分钟线收盘价的和:
9383
+
9384
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
9385
+ >>> ind = GROUP_FUNC(CLOSE(), lambda dates, data: data/2.0)
9386
+ >>> ind(k)
9387
+
9388
+ :param Indicator ind: 待计算指标
9389
+ :param callable group_func: 自定义分组累积函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回和输入等长的累积计算结果, 类型同样须为 np.array
9390
+ :param KQuery.KType ktype: 分组的K线周期
9391
+ :param int unit: 分组周期单位 (分组的K线周期单位, 使用日线计算分钟线, unit=2代表按2天累积计算的分钟线)
9392
+ :rtype: Indicator
9393
+ """
9394
+ def GROUP_MAX(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9395
+ """
9396
+ 分组累积最大值
9397
+ """
9398
+ def GROUP_MEAN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9399
+ """
9400
+ 分组累积平均
9401
+ """
9402
+ def GROUP_MIN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9403
+ """
9404
+ 分组累积最小值
9405
+ """
9406
+ def GROUP_PROD(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9407
+ """
9408
+ 分组累积乘积
9409
+ """
9410
+ def GROUP_SUM(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9411
+ """
9412
+ 分组累积和
9413
+ """
9135
9414
  @typing.overload
9136
9415
  def HHV(n: typing.SupportsInt = 20) -> Indicator:
9137
9416
  ...
@@ -10103,6 +10382,36 @@ def NDAY(x: Indicator, y: Indicator, n: IndParam) -> Indicator:
10103
10382
  :param int|Indicator|IndParam n: 时间窗口
10104
10383
  :rtype: Indicator
10105
10384
  """
10385
+ def NORM_MinMax() -> NormalizeBase:
10386
+ """
10387
+ 最小-最大标准化操作
10388
+ """
10389
+ def NORM_NOTHING() -> NormalizeBase:
10390
+ """
10391
+ 无截面标准化操作
10392
+ """
10393
+ def NORM_Quantile(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10394
+ """
10395
+ 分位数截面标准化操作
10396
+
10397
+ :param quantile_min: 最小分位数
10398
+ :param quantile_max: 最大分位数
10399
+ """
10400
+ def NORM_Quantile_Uniform(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10401
+ """
10402
+ 分位数截面均匀分布标准化操作
10403
+
10404
+ :param quantile_min: 最小分位数
10405
+ :param quantile_max: 最大分位数
10406
+ """
10407
+ def NORM_Zscore(out_extreme: bool = False, nsigma: typing.SupportsFloat = 3.0, recursive: bool = False) -> NormalizeBase:
10408
+ """
10409
+ Z-score 标准化操作
10410
+
10411
+ :param out_extreme: 是否剔除异常值
10412
+ :param nsigma: 异常值判断倍数±3.0
10413
+ :param recursive: 是否递归处理异常值
10414
+ """
10106
10415
  @typing.overload
10107
10416
  def NOT() -> Indicator:
10108
10417
  ...
@@ -10241,6 +10550,22 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
10241
10550
  :rtype: Indicator
10242
10551
  """
10243
10552
  @typing.overload
10553
+ def QUANTILE_TRUNC(n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10554
+ ...
10555
+ @typing.overload
10556
+ def QUANTILE_TRUNC(data: Indicator, n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10557
+ """
10558
+ QUANTILE_TRUNC(data[, n=60, quantial_min=0.01, quantial_max=0.99])
10559
+
10560
+ 对数据进行分位数截断处理。非窗口滚动。
10561
+
10562
+ :param Indicator data: 待剔除异常值数据
10563
+ :param int n: 时间窗口
10564
+ :param float quantial_min: 剔除极值时使用的百分位数下限,默认 0.01
10565
+ :param float quantial_max: 剔除极值时使用的百分位数上限,默认 0.99
10566
+ :rtype: Indicator
10567
+ """
10568
+ @typing.overload
10244
10569
  def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
10245
10570
  ...
10246
10571
  @typing.overload
@@ -10598,6 +10923,59 @@ def SAFTYLOSS(data: Indicator, n1: Indicator, n2: Indicator, p: Indicator) -> In
10598
10923
  :param float|Indicator|IndParam p: 噪音系数
10599
10924
  :rtype: Indicator
10600
10925
  """
10926
+ def SCFilter_AmountLimit(min_amount_percent_limit: typing.SupportsFloat = 0.1) -> ScoresFilterBase:
10927
+ """
10928
+ SCFilter_AmountLimit([min_amount_percent_limit: float = 0.1])
10929
+
10930
+ 过滤掉成交金额在评分列表末尾百分比范围内的截面
10931
+
10932
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是成交金额较小的系统评分记录;反之,则是金额较大的系统评分记录
10933
+
10934
+ :param double min_amount_percent_limit: 最小金额百分比限制
10935
+ :return: 截面过滤器
10936
+ :rtype: ScoresFilterPtr
10937
+ """
10938
+ def SCFilter_Group(group: typing.SupportsInt = 10, group_index: typing.SupportsInt = 0) -> ScoresFilterBase:
10939
+ """
10940
+ SCFilter_Group([group: int=10, group_index: int=0])
10941
+
10942
+ 按截面进行分组过滤
10943
+ :param int group: 分组数量
10944
+ :param int group_index: 分组索引
10945
+ :return: 截面过滤器
10946
+ :rtype: ScoresFilterPtr
10947
+ """
10948
+ def SCFilter_IgnoreNan() -> ScoresFilterBase:
10949
+ """
10950
+ SCFilter_IgnoreNan() -> ScoresFilterPtr
10951
+
10952
+ 忽略截面中的NAN值
10953
+ """
10954
+ def SCFilter_LessOrEqualValue(value: typing.SupportsFloat = 0.0) -> ScoresFilterBase:
10955
+ """
10956
+ SCFilter_LessOrEqualValue([value = 0.0])
10957
+
10958
+ 过滤掉评分小于等于指定值的截面
10959
+ """
10960
+ def SCFilter_Price(min_price: typing.SupportsFloat = 10.0, max_price: typing.SupportsFloat = 100000.0) -> ScoresFilterBase:
10961
+ """
10962
+ SCFilter_Price([min_price = 10., max_price = 100000.])
10963
+
10964
+ 仅保留价格在 [min_price, max_price] 之间的标的
10965
+
10966
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是价格较小的系统评分记录;反之,则是价格较大的系统评分记录
10967
+
10968
+ :param double min_price: 最小价格限制
10969
+ :param double max_price: 最大价格限制
10970
+ """
10971
+ def SCFilter_TopN(topn: typing.SupportsInt = 10) -> ScoresFilterBase:
10972
+ """
10973
+ SCFilter_TopN([topn: int=10])
10974
+
10975
+ 获取评分列表中的前 topn 个
10976
+
10977
+ :param int topn: 前 topn 个
10978
+ """
10601
10979
  def SE_EvaluateOptimal(arg0: typing.Any) -> SelectorBase:
10602
10980
  """
10603
10981
  SE_EvaluateOptimal(evalulate_func)
@@ -10648,6 +11026,27 @@ def SE_MultiFactor(inds: collections.abc.Sequence, topn: typing.SupportsInt = 10
10648
11026
  :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
10649
11027
  :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
10650
11028
  """
11029
+ @typing.overload
11030
+ def SE_MultiFactor2(mf: ..., filter: ScoresFilterBase = ...) -> SelectorBase:
11031
+ ...
11032
+ @typing.overload
11033
+ def SE_MultiFactor2(inds: collections.abc.Sequence, ic_n: typing.SupportsInt = 5, ic_rolling_n: typing.SupportsInt = 120, ref_stk: typing.Any = None, spearman: bool = True, mode: str = 'MF_ICIRWeight', filter: ScoresFilterBase = ...) -> SelectorBase:
11034
+ """
11035
+ SE_MultiFactor2([inds, ic_n, ic_rolling_n, ref_stk, spearman, mode, filter])
11036
+
11037
+ 创建基于多因子评分的选择器,两种创建方式
11038
+
11039
+ - 直接指定 MF:
11040
+ :param MultiFactorBase mf: 直接指定的多因子合成算法
11041
+
11042
+ - 参数直接创建:
11043
+ :param sequense(Indicator) inds: 原始因子列表
11044
+ :param int ic_n: 默认 IC 对应的 N 日收益率
11045
+ :param int ic_rolling_n: IC 滚动周期
11046
+ :param Stock ref_stk: 参考证券 (未指定时,默认为 sh000300 沪深300)
11047
+ :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
11048
+ :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
11049
+ """
10651
11050
  def SE_PerformanceOptimal(key: str = '帐户平均年收益率%', mode: typing.SupportsInt = 0) -> SelectorBase:
10652
11051
  """
10653
11052
  SE_PerformanceOptimal(key="帐户平均年收益率%", mode=0)
@@ -13747,7 +14146,7 @@ def ZSCORE(data: Indicator, out_extreme: bool = False, nsigma: typing.SupportsFl
13747
14146
  """
13748
14147
  ZSCORE(data[, out_extreme, nsigma, recursive])
13749
14148
 
13750
- 对数据进行标准化(归一),可选进行极值排除
14149
+ 对数据进行标准化(归一),可选进行极值处理
13751
14150
 
13752
14151
  注:非窗口滚动,如需窗口滚动的标准化,直接 (x - MA(x, n)) / STDEV(x, n) 即可。
13753
14152
 
@@ -13926,6 +14325,16 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
13926
14325
  :param Datetime end: 结束日期
13927
14326
  :rtype: DatetimeList
13928
14327
  """
14328
+ def get_funds_list(arg0: collections.abc.Sequence[TradeManager], arg1: DatetimeList) -> list[list[FundsRecord]]:
14329
+ """
14330
+ get_funds_list(tm_list: list, ref_dates: DatetimeList) -> list[Funds])
14331
+
14332
+ 一次性从多个账户中获取多个指定时刻的账户资金信息
14333
+
14334
+ :param list tm_list: 账户列表
14335
+ :param DatetimeList ref_dates: 获取时刻列表
14336
+ :return: 账户资金列表
14337
+ """
13929
14338
  @typing.overload
13930
14339
  def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13931
14340
  ...
@@ -14101,6 +14510,27 @@ def open_spend_time() -> None:
14101
14510
  """
14102
14511
  全局开启 c++ 部分耗时打印
14103
14512
  """
14513
+ def parallel_run_pf(pf_list: collections.abc.Sequence[...], query: Query, force: bool = False) -> list[list[...]]:
14514
+ """
14515
+ parallel_run_pf(pf_list, query[, force=False])
14516
+
14517
+ 并行执行多个投资组合策略, 并返回 list FundsList, 各账户对应资产(按query时间段)
14518
+
14519
+ :param list pf_list: 投资组合列表
14520
+ :param Query query: 查询条件
14521
+ :param bool force: 强制重新计算
14522
+ """
14523
+ def parallel_run_sys(sys_list: collections.abc.Sequence[...], query: Query, reset: bool = False, reset_all: bool = False) -> list[list[...]]:
14524
+ """
14525
+ parallel_run_sys(sys_list, query[, reset=False, reset_all=False])
14526
+
14527
+ 并行运行多个系系统, 并返回 list FundsList, 各账户对应资产(按query时间段)
14528
+
14529
+ :param sys_list: 系统列表
14530
+ :param query: 查询条件
14531
+ :param bool reset: 执行前是否依据系统部件共享属性复位
14532
+ :param bool reset_all: 强制复位所有部件
14533
+ """
14104
14534
  def positions_to_df(arg0: PositionRecordList) -> typing.Any:
14105
14535
  """
14106
14536
  positions_to_df(positions)
@@ -14260,16 +14690,19 @@ def spot_agent_is_running() -> bool:
14260
14690
  """
14261
14691
  判断行情数据接收代理是否在运行
14262
14692
  """
14263
- def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 2, save_tick: bool = False, buf_tick: bool = False) -> None:
14693
+ def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 3, save_tick: bool = False, buf_tick: bool = False, parquet_path: str = '') -> None:
14264
14694
  """
14265
- start_data_server(addr: str[, work_num: int=2])
14695
+ start_data_server(addr: str[, work_num: int=3, save_tick: bool=False, buf_tick: bool=False, parquet_path: str=''])
14266
14696
 
14267
- 启动数据缓存服务
14268
-
14697
+ 启动数据缓存服务。其中save_tick 参数和 parquet_path 有关联:
14698
+ - 如果 save_tick=True, parquet_path 不为空时, 使用 parquet_path 保存数据;
14699
+ - 如果 save_tick=True, parquet_path 为空时, 则使用 clickhouse K线存储引擎保存数据(需配置使用 clickhouse K线存储引擎)
14700
+
14269
14701
  :param str addr: 服务器地址
14270
14702
  :param int work_num: 工作线程数
14271
- :param bool save_tick: 是否保存tick数据至数据库(仅支持使用 clickhouse K线存储引擎)
14703
+ :param bool save_tick: 是否保存tick数据至数据库(如果 parquet_path 不为空时, 使用 parquet 文件进行保存;否则,需使用 clickhouse K线存储引擎)
14272
14704
  :param bool buf_tick: 是否缓存tick数据
14705
+ :param str parquet_path: 保存tick数据至parquet文件路径, 仅在 save_tick=True 时有效
14273
14706
  :return: None
14274
14707
  """
14275
14708
  def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None: