hikyuu 2.6.8.4__py3-none-manylinux2014_x86_64.whl → 2.6.9__py3-none-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. hikyuu/__init__.py +5 -12
  2. hikyuu/__init__.pyi +612 -587
  3. hikyuu/analysis/__init__.pyi +589 -563
  4. hikyuu/analysis/analysis.pyi +590 -564
  5. hikyuu/core.py +2 -0
  6. hikyuu/core.pyi +591 -565
  7. hikyuu/cpp/__init__.pyi +2 -2
  8. hikyuu/cpp/core310.pyi +446 -13
  9. hikyuu/cpp/core310.so +0 -0
  10. hikyuu/cpp/core311.pyi +440 -13
  11. hikyuu/cpp/core311.so +0 -0
  12. hikyuu/cpp/core312.pyi +440 -13
  13. hikyuu/cpp/core312.so +0 -0
  14. hikyuu/cpp/core313.pyi +446 -13
  15. hikyuu/cpp/core313.so +0 -0
  16. hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
  17. hikyuu/cpp/libboost_charconv-mt.so +0 -0
  18. hikyuu/cpp/libboost_charconv-mt.so.1.88.0 +0 -0
  19. hikyuu/cpp/libboost_chrono-mt.so +0 -0
  20. hikyuu/cpp/libboost_chrono-mt.so.1.88.0 +0 -0
  21. hikyuu/cpp/libboost_date_time-mt.so +0 -0
  22. hikyuu/cpp/libboost_date_time-mt.so.1.88.0 +0 -0
  23. hikyuu/cpp/libboost_serialization-mt.so +0 -0
  24. hikyuu/cpp/libboost_serialization-mt.so.1.88.0 +0 -0
  25. hikyuu/cpp/libboost_system-mt.so +0 -0
  26. hikyuu/cpp/libboost_system-mt.so.1.88.0 +0 -0
  27. hikyuu/cpp/libboost_thread-mt.so +0 -0
  28. hikyuu/cpp/libboost_thread-mt.so.1.88.0 +0 -0
  29. hikyuu/cpp/libboost_wserialization-mt.so +0 -0
  30. hikyuu/cpp/libboost_wserialization-mt.so.1.88.0 +0 -0
  31. hikyuu/cpp/libhikyuu.so +0 -0
  32. hikyuu/cpp/libsqlite3.so +0 -0
  33. hikyuu/data/clickhouse_upgrade/createdb.sql +105 -105
  34. hikyuu/data/common.py +3 -3
  35. hikyuu/data/common_clickhouse.py +1 -1
  36. hikyuu/data/download_block.py +318 -0
  37. hikyuu/data/em_block_to_clickhouse.py +26 -74
  38. hikyuu/data/em_block_to_mysql.py +25 -75
  39. hikyuu/data/em_block_to_sqlite.py +26 -78
  40. hikyuu/data/hku_config_template.py +3 -3
  41. hikyuu/data/pytdx_to_clickhouse.py +15 -11
  42. hikyuu/data/pytdx_to_h5.py +6 -2
  43. hikyuu/data/pytdx_to_mysql.py +5 -1
  44. hikyuu/data/pytdx_weight_to_clickhouse.py +1 -1
  45. hikyuu/data/pytdx_weight_to_mysql.py +1 -1
  46. hikyuu/data/pytdx_weight_to_sqlite.py +1 -1
  47. hikyuu/data/zh_bond10_to_clickhouse.py +1 -1
  48. hikyuu/draw/drawplot/__init__.pyi +8 -8
  49. hikyuu/draw/drawplot/bokeh_draw.pyi +603 -578
  50. hikyuu/draw/drawplot/common.pyi +1 -1
  51. hikyuu/draw/drawplot/echarts_draw.pyi +605 -580
  52. hikyuu/draw/drawplot/matplotlib_draw.py +4 -74
  53. hikyuu/draw/drawplot/matplotlib_draw.pyi +615 -590
  54. hikyuu/draw/elder.pyi +11 -11
  55. hikyuu/draw/kaufman.pyi +18 -18
  56. hikyuu/draw/volume.pyi +10 -10
  57. hikyuu/examples/notebook/Demo/Demo1.ipynb +48 -33
  58. hikyuu/extend.pyi +599 -573
  59. hikyuu/fetcher/stock/zh_block_em.py +50 -18
  60. hikyuu/gui/HikyuuTDX.py +81 -30
  61. hikyuu/gui/data/CollectSpotThread.py +1 -1
  62. hikyuu/gui/data/EscapetimeThread.py +8 -14
  63. hikyuu/gui/data/ImportBlockInfoTask.py +3 -10
  64. hikyuu/gui/data/MainWindow.py +1168 -715
  65. hikyuu/gui/data/SchedImportThread.py +2 -2
  66. hikyuu/gui/data/UsePytdxImportToH5Thread.py +3 -3
  67. hikyuu/gui/data/UseQmtImportToH5Thread.py +2 -2
  68. hikyuu/gui/data/UseTdxImportToH5Thread.py +3 -3
  69. hikyuu/gui/data/tool.py +32 -25
  70. hikyuu/gui/dataserver.py +5 -3
  71. hikyuu/hub.pyi +6 -6
  72. hikyuu/include/hikyuu/DataType.h +4 -16
  73. hikyuu/include/hikyuu/KData.h +6 -3
  74. hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +1 -1
  75. hikyuu/include/hikyuu/KDataSharedBufferImp.h +1 -1
  76. hikyuu/include/hikyuu/KQuery.h +2 -2
  77. hikyuu/include/hikyuu/Stock.h +3 -0
  78. hikyuu/include/hikyuu/StockManager.h +13 -3
  79. hikyuu/include/hikyuu/config.h +3 -0
  80. hikyuu/include/hikyuu/data_driver/BaseInfoDriver.h +8 -0
  81. hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
  82. hikyuu/include/hikyuu/data_driver/KDataDriver.h +26 -1
  83. hikyuu/include/hikyuu/data_driver/base_info/mysql/MySQLBaseInfoDriver.h +1 -1
  84. hikyuu/include/hikyuu/data_driver/base_info/sqlite/SQLiteBaseInfoDriver.h +1 -1
  85. hikyuu/include/hikyuu/data_driver/block_info/mysql/MySQLBlockInfoDriver.h +2 -1
  86. hikyuu/include/hikyuu/data_driver/block_info/qianlong/QLBlockInfoDriver.h +2 -1
  87. hikyuu/include/hikyuu/data_driver/block_info/sqlite/SQLiteBlockInfoDriver.h +2 -1
  88. hikyuu/include/hikyuu/data_driver/kdata/DoNothingKDataDriver.h +1 -1
  89. hikyuu/include/hikyuu/data_driver/kdata/cvs/KDataTempCsvDriver.h +1 -1
  90. hikyuu/include/hikyuu/data_driver/kdata/hdf5/H5KDataDriver.h +1 -1
  91. hikyuu/include/hikyuu/data_driver/kdata/mysql/MySQLKDataDriver.h +1 -1
  92. hikyuu/include/hikyuu/data_driver/kdata/sqlite/SQLiteKDataDriver.h +1 -1
  93. hikyuu/include/hikyuu/data_driver/kdata/tdx/TdxKDataDriver.h +1 -1
  94. hikyuu/include/hikyuu/hikyuu.h +1 -1
  95. hikyuu/include/hikyuu/indicator/build_in.h +1 -0
  96. hikyuu/include/hikyuu/indicator/crt/CYCLE.h +4 -4
  97. hikyuu/include/hikyuu/indicator/crt/HSL.h +2 -2
  98. hikyuu/include/hikyuu/indicator/crt/QUANTILE_TRUNC.h +30 -0
  99. hikyuu/include/hikyuu/indicator/crt/TURNOVER.h +1 -0
  100. hikyuu/include/hikyuu/indicator/crt/ZSCORE.h +2 -2
  101. hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +25 -0
  102. hikyuu/include/hikyuu/misc.h +38 -0
  103. hikyuu/include/hikyuu/plugin/dataserver.h +2 -1
  104. hikyuu/include/hikyuu/plugin/extind.h +37 -0
  105. hikyuu/include/hikyuu/plugin/hkuextra.h +0 -18
  106. hikyuu/include/hikyuu/plugin/hkuviews.h +36 -0
  107. hikyuu/include/hikyuu/plugin/interface/DataServerPluginInterface.h +2 -2
  108. hikyuu/include/hikyuu/plugin/interface/ExtendIndicatorsPluginInterface.h +12 -0
  109. hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +0 -14
  110. hikyuu/include/hikyuu/plugin/interface/HkuViewsPluginInterface.h +34 -0
  111. hikyuu/include/hikyuu/plugin/interface/plugins.h +8 -1
  112. hikyuu/include/hikyuu/python/pybind_utils.h +6 -1
  113. hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +3 -0
  114. hikyuu/include/hikyuu/trade_manage/Performance.h +4 -4
  115. hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
  116. hikyuu/include/hikyuu/trade_sys/moneymanager/imp/FixedCapitalFundsMM.h +0 -4
  117. hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +36 -3
  118. hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +125 -0
  119. hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +125 -0
  120. hikyuu/include/hikyuu/trade_sys/multifactor/build_in.h +3 -0
  121. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_norm.h +36 -0
  122. hikyuu/include/hikyuu/trade_sys/multifactor/buildin_scfilter.h +51 -0
  123. hikyuu/include/hikyuu/trade_sys/multifactor/filter/GroupSCFilter.h +24 -0
  124. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreLessOrEqualValueSCFilter.h +24 -0
  125. hikyuu/include/hikyuu/trade_sys/multifactor/filter/IgnoreNanSCFilter.h +24 -0
  126. hikyuu/include/hikyuu/trade_sys/multifactor/filter/MinAmountPercentSCFilter.h +25 -0
  127. hikyuu/include/hikyuu/trade_sys/multifactor/filter/PriceSCFilter.h +24 -0
  128. hikyuu/include/hikyuu/trade_sys/multifactor/filter/TopNSCFilter.h +24 -0
  129. hikyuu/include/hikyuu/trade_sys/multifactor/filter/__init__.py +1 -0
  130. hikyuu/include/hikyuu/trade_sys/multifactor/imp/EqualWeightMultiFactor.h +1 -1
  131. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICIRMultiFactor.h +1 -1
  132. hikyuu/include/hikyuu/trade_sys/multifactor/imp/ICMultiFactor.h +1 -1
  133. hikyuu/include/hikyuu/trade_sys/multifactor/imp/WeightMultiFactor.h +1 -1
  134. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormMinMax.h +23 -0
  135. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantile.h +28 -0
  136. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormQuantileUniform.h +28 -0
  137. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/NormZScore.h +25 -0
  138. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/__init__.py +1 -0
  139. hikyuu/include/hikyuu/trade_sys/multifactor/normalize/quantile_trunc.h +16 -0
  140. hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +7 -0
  141. hikyuu/include/hikyuu/trade_sys/portfolio/imp/SimplePortfolio.h +7 -0
  142. hikyuu/include/hikyuu/trade_sys/portfolio/imp/WithoutAFPortfolio.h +7 -0
  143. hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +49 -0
  144. hikyuu/include/hikyuu/trade_sys/selector/build_in.h +1 -0
  145. hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +40 -0
  146. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +0 -3
  147. hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +49 -0
  148. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorSelector.h +1 -1
  149. hikyuu/include/hikyuu/trade_sys/selector/imp/logic/OperatorValueSelector.h +1 -1
  150. hikyuu/include/hikyuu/trade_sys/signal/imp/BandSignal2.h +0 -4
  151. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/AddValueSignal.h +2 -2
  152. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/DivValueSignal.h +2 -2
  153. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/MulValueSignal.h +2 -2
  154. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorSignal.h +1 -1
  155. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/OperatorValueSignal.h +4 -4
  156. hikyuu/include/hikyuu/trade_sys/signal/imp/logic/SubValueSignal.h +2 -2
  157. hikyuu/include/hikyuu/trade_sys/system/System.h +14 -1
  158. hikyuu/include/hikyuu/utilities/SpendTimer.h +17 -7
  159. hikyuu/include/hikyuu/utilities/arithmetic.h +55 -0
  160. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +1 -1
  161. hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +1 -1
  162. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +1 -1
  163. hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +1 -1
  164. hikyuu/include/hikyuu/utilities/plugin/PluginLoader.h +4 -1
  165. hikyuu/include/hikyuu/version.h +4 -4
  166. hikyuu/plugin/libbacktest.so +0 -0
  167. hikyuu/plugin/libclickhousedriver.so +0 -0
  168. hikyuu/plugin/libdataserver.so +0 -0
  169. hikyuu/plugin/libdevice.so +0 -0
  170. hikyuu/plugin/libextind.so +0 -0
  171. hikyuu/plugin/libhkuextra.so +0 -0
  172. hikyuu/plugin/libhkuviews.so +0 -0
  173. hikyuu/plugin/libimport2hdf5.so +0 -0
  174. hikyuu/plugin/libtmreport.so +0 -0
  175. hikyuu/trade_manage/__init__.pyi +603 -578
  176. hikyuu/trade_manage/broker.pyi +3 -3
  177. hikyuu/trade_manage/broker_easytrader.pyi +1 -1
  178. hikyuu/trade_manage/trade.pyi +603 -578
  179. hikyuu/util/__init__.pyi +2 -2
  180. hikyuu/util/singleton.pyi +1 -1
  181. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/METADATA +13 -13
  182. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/RECORD +185 -156
  183. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/top_level.txt +2 -1
  184. hikyuu/cpp/core39.pyi +0 -14385
  185. hikyuu/cpp/core39.so +0 -0
  186. hikyuu/data_driver/__init__.py +0 -49
  187. hikyuu/data_driver/jqdata_data_driver.py +0 -277
  188. hikyuu/data_driver/pytdx_data_driver.py +0 -292
  189. hikyuu/fetcher/stock/zh_stock_a_huatai.py +0 -51
  190. hikyuu/fetcher/stock/zh_stock_a_pytdx.py +0 -129
  191. hikyuu/gui/data/CollectToMemThread.py +0 -123
  192. hikyuu/gui/data/CollectToMySQLThread.py +0 -178
  193. hikyuu/gui/start_huatai_insight.py +0 -510
  194. hikyuu/tools/update_block_info.py +0 -168
  195. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/WHEEL +0 -0
  196. {hikyuu-2.6.8.4.dist-info → hikyuu-2.6.9.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core312.pyi CHANGED
@@ -3,7 +3,7 @@ import collections.abc
3
3
  import numpy
4
4
  import numpy.typing
5
5
  import typing
6
- __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
6
+ __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_FUNC', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'GROUP_COUNT', 'GROUP_FUNC', 'GROUP_MAX', 'GROUP_MEAN', 'GROUP_MIN', 'GROUP_PROD', 'GROUP_SUM', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NORM_MinMax', 'NORM_NOTHING', 'NORM_Quantile', 'NORM_Quantile_Uniform', 'NORM_Zscore', 'NOT', 'NormalizeBase', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'QUANTILE_TRUNC', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SCFilter_AmountLimit', 'SCFilter_Group', 'SCFilter_IgnoreNan', 'SCFilter_LessOrEqualValue', 'SCFilter_Price', 'SCFilter_TopN', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_MultiFactor2', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'ScoresFilterBase', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_funds_list', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'parallel_run_pf', 'parallel_run_sys', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
7
7
  class AllocateFundsBase:
8
8
  """
9
9
  资产分配算法基类, 子类接口:
@@ -220,7 +220,10 @@ class Block:
220
220
  def __init__(self) -> None:
221
221
  ...
222
222
  @typing.overload
223
- def __init__(self, arg0: str, arg1: str) -> None:
223
+ def __init__(self, category: str, name: str) -> None:
224
+ ...
225
+ @typing.overload
226
+ def __init__(self, category: str, name: str, index_code: str) -> None:
224
227
  ...
225
228
  @typing.overload
226
229
  def __init__(self, arg0: Block) -> None:
@@ -1969,8 +1972,6 @@ class Indicator:
1969
1972
  """
1970
1973
  转化为np.array, 如果为时间序列, 则包含 datetime 日期列
1971
1974
  """
1972
- def to_pyarrow(self) -> typing.Any:
1973
- ...
1974
1975
  def value_to_df(self) -> typing.Any:
1975
1976
  """
1976
1977
  转换为 DataFrame, 仅包含值
@@ -1979,8 +1980,6 @@ class Indicator:
1979
1980
  """
1980
1981
  仅转化值为np.array, 不包含日期列
1981
1982
  """
1982
- def value_to_pyarrow(self) -> typing.Any:
1983
- ...
1984
1983
  @property
1985
1984
  def discard(self) -> int:
1986
1985
  """
@@ -3004,6 +3003,17 @@ class MultiFactorBase:
3004
3003
  ...
3005
3004
  def __str__(self) -> str:
3006
3005
  ...
3006
+ def add_special_normalize(self, name: str, norm: NormalizeBase = None, category: str = '', style_inds: collections.abc.Sequence[Indicator] = []) -> None:
3007
+ """
3008
+ add_special_normalize(self, name[, norm=None, category="", style_inds=[]])
3009
+
3010
+ 对指定名称的指标应用特定的标准化/归一化、行业中性化、风格因子中性化操作。标准化操作、行业中性化、风格因子中性化彼此无关,可同时指定也可分开指定。
3011
+
3012
+ :param str name: 特殊归一化方法名称
3013
+ :param Normalize norm: 特殊归一化方法
3014
+ :param str category: 行业中性化时,指定板块类别
3015
+ :param list[Indicator] style_inds: 用于中性化的风格指标列表
3016
+ """
3007
3017
  def clone(self) -> MultiFactorBase:
3008
3018
  """
3009
3019
  克隆操作
@@ -3025,7 +3035,14 @@ class MultiFactorBase:
3025
3035
  :return: ScoreRecordList
3026
3036
  """
3027
3037
  def get_all_src_factors(self) -> list[list[Indicator]]:
3028
- ...
3038
+ """
3039
+ get_all_src_factors(self)
3040
+
3041
+ 获取所有原始因子列表(如果指定了标准化、行业中性化, 返回为已处理的因子列表)
3042
+
3043
+ :rtype: list
3044
+ :return: list IndicatorList stks x inds
3045
+ """
3029
3046
  def get_datetime_list(self) -> DatetimeList:
3030
3047
  """
3031
3048
  获取参考日期列表(由参考证券通过查询条件获得)
@@ -3101,6 +3118,14 @@ class MultiFactorBase:
3101
3118
  """
3102
3119
  是否存在指定参数
3103
3120
  """
3121
+ def set_normalize(self, norm: NormalizeBase) -> None:
3122
+ """
3123
+ set_normalize(self, norm)
3124
+
3125
+ 设置标准化或归一化方法(影响全部因子)
3126
+
3127
+ :param NormalizeBase norm: 标准化或归一化方法实例
3128
+ """
3104
3129
  def set_param(self, arg0: str, arg1: any) -> None:
3105
3130
  """
3106
3131
  set_param(self, name, value)
@@ -3151,6 +3176,71 @@ class MultiFactorBase:
3151
3176
  @query.setter
3152
3177
  def query(self, arg1: Query) -> None:
3153
3178
  ...
3179
+ class NormalizeBase:
3180
+ """
3181
+ 用于 MF 的截面标准化操作
3182
+ """
3183
+ def __getstate__(self) -> tuple:
3184
+ ...
3185
+ @typing.overload
3186
+ def __init__(self) -> None:
3187
+ ...
3188
+ @typing.overload
3189
+ def __init__(self, arg0: NormalizeBase) -> None:
3190
+ ...
3191
+ @typing.overload
3192
+ def __init__(self, arg0: str) -> None:
3193
+ """
3194
+ 初始化构造函数
3195
+
3196
+ :param str name: 名称
3197
+ """
3198
+ def __repr__(self) -> str:
3199
+ ...
3200
+ def __setstate__(self, arg0: tuple) -> None:
3201
+ ...
3202
+ def __str__(self) -> str:
3203
+ ...
3204
+ def clone(self) -> NormalizeBase:
3205
+ """
3206
+ 克隆操作
3207
+ """
3208
+ def get_param(self, arg0: str) -> any:
3209
+ """
3210
+ get_param(self, name)
3211
+
3212
+ 获取指定的参数
3213
+
3214
+ :param str name: 参数名称
3215
+ :return: 参数值
3216
+ :raises out_of_range: 无此参数
3217
+ """
3218
+ def have_param(self, arg0: str) -> bool:
3219
+ """
3220
+ 是否存在指定参数
3221
+ """
3222
+ def normalize(self, arg0: collections.abc.Sequence[typing.SupportsFloat]) -> list[float]:
3223
+ """
3224
+ 【重载接口】子类计算接口
3225
+ """
3226
+ def set_param(self, arg0: str, arg1: any) -> None:
3227
+ """
3228
+ set_param(self, name, value)
3229
+
3230
+ 设置参数
3231
+
3232
+ :param str name: 参数名称
3233
+ :param value: 参数值
3234
+ :raises logic_error: Unsupported type! 不支持的参数类型
3235
+ """
3236
+ @property
3237
+ def name(self) -> str:
3238
+ """
3239
+ 名称
3240
+ """
3241
+ @name.setter
3242
+ def name(self, arg1: str) -> None:
3243
+ ...
3154
3244
  class OrderBrokerBase:
3155
3245
  """
3156
3246
  订单代理包装基类,用户可以参考自定义自己的订单代理,加入额外的处理
@@ -3414,6 +3504,10 @@ class Portfolio:
3414
3504
  """
3415
3505
  是否存在指定参数
3416
3506
  """
3507
+ def last_suggestion(self) -> typing.Any:
3508
+ """
3509
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
3510
+ """
3417
3511
  def reset(self) -> None:
3418
3512
  """
3419
3513
  复位操作
@@ -4167,6 +4261,84 @@ class ScoreRecordList:
4167
4261
  ...
4168
4262
  def to_pandas(self):
4169
4263
  ...
4264
+ class ScoresFilterBase:
4265
+ """
4266
+ 用于 MF 的截面标准化操作
4267
+ """
4268
+ def __getstate__(self) -> tuple:
4269
+ ...
4270
+ @typing.overload
4271
+ def __init__(self) -> None:
4272
+ ...
4273
+ @typing.overload
4274
+ def __init__(self, arg0: ScoresFilterBase) -> None:
4275
+ ...
4276
+ @typing.overload
4277
+ def __init__(self, arg0: str) -> None:
4278
+ """
4279
+ 初始化构造函数
4280
+
4281
+ :param str name: 名称
4282
+ """
4283
+ def __or__(self, arg0: ScoresFilterBase) -> ScoresFilterBase:
4284
+ ...
4285
+ def __repr__(self) -> str:
4286
+ ...
4287
+ def __setstate__(self, arg0: tuple) -> None:
4288
+ ...
4289
+ def __str__(self) -> str:
4290
+ ...
4291
+ def _filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4292
+ """
4293
+ 【重载接口】子类计算接口
4294
+ """
4295
+ def clone(self) -> ScoresFilterBase:
4296
+ """
4297
+ 克隆操作
4298
+ """
4299
+ def filter(self, arg0: ScoreRecordList, arg1: Datetime, arg2: Query) -> ScoreRecordList:
4300
+ """
4301
+ filter(self, scores, date, query)
4302
+
4303
+ 截面过滤
4304
+ :param list scores: 截面数据
4305
+ :param Datetime date: 截面日期
4306
+ :param KQuery query: 查询参数
4307
+ :return: 截面数据
4308
+ :rtype: ScoreRecordList
4309
+ """
4310
+ def get_param(self, arg0: str) -> any:
4311
+ """
4312
+ get_param(self, name)
4313
+
4314
+ 获取指定的参数
4315
+
4316
+ :param str name: 参数名称
4317
+ :return: 参数值
4318
+ :raises out_of_range: 无此参数
4319
+ """
4320
+ def have_param(self, arg0: str) -> bool:
4321
+ """
4322
+ 是否存在指定参数
4323
+ """
4324
+ def set_param(self, arg0: str, arg1: any) -> None:
4325
+ """
4326
+ set_param(self, name, value)
4327
+
4328
+ 设置参数
4329
+
4330
+ :param str name: 参数名称
4331
+ :param value: 参数值
4332
+ :raises logic_error: Unsupported type! 不支持的参数类型
4333
+ """
4334
+ @property
4335
+ def name(self) -> str:
4336
+ """
4337
+ 名称
4338
+ """
4339
+ @name.setter
4340
+ def name(self, arg1: str) -> None:
4341
+ ...
4170
4342
  class SelectorBase:
4171
4343
  """
4172
4344
  选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
@@ -4241,6 +4413,14 @@ class SelectorBase:
4241
4413
  """
4242
4414
  子类复位操作实现
4243
4415
  """
4416
+ def add_scores_filter(self, arg0: ScoresFilterBase) -> None:
4417
+ """
4418
+ add_scores_filter(self, filter)
4419
+
4420
+ 在已有过滤基础上新增过滤, 仅适用于 SE_MultiFactor
4421
+
4422
+ :param ScoresFilter filter: 新的过滤器
4423
+ """
4244
4424
  def add_stock(self, stock: Stock, sys: ...) -> None:
4245
4425
  """
4246
4426
  add_stock(self, stock, sys)
@@ -4323,6 +4503,19 @@ class SelectorBase:
4323
4503
  :param value: 参数值
4324
4504
  :raises logic_error: Unsupported type! 不支持的参数类型
4325
4505
  """
4506
+ def set_scores_filter(self, arg0: ScoresFilterBase) -> None:
4507
+ """
4508
+ set_scores_filter(self, filter)
4509
+
4510
+ 设置 ScoresFilter, 将替换现有的过滤器. 仅适用于 SE_MultiFactor
4511
+
4512
+ :param ScoresFilter filter: ScoresFilter
4513
+ """
4514
+ @property
4515
+ def mf(self) -> ...:
4516
+ """
4517
+ 获取关联的 MF
4518
+ """
4326
4519
  @property
4327
4520
  def name(self) -> str:
4328
4521
  """
@@ -4341,6 +4534,11 @@ class SelectorBase:
4341
4534
  """
4342
4535
  由 PF 运行时设定的实际运行系统列表
4343
4536
  """
4537
+ @property
4538
+ def scfilter(self) -> ScoresFilterBase:
4539
+ """
4540
+ 获取 ScoresFilter
4541
+ """
4344
4542
  class SignalBase:
4345
4543
  """
4346
4544
  信号指示器基类
@@ -5176,6 +5374,15 @@ class StockManager:
5176
5374
  """
5177
5375
  获取当前板块信息驱动参数
5178
5376
  """
5377
+ def get_category_list(self) -> list[str]:
5378
+ """
5379
+ get_category_list(self)
5380
+
5381
+ 获取所有板块分类
5382
+
5383
+ :return: 所有板块分类
5384
+ :rtype: StringList
5385
+ """
5179
5386
  def get_context(self) -> StrategyContext:
5180
5387
  """
5181
5388
  获取当前上下文
@@ -6111,6 +6318,10 @@ class System:
6111
6318
  """
6112
6319
  是否存在指定参数
6113
6320
  """
6321
+ def last_suggestion(self) -> typing.Any:
6322
+ """
6323
+ 回测完成后,返回最后一天交易记录,以及需要延迟的买入和卖出延迟请求
6324
+ """
6114
6325
  def ready(self) -> None:
6115
6326
  ...
6116
6327
  def reset(self) -> None:
@@ -7983,6 +8194,26 @@ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit:
7983
8194
  """
7984
8195
  聚合函数: 非空值计数, 可参考 AGG_STD 帮助
7985
8196
  """
8197
+ def AGG_FUNC(ind: Indicator, agg_func: typing.Any, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8198
+ """
8199
+ AGG_FUNC(ind, agg_func[, ktype=Query.MIN, fill_null=False, unit=1]
8200
+
8201
+ 使用自定函数聚合其他K线周期的指标。虽然支持python自定义函数, 但python函数需要GIL, 速度会慢。建议最好直接使用 C++ 自定义聚合函数。
8202
+
8203
+ 示例, 计算日线时聚合分钟线收盘价的和:
8204
+
8205
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
8206
+ >>> ind = AGG_FUNC(CLOSE(), lambda ds, x: np.sum(x))
8207
+ >>> ind(k)
8208
+
8209
+ :param Indicator ind: 待计算指标
8210
+ :param callable agg_func: 自定义聚合函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回针对list的聚合结果, 注意是单个值
8211
+ :param KQuery.KType ktype: 聚合的K线周期
8212
+ :param bool fill_null: 是否填充缺失值
8213
+ :param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8214
+ :return: 聚合结果
8215
+ :rtype: Indicator
8216
+ """
7986
8217
  def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
7987
8218
  """
7988
8219
  聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
@@ -8958,6 +9189,48 @@ def FLOOR(arg0: typing.SupportsFloat) -> Indicator:
8958
9189
  :param data: 输入数据
8959
9190
  :rtype: Indicator
8960
9191
  """
9192
+ def GROUP_COUNT(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9193
+ """
9194
+ 分组累积计数
9195
+ """
9196
+ def GROUP_FUNC(ind: Indicator, group_func: typing.Any, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9197
+ """
9198
+ GROUP_FUNC(ind, group_func[, ktype=Query.DAY, unit=1])
9199
+
9200
+ 自定义分组累积计算指标。虽然支持python自定义函数, 但python函数需要GIL, 速度较慢。建议最好直接使用 C++ 自定义分组累积函数。
9201
+
9202
+ 示例, 计算日线时聚合分钟线收盘价的和:
9203
+
9204
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
9205
+ >>> ind = GROUP_FUNC(CLOSE(), lambda dates, data: data/2.0)
9206
+ >>> ind(k)
9207
+
9208
+ :param Indicator ind: 待计算指标
9209
+ :param callable group_func: 自定义分组累积函数,输入参数为 arg1: datetime list, arg2: numpy array, 返回和输入等长的累积计算结果, 类型同样须为 np.array
9210
+ :param KQuery.KType ktype: 分组的K线周期
9211
+ :param int unit: 分组周期单位 (分组的K线周期单位, 使用日线计算分钟线, unit=2代表按2天累积计算的分钟线)
9212
+ :rtype: Indicator
9213
+ """
9214
+ def GROUP_MAX(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9215
+ """
9216
+ 分组累积最大值
9217
+ """
9218
+ def GROUP_MEAN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9219
+ """
9220
+ 分组累积平均
9221
+ """
9222
+ def GROUP_MIN(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9223
+ """
9224
+ 分组累积最小值
9225
+ """
9226
+ def GROUP_PROD(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9227
+ """
9228
+ 分组累积乘积
9229
+ """
9230
+ def GROUP_SUM(ind: Indicator, ktype: str = 'DAY', unit: typing.SupportsInt = 1) -> Indicator:
9231
+ """
9232
+ 分组累积和
9233
+ """
8961
9234
  @typing.overload
8962
9235
  def HHV(n: typing.SupportsInt = 20) -> Indicator:
8963
9236
  ...
@@ -9929,6 +10202,36 @@ def NDAY(x: Indicator, y: Indicator, n: IndParam) -> Indicator:
9929
10202
  :param int|Indicator|IndParam n: 时间窗口
9930
10203
  :rtype: Indicator
9931
10204
  """
10205
+ def NORM_MinMax() -> NormalizeBase:
10206
+ """
10207
+ 最小-最大标准化操作
10208
+ """
10209
+ def NORM_NOTHING() -> NormalizeBase:
10210
+ """
10211
+ 无截面标准化操作
10212
+ """
10213
+ def NORM_Quantile(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10214
+ """
10215
+ 分位数截面标准化操作
10216
+
10217
+ :param quantile_min: 最小分位数
10218
+ :param quantile_max: 最大分位数
10219
+ """
10220
+ def NORM_Quantile_Uniform(quantile_min: typing.SupportsFloat = 0.01, quantile_max: typing.SupportsFloat = 0.99) -> NormalizeBase:
10221
+ """
10222
+ 分位数截面均匀分布标准化操作
10223
+
10224
+ :param quantile_min: 最小分位数
10225
+ :param quantile_max: 最大分位数
10226
+ """
10227
+ def NORM_Zscore(out_extreme: bool = False, nsigma: typing.SupportsFloat = 3.0, recursive: bool = False) -> NormalizeBase:
10228
+ """
10229
+ Z-score 标准化操作
10230
+
10231
+ :param out_extreme: 是否剔除异常值
10232
+ :param nsigma: 异常值判断倍数±3.0
10233
+ :param recursive: 是否递归处理异常值
10234
+ """
9932
10235
  @typing.overload
9933
10236
  def NOT() -> Indicator:
9934
10237
  ...
@@ -10067,6 +10370,22 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
10067
10370
  :rtype: Indicator
10068
10371
  """
10069
10372
  @typing.overload
10373
+ def QUANTILE_TRUNC(n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10374
+ ...
10375
+ @typing.overload
10376
+ def QUANTILE_TRUNC(data: Indicator, n: typing.SupportsInt = 60, quantial_min: typing.SupportsFloat = 0.01, quantial_max: typing.SupportsFloat = 0.99) -> Indicator:
10377
+ """
10378
+ QUANTILE_TRUNC(data[, n=60, quantial_min=0.01, quantial_max=0.99])
10379
+
10380
+ 对数据进行分位数截断处理。非窗口滚动。
10381
+
10382
+ :param Indicator data: 待剔除异常值数据
10383
+ :param int n: 时间窗口
10384
+ :param float quantial_min: 剔除极值时使用的百分位数下限,默认 0.01
10385
+ :param float quantial_max: 剔除极值时使用的百分位数上限,默认 0.99
10386
+ :rtype: Indicator
10387
+ """
10388
+ @typing.overload
10070
10389
  def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
10071
10390
  ...
10072
10391
  @typing.overload
@@ -10424,6 +10743,59 @@ def SAFTYLOSS(data: Indicator, n1: Indicator, n2: Indicator, p: Indicator) -> In
10424
10743
  :param float|Indicator|IndParam p: 噪音系数
10425
10744
  :rtype: Indicator
10426
10745
  """
10746
+ def SCFilter_AmountLimit(min_amount_percent_limit: typing.SupportsFloat = 0.1) -> ScoresFilterBase:
10747
+ """
10748
+ SCFilter_AmountLimit([min_amount_percent_limit: float = 0.1])
10749
+
10750
+ 过滤掉成交金额在评分列表末尾百分比范围内的截面
10751
+
10752
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是成交金额较小的系统评分记录;反之,则是金额较大的系统评分记录
10753
+
10754
+ :param double min_amount_percent_limit: 最小金额百分比限制
10755
+ :return: 截面过滤器
10756
+ :rtype: ScoresFilterPtr
10757
+ """
10758
+ def SCFilter_Group(group: typing.SupportsInt = 10, group_index: typing.SupportsInt = 0) -> ScoresFilterBase:
10759
+ """
10760
+ SCFilter_Group([group: int=10, group_index: int=0])
10761
+
10762
+ 按截面进行分组过滤
10763
+ :param int group: 分组数量
10764
+ :param int group_index: 分组索引
10765
+ :return: 截面过滤器
10766
+ :rtype: ScoresFilterPtr
10767
+ """
10768
+ def SCFilter_IgnoreNan() -> ScoresFilterBase:
10769
+ """
10770
+ SCFilter_IgnoreNan() -> ScoresFilterPtr
10771
+
10772
+ 忽略截面中的NAN值
10773
+ """
10774
+ def SCFilter_LessOrEqualValue(value: typing.SupportsFloat = 0.0) -> ScoresFilterBase:
10775
+ """
10776
+ SCFilter_LessOrEqualValue([value = 0.0])
10777
+
10778
+ 过滤掉评分小于等于指定值的截面
10779
+ """
10780
+ def SCFilter_Price(min_price: typing.SupportsFloat = 10.0, max_price: typing.SupportsFloat = 100000.0) -> ScoresFilterBase:
10781
+ """
10782
+ SCFilter_Price([min_price = 10., max_price = 100000.])
10783
+
10784
+ 仅保留价格在 [min_price, max_price] 之间的标的
10785
+
10786
+ 注意:和传入的截面评分列表顺序相关,如果是降序,过滤的是价格较小的系统评分记录;反之,则是价格较大的系统评分记录
10787
+
10788
+ :param double min_price: 最小价格限制
10789
+ :param double max_price: 最大价格限制
10790
+ """
10791
+ def SCFilter_TopN(topn: typing.SupportsInt = 10) -> ScoresFilterBase:
10792
+ """
10793
+ SCFilter_TopN([topn: int=10])
10794
+
10795
+ 获取评分列表中的前 topn 个
10796
+
10797
+ :param int topn: 前 topn 个
10798
+ """
10427
10799
  def SE_EvaluateOptimal(arg0: typing.Any) -> SelectorBase:
10428
10800
  """
10429
10801
  SE_EvaluateOptimal(evalulate_func)
@@ -10474,6 +10846,27 @@ def SE_MultiFactor(inds: collections.abc.Sequence, topn: typing.SupportsInt = 10
10474
10846
  :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
10475
10847
  :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
10476
10848
  """
10849
+ @typing.overload
10850
+ def SE_MultiFactor2(mf: ..., filter: ScoresFilterBase = ...) -> SelectorBase:
10851
+ ...
10852
+ @typing.overload
10853
+ def SE_MultiFactor2(inds: collections.abc.Sequence, ic_n: typing.SupportsInt = 5, ic_rolling_n: typing.SupportsInt = 120, ref_stk: typing.Any = None, spearman: bool = True, mode: str = 'MF_ICIRWeight', filter: ScoresFilterBase = ...) -> SelectorBase:
10854
+ """
10855
+ SE_MultiFactor2([inds, ic_n, ic_rolling_n, ref_stk, spearman, mode, filter])
10856
+
10857
+ 创建基于多因子评分的选择器,两种创建方式
10858
+
10859
+ - 直接指定 MF:
10860
+ :param MultiFactorBase mf: 直接指定的多因子合成算法
10861
+
10862
+ - 参数直接创建:
10863
+ :param sequense(Indicator) inds: 原始因子列表
10864
+ :param int ic_n: 默认 IC 对应的 N 日收益率
10865
+ :param int ic_rolling_n: IC 滚动周期
10866
+ :param Stock ref_stk: 参考证券 (未指定时,默认为 sh000300 沪深300)
10867
+ :param bool spearman: 默认使用 spearman 计算相关系数,否则为 pearson
10868
+ :param str mode: "MF_ICIRWeight" | "MF_ICWeight" | "MF_EqualWeight" 因子合成算法名称
10869
+ """
10477
10870
  def SE_PerformanceOptimal(key: str = '帐户平均年收益率%', mode: typing.SupportsInt = 0) -> SelectorBase:
10478
10871
  """
10479
10872
  SE_PerformanceOptimal(key="帐户平均年收益率%", mode=0)
@@ -13573,7 +13966,7 @@ def ZSCORE(data: Indicator, out_extreme: bool = False, nsigma: typing.SupportsFl
13573
13966
  """
13574
13967
  ZSCORE(data[, out_extreme, nsigma, recursive])
13575
13968
 
13576
- 对数据进行标准化(归一),可选进行极值排除
13969
+ 对数据进行标准化(归一),可选进行极值处理
13577
13970
 
13578
13971
  注:非窗口滚动,如需窗口滚动的标准化,直接 (x - MA(x, n)) / STDEV(x, n) 即可。
13579
13972
 
@@ -13752,6 +14145,16 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
13752
14145
  :param Datetime end: 结束日期
13753
14146
  :rtype: DatetimeList
13754
14147
  """
14148
+ def get_funds_list(arg0: collections.abc.Sequence[TradeManager], arg1: DatetimeList) -> list[list[FundsRecord]]:
14149
+ """
14150
+ get_funds_list(tm_list: list, ref_dates: DatetimeList) -> list[Funds])
14151
+
14152
+ 一次性从多个账户中获取多个指定时刻的账户资金信息
14153
+
14154
+ :param list tm_list: 账户列表
14155
+ :param DatetimeList ref_dates: 获取时刻列表
14156
+ :return: 账户资金列表
14157
+ """
13755
14158
  @typing.overload
13756
14159
  def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13757
14160
  ...
@@ -13927,6 +14330,27 @@ def open_spend_time() -> None:
13927
14330
  """
13928
14331
  全局开启 c++ 部分耗时打印
13929
14332
  """
14333
+ def parallel_run_pf(pf_list: collections.abc.Sequence[...], query: Query, force: bool = False) -> list[list[...]]:
14334
+ """
14335
+ parallel_run_pf(pf_list, query[, force=False])
14336
+
14337
+ 并行执行多个投资组合策略, 并返回 list FundsList, 各账户对应资产(按query时间段)
14338
+
14339
+ :param list pf_list: 投资组合列表
14340
+ :param Query query: 查询条件
14341
+ :param bool force: 强制重新计算
14342
+ """
14343
+ def parallel_run_sys(sys_list: collections.abc.Sequence[...], query: Query, reset: bool = False, reset_all: bool = False) -> list[list[...]]:
14344
+ """
14345
+ parallel_run_sys(sys_list, query[, reset=False, reset_all=False])
14346
+
14347
+ 并行运行多个系系统, 并返回 list FundsList, 各账户对应资产(按query时间段)
14348
+
14349
+ :param sys_list: 系统列表
14350
+ :param query: 查询条件
14351
+ :param bool reset: 执行前是否依据系统部件共享属性复位
14352
+ :param bool reset_all: 强制复位所有部件
14353
+ """
13930
14354
  def positions_to_df(arg0: PositionRecordList) -> typing.Any:
13931
14355
  """
13932
14356
  positions_to_df(positions)
@@ -14086,16 +14510,19 @@ def spot_agent_is_running() -> bool:
14086
14510
  """
14087
14511
  判断行情数据接收代理是否在运行
14088
14512
  """
14089
- def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 2, save_tick: bool = False, buf_tick: bool = False) -> None:
14513
+ def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 3, save_tick: bool = False, buf_tick: bool = False, parquet_path: str = '') -> None:
14090
14514
  """
14091
- start_data_server(addr: str[, work_num: int=2])
14515
+ start_data_server(addr: str[, work_num: int=3, save_tick: bool=False, buf_tick: bool=False, parquet_path: str=''])
14092
14516
 
14093
- 启动数据缓存服务
14094
-
14517
+ 启动数据缓存服务。其中save_tick 参数和 parquet_path 有关联:
14518
+ - 如果 save_tick=True, parquet_path 不为空时, 使用 parquet_path 保存数据;
14519
+ - 如果 save_tick=True, parquet_path 为空时, 则使用 clickhouse K线存储引擎保存数据(需配置使用 clickhouse K线存储引擎)
14520
+
14095
14521
  :param str addr: 服务器地址
14096
14522
  :param int work_num: 工作线程数
14097
- :param bool save_tick: 是否保存tick数据至数据库(仅支持使用 clickhouse K线存储引擎)
14523
+ :param bool save_tick: 是否保存tick数据至数据库(如果 parquet_path 不为空时, 使用 parquet 文件进行保存;否则,需使用 clickhouse K线存储引擎)
14098
14524
  :param bool buf_tick: 是否缓存tick数据
14525
+ :param str parquet_path: 保存tick数据至parquet文件路径, 仅在 save_tick=True 时有效
14099
14526
  :return: None
14100
14527
  """
14101
14528
  def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None: