hcpdiff 0.9.1__py3-none-any.whl → 2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (210) hide show
  1. hcpdiff/__init__.py +4 -4
  2. hcpdiff/ckpt_manager/__init__.py +4 -5
  3. hcpdiff/ckpt_manager/ckpt.py +24 -0
  4. hcpdiff/ckpt_manager/format/__init__.py +4 -0
  5. hcpdiff/ckpt_manager/format/diffusers.py +59 -0
  6. hcpdiff/ckpt_manager/format/emb.py +21 -0
  7. hcpdiff/ckpt_manager/format/lora_webui.py +244 -0
  8. hcpdiff/ckpt_manager/format/sd_single.py +41 -0
  9. hcpdiff/ckpt_manager/loader.py +64 -0
  10. hcpdiff/data/__init__.py +4 -28
  11. hcpdiff/data/cache/__init__.py +1 -0
  12. hcpdiff/data/cache/vae.py +102 -0
  13. hcpdiff/data/dataset.py +20 -0
  14. hcpdiff/data/handler/__init__.py +3 -0
  15. hcpdiff/data/handler/controlnet.py +18 -0
  16. hcpdiff/data/handler/diffusion.py +80 -0
  17. hcpdiff/data/handler/text.py +111 -0
  18. hcpdiff/data/source/__init__.py +1 -2
  19. hcpdiff/data/source/folder_class.py +12 -29
  20. hcpdiff/data/source/text2img.py +36 -74
  21. hcpdiff/data/source/text2img_cond.py +9 -15
  22. hcpdiff/diffusion/__init__.py +0 -0
  23. hcpdiff/diffusion/noise/__init__.py +2 -0
  24. hcpdiff/diffusion/noise/pyramid_noise.py +42 -0
  25. hcpdiff/diffusion/noise/zero_terminal.py +39 -0
  26. hcpdiff/diffusion/sampler/__init__.py +5 -0
  27. hcpdiff/diffusion/sampler/base.py +72 -0
  28. hcpdiff/diffusion/sampler/ddpm.py +20 -0
  29. hcpdiff/diffusion/sampler/diffusers.py +66 -0
  30. hcpdiff/diffusion/sampler/edm.py +22 -0
  31. hcpdiff/diffusion/sampler/sigma_scheduler/__init__.py +3 -0
  32. hcpdiff/diffusion/sampler/sigma_scheduler/base.py +14 -0
  33. hcpdiff/diffusion/sampler/sigma_scheduler/ddpm.py +197 -0
  34. hcpdiff/diffusion/sampler/sigma_scheduler/edm.py +48 -0
  35. hcpdiff/easy/__init__.py +2 -0
  36. hcpdiff/easy/cfg/__init__.py +3 -0
  37. hcpdiff/easy/cfg/sd15_train.py +201 -0
  38. hcpdiff/easy/cfg/sdxl_train.py +140 -0
  39. hcpdiff/easy/cfg/t2i.py +177 -0
  40. hcpdiff/easy/model/__init__.py +2 -0
  41. hcpdiff/easy/model/cnet.py +31 -0
  42. hcpdiff/easy/model/loader.py +79 -0
  43. hcpdiff/easy/sampler.py +46 -0
  44. hcpdiff/evaluate/__init__.py +1 -0
  45. hcpdiff/evaluate/previewer.py +60 -0
  46. hcpdiff/loss/__init__.py +4 -1
  47. hcpdiff/loss/base.py +41 -0
  48. hcpdiff/loss/gw.py +35 -0
  49. hcpdiff/loss/ssim.py +37 -0
  50. hcpdiff/loss/vlb.py +79 -0
  51. hcpdiff/loss/weighting.py +66 -0
  52. hcpdiff/models/__init__.py +2 -2
  53. hcpdiff/models/cfg_context.py +17 -14
  54. hcpdiff/models/compose/compose_hook.py +44 -23
  55. hcpdiff/models/compose/compose_tokenizer.py +21 -8
  56. hcpdiff/models/compose/sdxl_composer.py +4 -4
  57. hcpdiff/models/controlnet.py +16 -16
  58. hcpdiff/models/lora_base_patch.py +14 -25
  59. hcpdiff/models/lora_layers.py +3 -9
  60. hcpdiff/models/lora_layers_patch.py +14 -24
  61. hcpdiff/models/text_emb_ex.py +84 -6
  62. hcpdiff/models/textencoder_ex.py +54 -18
  63. hcpdiff/models/wrapper/__init__.py +3 -0
  64. hcpdiff/models/wrapper/pixart.py +19 -0
  65. hcpdiff/models/wrapper/sd.py +218 -0
  66. hcpdiff/models/wrapper/utils.py +20 -0
  67. hcpdiff/parser/__init__.py +1 -0
  68. hcpdiff/parser/embpt.py +32 -0
  69. hcpdiff/tools/convert_caption_txt2json.py +1 -1
  70. hcpdiff/tools/dataset_generator.py +94 -0
  71. hcpdiff/tools/download_hf_model.py +24 -0
  72. hcpdiff/tools/init_proj.py +3 -21
  73. hcpdiff/tools/lora_convert.py +18 -17
  74. hcpdiff/tools/save_model.py +12 -0
  75. hcpdiff/tools/sd2diffusers.py +1 -1
  76. hcpdiff/train_colo.py +1 -1
  77. hcpdiff/train_deepspeed.py +1 -1
  78. hcpdiff/trainer_ac.py +79 -0
  79. hcpdiff/trainer_ac_single.py +31 -0
  80. hcpdiff/utils/__init__.py +0 -2
  81. hcpdiff/utils/inpaint_pipe.py +7 -2
  82. hcpdiff/utils/net_utils.py +29 -6
  83. hcpdiff/utils/pipe_hook.py +24 -7
  84. hcpdiff/utils/utils.py +21 -4
  85. hcpdiff/workflow/__init__.py +15 -10
  86. hcpdiff/workflow/daam/__init__.py +1 -0
  87. hcpdiff/workflow/daam/act.py +66 -0
  88. hcpdiff/workflow/daam/hook.py +109 -0
  89. hcpdiff/workflow/diffusion.py +114 -125
  90. hcpdiff/workflow/fast.py +31 -0
  91. hcpdiff/workflow/flow.py +67 -0
  92. hcpdiff/workflow/io.py +36 -130
  93. hcpdiff/workflow/model.py +46 -43
  94. hcpdiff/workflow/text.py +78 -46
  95. hcpdiff/workflow/utils.py +32 -12
  96. hcpdiff/workflow/vae.py +37 -38
  97. hcpdiff-2.1.dist-info/METADATA +285 -0
  98. hcpdiff-2.1.dist-info/RECORD +114 -0
  99. {hcpdiff-0.9.1.dist-info → hcpdiff-2.1.dist-info}/WHEEL +1 -1
  100. hcpdiff-2.1.dist-info/entry_points.txt +5 -0
  101. hcpdiff/ckpt_manager/base.py +0 -16
  102. hcpdiff/ckpt_manager/ckpt_diffusers.py +0 -45
  103. hcpdiff/ckpt_manager/ckpt_pkl.py +0 -138
  104. hcpdiff/ckpt_manager/ckpt_safetensor.py +0 -64
  105. hcpdiff/ckpt_manager/ckpt_webui.py +0 -54
  106. hcpdiff/data/bucket.py +0 -358
  107. hcpdiff/data/caption_loader.py +0 -80
  108. hcpdiff/data/cond_dataset.py +0 -40
  109. hcpdiff/data/crop_info_dataset.py +0 -40
  110. hcpdiff/data/data_processor.py +0 -33
  111. hcpdiff/data/pair_dataset.py +0 -146
  112. hcpdiff/data/sampler.py +0 -54
  113. hcpdiff/data/source/base.py +0 -30
  114. hcpdiff/data/utils.py +0 -80
  115. hcpdiff/deprecated/__init__.py +0 -1
  116. hcpdiff/deprecated/cfg_converter.py +0 -81
  117. hcpdiff/deprecated/lora_convert.py +0 -31
  118. hcpdiff/infer_workflow.py +0 -57
  119. hcpdiff/loggers/__init__.py +0 -13
  120. hcpdiff/loggers/base_logger.py +0 -76
  121. hcpdiff/loggers/cli_logger.py +0 -40
  122. hcpdiff/loggers/preview/__init__.py +0 -1
  123. hcpdiff/loggers/preview/image_previewer.py +0 -149
  124. hcpdiff/loggers/tensorboard_logger.py +0 -30
  125. hcpdiff/loggers/wandb_logger.py +0 -31
  126. hcpdiff/loggers/webui_logger.py +0 -9
  127. hcpdiff/loss/min_snr_loss.py +0 -52
  128. hcpdiff/models/layers.py +0 -81
  129. hcpdiff/models/plugin.py +0 -348
  130. hcpdiff/models/wrapper.py +0 -75
  131. hcpdiff/noise/__init__.py +0 -3
  132. hcpdiff/noise/noise_base.py +0 -16
  133. hcpdiff/noise/pyramid_noise.py +0 -50
  134. hcpdiff/noise/zero_terminal.py +0 -44
  135. hcpdiff/train_ac.py +0 -566
  136. hcpdiff/train_ac_single.py +0 -39
  137. hcpdiff/utils/caption_tools.py +0 -105
  138. hcpdiff/utils/cfg_net_tools.py +0 -321
  139. hcpdiff/utils/cfg_resolvers.py +0 -16
  140. hcpdiff/utils/ema.py +0 -52
  141. hcpdiff/utils/img_size_tool.py +0 -248
  142. hcpdiff/vis/__init__.py +0 -3
  143. hcpdiff/vis/base_interface.py +0 -12
  144. hcpdiff/vis/disk_interface.py +0 -48
  145. hcpdiff/vis/webui_interface.py +0 -17
  146. hcpdiff/viser_fast.py +0 -138
  147. hcpdiff/visualizer.py +0 -265
  148. hcpdiff/visualizer_reloadable.py +0 -237
  149. hcpdiff/workflow/base.py +0 -59
  150. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/anime/text2img_anime.yaml +0 -21
  151. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/anime/text2img_anime_lora.yaml +0 -58
  152. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/change_vae.yaml +0 -6
  153. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/euler_a.yaml +0 -8
  154. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/img2img.yaml +0 -10
  155. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/img2img_controlnet.yaml +0 -19
  156. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/inpaint.yaml +0 -11
  157. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/load_lora.yaml +0 -26
  158. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/load_unet_part.yaml +0 -18
  159. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/offload_2GB.yaml +0 -6
  160. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/save_model.yaml +0 -44
  161. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/text2img.yaml +0 -53
  162. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/text2img_DA++.yaml +0 -34
  163. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/text2img_sdxl.yaml +0 -9
  164. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/plugins/plugin_controlnet.yaml +0 -17
  165. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/te_struct.txt +0 -193
  166. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/dataset/base_dataset.yaml +0 -29
  167. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/dataset/regularization_dataset.yaml +0 -31
  168. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/CustomDiffusion.yaml +0 -74
  169. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/DreamArtist++.yaml +0 -135
  170. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/DreamArtist.yaml +0 -45
  171. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/DreamBooth.yaml +0 -62
  172. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/FT_sdxl.yaml +0 -33
  173. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/Lion_optimizer.yaml +0 -17
  174. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/TextualInversion.yaml +0 -41
  175. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/add_logger_tensorboard_wandb.yaml +0 -15
  176. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/controlnet.yaml +0 -53
  177. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/ema.yaml +0 -10
  178. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/fine-tuning.yaml +0 -53
  179. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/locon.yaml +0 -24
  180. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/lora_anime_character.yaml +0 -77
  181. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/lora_conventional.yaml +0 -56
  182. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/lora_sdxl.yaml +0 -41
  183. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/min_snr.yaml +0 -7
  184. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/preview_in_training.yaml +0 -6
  185. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/DreamBooth.yaml +0 -70
  186. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/TextualInversion.yaml +0 -45
  187. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/fine-tuning.yaml +0 -45
  188. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/lora.yaml +0 -63
  189. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/train_base.yaml +0 -81
  190. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/tuning_base.yaml +0 -42
  191. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/unet_struct.txt +0 -932
  192. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/highres_fix_latent.yaml +0 -86
  193. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/highres_fix_pixel.yaml +0 -99
  194. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/text2img.yaml +0 -59
  195. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/text2img_lora.yaml +0 -70
  196. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/zero2.json +0 -32
  197. hcpdiff-0.9.1.data/data/hcpdiff/cfgs/zero3.json +0 -39
  198. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/caption.txt +0 -1
  199. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/name.txt +0 -1
  200. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/name_2pt_caption.txt +0 -1
  201. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/name_caption.txt +0 -1
  202. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/object.txt +0 -27
  203. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/object_caption.txt +0 -27
  204. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/style.txt +0 -19
  205. hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/style_caption.txt +0 -19
  206. hcpdiff-0.9.1.dist-info/METADATA +0 -199
  207. hcpdiff-0.9.1.dist-info/RECORD +0 -160
  208. hcpdiff-0.9.1.dist-info/entry_points.txt +0 -2
  209. {hcpdiff-0.9.1.dist-info → hcpdiff-2.1.dist-info/licenses}/LICENSE +0 -0
  210. {hcpdiff-0.9.1.dist-info → hcpdiff-2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,177 @@
1
+ import torch
2
+ from rainbowneko.infer.workflow import (Actions, PrepareAction, LoopAction, LoadModelAction)
3
+ from rainbowneko.parser import neko_cfg, disable_neko_cfg
4
+ from typing import Union, List
5
+
6
+ from hcpdiff.ckpt_manager import HCPLoraLoader
7
+ from hcpdiff.easy import Diffusers_SD, SD15_auto_loader, SDXL_auto_loader
8
+ from hcpdiff.workflow import (BuildModelsAction, PrepareDiffusionAction, XformersEnableAction, VaeOptimizeAction, TextHookAction,
9
+ AttnMultTextEncodeAction, SeedAction, MakeTimestepsAction, MakeLatentAction, DiffusionStepAction,
10
+ time_iter, DecodeAction, SaveImageAction, LatentResizeAction)
11
+
12
+ negative_prompt = 'lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'
13
+
14
+ ## Easy config
15
+ @neko_cfg
16
+ def build_model(pretrained_model='ckpts/any5', noise_sampler=Diffusers_SD.dpmpp_2m_karras) -> Actions:
17
+ return Actions([
18
+ PrepareAction(device='cuda', dtype=torch.float16),
19
+ BuildModelsAction(
20
+ model_loader=SD15_auto_loader(
21
+ _partial_=True,
22
+ ckpt_path=pretrained_model,
23
+ noise_sampler=noise_sampler
24
+ )
25
+ ),
26
+ ])
27
+
28
+ @neko_cfg
29
+ def load_lora(info: List[List]) -> Actions:
30
+ lora_acts = []
31
+ for i, item in enumerate(info):
32
+ lora_unet = LoadModelAction(cfg={
33
+ f'lora_unet_{i}':HCPLoraLoader(
34
+ path=item[0],
35
+ state_prefix='denoiser.',
36
+ alpha=item[1],
37
+ )
38
+ }, key_map_in=('denoiser -> model', 'in_preview -> in_preview'))
39
+ lora_TE = LoadModelAction(cfg={
40
+ f'lora_unet_{i}':HCPLoraLoader(
41
+ path=item[0],
42
+ state_prefix='TE.',
43
+ alpha=item[1],
44
+ )
45
+ }, key_map_in=('TE -> model', 'in_preview -> in_preview'))
46
+
47
+ with disable_neko_cfg:
48
+ lora_acts.append(lora_unet)
49
+ lora_acts.append(lora_TE)
50
+
51
+ return Actions(lora_acts)
52
+
53
+ @neko_cfg
54
+ def optimize_model() -> Actions:
55
+ return Actions([
56
+ PrepareDiffusionAction(),
57
+ XformersEnableAction(),
58
+ VaeOptimizeAction(slicing=True),
59
+ ])
60
+
61
+ @neko_cfg
62
+ def text(prompt, negative_prompt=negative_prompt, bs=4) -> Actions:
63
+ return Actions([
64
+ TextHookAction(N_repeats=1, layer_skip=1),
65
+ AttnMultTextEncodeAction(
66
+ prompt=prompt,
67
+ negative_prompt=negative_prompt,
68
+ bs=bs
69
+ ),
70
+ ])
71
+
72
+ @neko_cfg
73
+ def build_model_SDXL(pretrained_model='ckpts/any5', noise_sampler=Diffusers_SD.dpmpp_2m_karras) -> Actions:
74
+ return Actions([
75
+ PrepareAction(device='cuda', dtype=torch.float16),
76
+ ## Easy config
77
+ BuildModelsAction(
78
+ model_loader=SDXL_auto_loader(
79
+ _partial_=True,
80
+ ckpt_path=pretrained_model,
81
+ noise_sampler=noise_sampler
82
+ )
83
+ ),
84
+ ])
85
+
86
+ @neko_cfg
87
+ def text_SDXL(prompt, negative_prompt=negative_prompt, bs=4) -> Actions:
88
+ return Actions([
89
+ TextHookAction(N_repeats=1, layer_skip=1, TE_final_norm=False),
90
+ AttnMultTextEncodeAction(
91
+ prompt=prompt,
92
+ negative_prompt=negative_prompt,
93
+ bs=bs
94
+ ),
95
+ ])
96
+
97
+ @neko_cfg
98
+ def config_diffusion(width=512, height=512, seed=None, N_steps=20, strength: float = None) -> Actions:
99
+ return Actions([
100
+ SeedAction(seed),
101
+ MakeTimestepsAction(N_steps=N_steps, strength=strength),
102
+ MakeLatentAction(width=width, height=height)
103
+ ])
104
+
105
+ @neko_cfg
106
+ def diffusion(guidance_scale=7.0) -> Actions:
107
+ return Actions([
108
+ LoopAction(
109
+ iterator=time_iter,
110
+ actions=[
111
+ DiffusionStepAction(guidance_scale=guidance_scale)
112
+ ]
113
+ )
114
+ ])
115
+
116
+ @neko_cfg
117
+ def decode(save_root='output_pipe/') -> Actions:
118
+ return Actions([
119
+ DecodeAction(),
120
+ SaveImageAction(save_root=save_root, image_type='png'),
121
+ ])
122
+
123
+ @neko_cfg
124
+ def resize(width=1024, height=1024):
125
+ return Actions([
126
+ LatentResizeAction(width=width, height=height)
127
+ ])
128
+
129
+ @neko_cfg
130
+ def SD15_t2i(pretrained_model, prompt, negative_prompt=negative_prompt, noise_sampler=Diffusers_SD.dpmpp_2m_karras, bs=4, width=512, height=512,
131
+ seed=None, N_steps=20, guidance_scale=7.0, save_root='output_pipe/'):
132
+ return dict(workflow=Actions(actions=[
133
+ build_model(pretrained_model=pretrained_model, noise_sampler=noise_sampler),
134
+ optimize_model(),
135
+ text(prompt=prompt, negative_prompt=negative_prompt, bs=bs),
136
+ config_diffusion(width=width, height=height, seed=seed, N_steps=N_steps),
137
+ diffusion(guidance_scale=guidance_scale),
138
+ decode(save_root=save_root)
139
+ ]))
140
+
141
+ @neko_cfg
142
+ def SD15_t2i_lora(pretrained_model, lora_info, prompt, negative_prompt=negative_prompt, noise_sampler=Diffusers_SD.dpmpp_2m_karras, bs=4,
143
+ width=512, height=512, seed=None, N_steps=20, guidance_scale=7.0, save_root='output_pipe/'):
144
+ return dict(workflow=Actions(actions=[
145
+ build_model(pretrained_model=pretrained_model, noise_sampler=noise_sampler),
146
+ load_lora(info=lora_info),
147
+ optimize_model(),
148
+ text(prompt=prompt, negative_prompt=negative_prompt, bs=bs),
149
+ config_diffusion(width=width, height=height, seed=seed, N_steps=N_steps),
150
+ diffusion(guidance_scale=guidance_scale),
151
+ decode(save_root=save_root)
152
+ ]))
153
+
154
+ @neko_cfg
155
+ def SDXL_t2i(pretrained_model, prompt, negative_prompt=negative_prompt, noise_sampler=Diffusers_SD.dpmpp_2m_karras, bs=4, width=1024, height=1024,
156
+ seed=None, N_steps=20, guidance_scale=7.0, save_root='output_pipe/'):
157
+ return dict(workflow=Actions(actions=[
158
+ build_model_SDXL(pretrained_model=pretrained_model, noise_sampler=noise_sampler),
159
+ optimize_model(),
160
+ text_SDXL(prompt=prompt, negative_prompt=negative_prompt, bs=bs),
161
+ config_diffusion(width=width, height=height, seed=seed, N_steps=N_steps),
162
+ diffusion(guidance_scale=guidance_scale),
163
+ decode(save_root=save_root)
164
+ ]))
165
+
166
+ @neko_cfg
167
+ def SDXL_t2i_lora(pretrained_model, lora_info, prompt, negative_prompt=negative_prompt, noise_sampler=Diffusers_SD.dpmpp_2m_karras, bs=4,
168
+ width=1024, height=1024, seed=None, N_steps=20, guidance_scale=7.0, save_root='output_pipe/'):
169
+ return dict(workflow=Actions(actions=[
170
+ build_model_SDXL(pretrained_model=pretrained_model, noise_sampler=noise_sampler),
171
+ load_lora(info=lora_info),
172
+ optimize_model(),
173
+ text_SDXL(prompt=prompt, negative_prompt=negative_prompt, bs=bs),
174
+ config_diffusion(width=width, height=height, seed=seed, N_steps=N_steps),
175
+ diffusion(guidance_scale=guidance_scale),
176
+ decode(save_root=save_root)
177
+ ]))
@@ -0,0 +1,2 @@
1
+ from .loader import SD15_auto_loader, SDXL_auto_loader, PixArt_auto_loader
2
+ from .cnet import ControlNet_SD15, make_controlnet_handler
@@ -0,0 +1,31 @@
1
+ from hcpdiff.data.handler import ControlNetHandler, StableDiffusionHandler
2
+ from hcpdiff.models import ControlNetPlugin
3
+ from rainbowneko.data import SyncHandler
4
+ from rainbowneko.parser import neko_cfg
5
+
6
+ @neko_cfg
7
+ def ControlNet_SD15(lr=1e-4):
8
+ return ControlNetPlugin(
9
+ _partial_=True,
10
+ lr=lr,
11
+ from_layers=[
12
+ 'pre_hook:',
13
+ 'pre_hook:conv_in', # to make forward inside autocast
14
+ ],
15
+ to_layers=[
16
+ 'down_blocks.0',
17
+ 'down_blocks.1',
18
+ 'down_blocks.2',
19
+ 'down_blocks.3',
20
+ 'mid_block',
21
+ 'pre_hook:up_blocks.3.resnets.2',
22
+ ]
23
+ )
24
+
25
+ @neko_cfg
26
+ def make_controlnet_handler(bucket=None, encoder_attention_mask=False, erase=0.15, dropout=0.0, shuffle=0.0, word_names={}):
27
+ return SyncHandler(
28
+ diffusion=StableDiffusionHandler(bucket=bucket, encoder_attention_mask=encoder_attention_mask, erase=erase, dropout=dropout, shuffle=shuffle,
29
+ word_names=word_names),
30
+ cnet=ControlNetHandler(bucket=bucket)
31
+ )
@@ -0,0 +1,79 @@
1
+ import torch
2
+ from hcpdiff.ckpt_manager import DiffusersSD15Format, DiffusersSDXLFormat, DiffusersPixArtFormat, OfficialSD15Format, OfficialSDXLFormat
3
+ from rainbowneko.ckpt_manager import NekoLoader, LocalCkptSource
4
+ from hcpdiff.utils import auto_tokenizer_cls, auto_text_encoder_cls, get_pipe_name
5
+ from hcpdiff.models.wrapper import SDXLWrapper, SD15Wrapper, PixArtWrapper
6
+ from hcpdiff.models.compose import SDXLTextEncoder
7
+ from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
8
+
9
+ def SD15_auto_loader(ckpt_path, denoiser=None, TE=None, vae=None, noise_sampler=None,
10
+ tokenizer=None, revision=None, dtype=torch.float32, **kwargs):
11
+ try:
12
+ try_diffusers = StableDiffusionPipeline.load_config(ckpt_path)
13
+ loader = NekoLoader(
14
+ format=DiffusersSD15Format(),
15
+ source=LocalCkptSource(),
16
+ )
17
+ except EnvironmentError:
18
+ loader = NekoLoader(
19
+ format=OfficialSD15Format(),
20
+ source=LocalCkptSource(),
21
+ )
22
+ models = loader.load(ckpt_path, denoiser=denoiser, TE=TE, vae=vae, noise_sampler=noise_sampler, tokenizer=tokenizer, revision=revision,
23
+ dtype=dtype, **kwargs)
24
+ return models
25
+
26
+ def SDXL_auto_loader(ckpt_path, denoiser=None, TE=None, vae=None, noise_sampler=None,
27
+ tokenizer=None, revision=None, dtype=torch.float32, **kwargs):
28
+ try:
29
+ try_diffusers = StableDiffusionXLPipeline.load_config(ckpt_path)
30
+ loader = NekoLoader(
31
+ format=DiffusersSDXLFormat(),
32
+ source=LocalCkptSource(),
33
+ )
34
+ except EnvironmentError:
35
+ loader = NekoLoader(
36
+ format=OfficialSDXLFormat(),
37
+ source=LocalCkptSource(),
38
+ )
39
+ models = loader.load(ckpt_path, denoiser=denoiser, TE=TE, vae=vae, noise_sampler=noise_sampler, tokenizer=tokenizer, revision=revision,
40
+ dtype=dtype, **kwargs)
41
+ return models
42
+
43
+ def PixArt_auto_loader(ckpt_path, denoiser=None, TE=None, vae=None, noise_sampler=None,
44
+ tokenizer=None, revision=None, dtype=torch.float32, **kwargs):
45
+ loader = NekoLoader(
46
+ format=DiffusersPixArtFormat(),
47
+ source=LocalCkptSource(),
48
+ )
49
+ models = loader.load(ckpt_path, denoiser=denoiser, TE=TE, vae=vae, noise_sampler=noise_sampler, tokenizer=tokenizer, revision=revision,
50
+ dtype=dtype, **kwargs)
51
+ return models
52
+
53
+ def auto_load_wrapper(pretrained_model, denoiser=None, TE=None, vae=None, noise_sampler=None, tokenizer=None, revision=None,
54
+ dtype=torch.float32, **kwargs):
55
+ if TE is not None:
56
+ text_encoder_cls = type(TE)
57
+ else:
58
+ text_encoder_cls = auto_text_encoder_cls(pretrained_model, revision)
59
+
60
+ pipe_name = get_pipe_name(pretrained_model)
61
+
62
+ if text_encoder_cls == SDXLTextEncoder:
63
+ wrapper_cls = SDXLWrapper
64
+ format = DiffusersSDXLFormat()
65
+ elif 'PixArt' in pipe_name:
66
+ wrapper_cls = PixArtWrapper
67
+ format = DiffusersPixArtFormat()
68
+ else:
69
+ wrapper_cls = SD15Wrapper
70
+ format = DiffusersSD15Format()
71
+
72
+ loader = NekoLoader(
73
+ format=format,
74
+ source=LocalCkptSource(),
75
+ )
76
+ models = loader.load(pretrained_model, denoiser=denoiser, TE=TE, vae=vae, noise_sampler=noise_sampler, tokenizer=tokenizer, revision=revision,
77
+ dtype=dtype)
78
+
79
+ return wrapper_cls.build_from_pretrained(models, **kwargs)
@@ -0,0 +1,46 @@
1
+ from hcpdiff.diffusion.sampler import DiffusersSampler
2
+ from diffusers import DPMSolverMultistepScheduler, DDIMScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler
3
+
4
+ class Diffusers_SD:
5
+ dpmpp_2m = DiffusersSampler(
6
+ DPMSolverMultistepScheduler(
7
+ beta_start=0.00085,
8
+ beta_end=0.012,
9
+ beta_schedule='scaled_linear',
10
+ algorithm_type='dpmsolver++',
11
+ )
12
+ )
13
+
14
+ dpmpp_2m_karras = DiffusersSampler(
15
+ DPMSolverMultistepScheduler(
16
+ beta_start=0.00085,
17
+ beta_end=0.012,
18
+ beta_schedule='scaled_linear',
19
+ algorithm_type='dpmsolver++',
20
+ use_karras_sigmas=True,
21
+ )
22
+ )
23
+
24
+ ddim = DiffusersSampler(
25
+ DDIMScheduler(
26
+ beta_start=0.00085,
27
+ beta_end=0.012,
28
+ beta_schedule='scaled_linear',
29
+ )
30
+ )
31
+
32
+ euler = DiffusersSampler(
33
+ EulerDiscreteScheduler(
34
+ beta_start=0.00085,
35
+ beta_end=0.012,
36
+ beta_schedule='scaled_linear',
37
+ )
38
+ )
39
+
40
+ euler_a = DiffusersSampler(
41
+ EulerAncestralDiscreteScheduler(
42
+ beta_start=0.00085,
43
+ beta_end=0.012,
44
+ beta_schedule='scaled_linear',
45
+ )
46
+ )
@@ -0,0 +1 @@
1
+ from .previewer import HCPPreviewer
@@ -0,0 +1,60 @@
1
+ from pathlib import Path
2
+
3
+ import torch
4
+ from rainbowneko.evaluate.preview import WorkflowPreviewer
5
+ from rainbowneko.utils import to_cuda
6
+
7
+ from hcpdiff.models.wrapper import SD15Wrapper
8
+ from accelerate.hooks import remove_hook_from_module
9
+
10
+ class HCPPreviewer(WorkflowPreviewer):
11
+
12
+ @torch.no_grad()
13
+ def evaluate(self, step: int, model: SD15Wrapper, prefix='eval/'):
14
+ if step%self.interval != 0 or not self.trainer.is_local_main_process:
15
+ return
16
+
17
+ # record training layers
18
+ training_layers = [layer for layer in model.modules() if layer.training]
19
+
20
+ model.eval()
21
+ self.trainer.loggers.info(f'Preview')
22
+
23
+ N_repeats = model.text_enc_hook.N_repeats
24
+ clip_skip = model.text_enc_hook.clip_skip
25
+ clip_final_norm = model.text_enc_hook.clip_final_norm
26
+ use_attention_mask = model.text_enc_hook.use_attention_mask
27
+
28
+ preview_root = Path(self.trainer.exp_dir)/'imgs'
29
+ preview_root.mkdir(parents=True, exist_ok=True)
30
+
31
+ states = self.workflow_runner.run(model=model, in_preview=True, te_hook=model.text_enc_hook,
32
+ device=self.device, dtype=self.dtype, preview_root=preview_root, preview_step=step,
33
+ world_size=self.trainer.world_size, local_rank=self.trainer.local_rank,
34
+ emb_hook=self.trainer.cfgs.emb_pt.embedding_hook if self.trainer.pt_trainable else None)
35
+
36
+ # restore model states
37
+ if model.vae is not None:
38
+ model.vae.disable_tiling()
39
+ model.vae.disable_slicing()
40
+ remove_hook_from_module(model.vae, recurse=True)
41
+ if 'vae_encode_raw' in states:
42
+ model.vae.encode = states['vae_encode_raw']
43
+ model.vae.decode = states['vae_decode_raw']
44
+
45
+ if 'emb_hook' in states and not self.trainer.pt_trainable:
46
+ states['emb_hook'].remove()
47
+
48
+ if self.trainer.pt_trainable:
49
+ self.trainer.cfgs.emb_pt.embedding_hook.N_repeats = N_repeats
50
+
51
+ model.tokenizer.N_repeats = N_repeats
52
+ model.text_enc_hook.N_repeats = N_repeats
53
+ model.text_enc_hook.clip_skip = clip_skip
54
+ model.text_enc_hook.clip_final_norm = clip_final_norm
55
+ model.text_enc_hook.use_attention_mask = use_attention_mask
56
+
57
+ to_cuda(model)
58
+
59
+ for layer in training_layers:
60
+ layer.train()
hcpdiff/loss/__init__.py CHANGED
@@ -1 +1,4 @@
1
- from .min_snr_loss import MinSNRLoss, SoftMinSNRLoss, KDiffMinSNRLoss, EDMLoss
1
+ from .weighting import MinSNRWeight, SNRWeight, EDMWeight, LossWeight
2
+ from .ssim import SSIMLoss, MS_SSIMLoss
3
+ from .gw import GWLoss
4
+ from .base import DiffusionLossContainer
hcpdiff/loss/base.py ADDED
@@ -0,0 +1,41 @@
1
+ from rainbowneko.train.loss import LossContainer
2
+ from typing import Dict, Any
3
+ from torch import Tensor
4
+
5
+ class DiffusionLossContainer(LossContainer):
6
+ def __init__(self, loss, weight=1.0, key_map=None):
7
+ key_map = key_map or getattr(loss, '_key_map', None) or ('pred.model_pred -> 0', 'pred.target -> 1')
8
+ super().__init__(loss, weight, key_map)
9
+ self.target_type = getattr(loss, 'target_type', 'eps')
10
+
11
+ def get_target(self, pred_type, model_pred, x_0, noise, x_t, sigma, noise_sampler, **kwargs):
12
+ # Get target
13
+ if self.target_type == "eps":
14
+ target = noise
15
+ elif self.target_type == "x0":
16
+ target = x_0
17
+ elif self.target_type == "velocity":
18
+ target = noise_sampler.eps_to_velocity(noise, x_t, sigma)
19
+ else:
20
+ raise ValueError(f"Unsupport target_type {self.target_type}")
21
+
22
+ # TODO: put in wrapper
23
+ # # remove pred vars
24
+ # if model_pred.shape[1] == target.shape[1]*2:
25
+ # model_pred, _ = model_pred.chunk(2, dim=1)
26
+
27
+ # Convert pred_type to target_type
28
+ if pred_type != self.target_type:
29
+ cvt_func = getattr(noise_sampler, f'{pred_type}_to_{self.target_type}', None)
30
+ if cvt_func is None:
31
+ raise ValueError(f"Unsupport pred_type {pred_type} with target_type {self.target_type}")
32
+ else:
33
+ model_pred = cvt_func(model_pred, x_t, sigma)
34
+ return model_pred, target
35
+
36
+ def forward(self, pred:Dict[str,Any], inputs:Dict[str,Any]) -> Tensor:
37
+ model_pred, target = self.get_target(**pred)
38
+ pred['model_pred'] = model_pred
39
+ pred['target'] = target
40
+ loss = super().forward(pred, inputs) * self.weight # [B,*,*,*]
41
+ return loss.mean()
hcpdiff/loss/gw.py ADDED
@@ -0,0 +1,35 @@
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+
5
+ class GWLoss(nn.Module):
6
+ def __init__(self):
7
+ super().__init__()
8
+
9
+ sobel_x = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]
10
+ sobel_y = [[-1, -2, -1], [0, 0, 0], [1, 2, 1]]
11
+ self.sobel_x = torch.FloatTensor(sobel_x)
12
+ self.sobel_y = torch.FloatTensor(sobel_y)
13
+ self.register_buffer('sobel_x', self.sobel_x)
14
+ self.register_buffer('sobel_y', self.sobel_y)
15
+
16
+ def forward(self, pred, target):
17
+ '''
18
+
19
+ :param pred: [B,C,H,W]
20
+ :param target: [B,C,H,W]
21
+ :return: [B,C,H,W]
22
+ '''
23
+ b, c, w, h = pred.shape
24
+
25
+ sobel_x = self.sobel_x.expand(c, 1, 3, 3).to(pred.device)
26
+ sobel_y = self.sobel_y.expand(c, 1, 3, 3).to(pred.device)
27
+ Ix1 = F.conv2d(pred, sobel_x, stride=1, padding=1, groups=c)
28
+ Ix2 = F.conv2d(target, sobel_x, stride=1, padding=1, groups=c)
29
+ Iy1 = F.conv2d(pred, sobel_y, stride=1, padding=1, groups=c)
30
+ Iy2 = F.conv2d(target, sobel_y, stride=1, padding=1, groups=c)
31
+
32
+ dx = torch.abs(Ix1 - Ix2)
33
+ dy = torch.abs(Iy1 - Iy2)
34
+ loss = (1 + 4 * dx) * (1 + 4 * dy) * torch.abs(pred - target)
35
+ return loss
hcpdiff/loss/ssim.py ADDED
@@ -0,0 +1,37 @@
1
+ from pytorch_msssim import SSIM, MS_SSIM
2
+ from torch.nn.modules.loss import _Loss
3
+ import torch
4
+
5
+ class SSIMLoss(_Loss):
6
+ target_type = 'x0'
7
+
8
+ def __init__(self, size_average=None, reduce=None, reduction: str = 'mean'):
9
+ super().__init__(size_average=size_average, reduce=reduce, reduction=reduction)
10
+ self.ssim = SSIM(data_range=1., size_average=False, channel=4)
11
+
12
+ def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
13
+ '''
14
+
15
+ :param input: [B,C,H,W]
16
+ :param target: [B,C,H,W]
17
+ :return: [B,1,1,1]
18
+ '''
19
+ input = (input+1)/2
20
+ target = (target+1)/2
21
+ return 1-self.ssim(input, target).view(-1,1,1,1)
22
+
23
+ class MS_SSIMLoss(_Loss):
24
+ def __init__(self, size_average=None, reduce=None, reduction: str = 'mean'):
25
+ super().__init__(size_average=size_average, reduce=reduce, reduction=reduction)
26
+ self.ssim = MS_SSIM(data_range=1., size_average=False, channel=4)
27
+
28
+ def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
29
+ '''
30
+
31
+ :param input: [B,C,H,W]
32
+ :param target: [B,C,H,W]
33
+ :return: [B,1,1,1]
34
+ '''
35
+ input = (input+1)/2
36
+ target = (target+1)/2
37
+ return 1-self.ssim(input, target).view(-1,1,1,1)
hcpdiff/loss/vlb.py ADDED
@@ -0,0 +1,79 @@
1
+ import torch
2
+ from torch import nn
3
+ import numpy as np
4
+
5
+ class VLBLoss(nn.Module):
6
+ need_sigma = True
7
+ need_timesteps = True
8
+ need_sampler = True
9
+ var_pred = True
10
+
11
+ def __init__(self, loss, weight: float = 1.):
12
+ super().__init__()
13
+ self.loss = loss
14
+ self.weight = weight
15
+
16
+ def normal_kl(self, mean1, logvar1, mean2, logvar2):
17
+ """
18
+ Compute the KL divergence between two gaussians.
19
+ """
20
+
21
+ return 0.5*(-1.0+logvar2-logvar1+(logvar1-logvar2).exp()+((mean1-mean2)**2)*(-logvar2).exp())
22
+
23
+ def forward(self, input: torch.Tensor, target: torch.Tensor, sigma, timesteps: torch.Tensor, x_t: torch.Tensor, sampler):
24
+ eps_pred, var_pred = input.chunk(2, dim=1)
25
+ x0_pred = sampler.eps_to_x0(eps_pred, x_t, sigma)
26
+
27
+ true_mean = sampler.sigma_scheduler.get_post_mean(timesteps, target, x_t)
28
+ true_logvar = sampler.sigma_scheduler.get_post_log_var(timesteps)
29
+
30
+ pred_mean = sampler.sigma_scheduler.get_post_mean(timesteps, x0_pred, x_t)
31
+ pred_logvar = sampler.sigma_scheduler.get_post_log_var(timesteps, x_t_var=var_pred)
32
+
33
+ kl = self.normal_kl(true_mean, true_logvar, pred_mean, pred_logvar)
34
+ kl = kl.mean(dim=(1,2,3))/np.log(2.0)
35
+
36
+ decoder_nll = -self.discretized_gaussian_log_likelihood(target, means=pred_mean, log_scales=0.5*pred_logvar)
37
+ assert decoder_nll.shape == target.shape
38
+ decoder_nll = decoder_nll.mean(dim=(1,2,3))/np.log(2.0)
39
+
40
+ # At the first timestep return the decoder NLL,
41
+ # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
42
+ output = torch.where((timesteps == 0), decoder_nll, kl)
43
+
44
+ return self.weight*output
45
+
46
+ def approx_standard_normal_cdf(self, x):
47
+ """
48
+ A fast approximation of the cumulative distribution function of the
49
+ standard normal.
50
+ """
51
+ return 0.5*(1.0+torch.tanh(np.sqrt(2.0/np.pi)*(x+0.044715*torch.pow(x, 3))))
52
+
53
+ def discretized_gaussian_log_likelihood(self, x, *, means, log_scales):
54
+ """
55
+ Compute the log-likelihood of a Gaussian distribution discretizing to a
56
+ given image.
57
+ :param x: the target images. It is assumed that this was uint8 values,
58
+ rescaled to the range [-1, 1].
59
+ :param means: the Gaussian mean Tensor.
60
+ :param log_scales: the Gaussian log stddev Tensor.
61
+ :return: a tensor like x of log probabilities (in nats).
62
+ """
63
+ assert x.shape == means.shape == log_scales.shape
64
+ centered_x = x-means
65
+ inv_stdv = torch.exp(-log_scales)
66
+ plus_in = inv_stdv*(centered_x+1.0/255.0)
67
+ cdf_plus = self.approx_standard_normal_cdf(plus_in)
68
+ min_in = inv_stdv*(centered_x-1.0/255.0)
69
+ cdf_min = self.approx_standard_normal_cdf(min_in)
70
+ log_cdf_plus = torch.log(cdf_plus.clamp(min=1e-12))
71
+ log_one_minus_cdf_min = torch.log((1.0-cdf_min).clamp(min=1e-12))
72
+ cdf_delta = cdf_plus-cdf_min
73
+ log_probs = torch.where(
74
+ x<-0.999,
75
+ log_cdf_plus,
76
+ torch.where(x>0.999, log_one_minus_cdf_min, torch.log(cdf_delta.clamp(min=1e-12))),
77
+ )
78
+ assert log_probs.shape == x.shape
79
+ return log_probs
@@ -0,0 +1,66 @@
1
+ from torch import nn
2
+
3
+ from .base import DiffusionLossContainer
4
+
5
+ class LossWeight(nn.Module):
6
+ def __init__(self, loss: DiffusionLossContainer):
7
+ super().__init__()
8
+ self.loss = loss
9
+
10
+ def get_weight(self, pred, inputs):
11
+ '''
12
+
13
+ :param input: [B,C,H,W]
14
+ :param target: [B,C,H,W]
15
+ :return: [B,1,1,1] or [B,C,H,W]
16
+ '''
17
+ raise NotImplementedError
18
+
19
+ def forward(self, pred, inputs):
20
+ '''
21
+ weight: [B,1,1,1] or [B,C,H,W]
22
+ loss: [B,*,*,*]
23
+ '''
24
+ return self.get_weight(pred, inputs)*self.loss(pred, inputs)
25
+
26
+ class SNRWeight(LossWeight):
27
+ def get_weight(self, pred, inputs):
28
+ if self.loss.target_type == 'eps':
29
+ return 1
30
+ elif self.loss.target_type == "x0":
31
+ sigma = pred['sigma']
32
+ return (1./sigma**2).view(-1, 1, 1, 1)
33
+ else:
34
+ raise ValueError(f"{self.__class__.__name__} is not support for target_type {self.loss.target_type}")
35
+
36
+ class MinSNRWeight(LossWeight):
37
+ def __init__(self, loss: DiffusionLossContainer, gamma: float = 1.):
38
+ super().__init__(loss)
39
+ self.gamma = gamma
40
+
41
+ def get_weight(self, pred, inputs):
42
+ sigma = pred['sigma']
43
+ if self.loss.target_type == 'eps':
44
+ w_snr = (self.gamma*sigma**2).clip(max=1).float()
45
+ elif self.loss.target_type == "x0":
46
+ w_snr = (1/(sigma**2)).clip(max=self.gamma).float()
47
+ else:
48
+ raise ValueError(f"{self.__class__.__name__} is not support for target_type {self.loss.target_type}")
49
+
50
+ return w_snr.view(-1, 1, 1, 1)
51
+
52
+ class EDMWeight(LossWeight):
53
+ def __init__(self, loss: DiffusionLossContainer, gamma: float = 1.):
54
+ super().__init__(loss)
55
+ self.gamma = gamma
56
+
57
+ def get_weight(self, pred, inputs):
58
+ sigma = pred['sigma']
59
+ if self.loss.target_type == 'eps':
60
+ w_snr = ((sigma**2+self.gamma**2)/(self.gamma**2)).float()
61
+ elif self.loss.target_type == "x0":
62
+ w_snr = ((sigma**2+self.gamma**2)/((sigma*self.gamma)**2)).float()
63
+ else:
64
+ raise ValueError(f"{self.__class__.__name__} is not support for target_type {self.loss.target_type}")
65
+
66
+ return w_snr.view(-1, 1, 1, 1)
@@ -1,4 +1,3 @@
1
- from .plugin import PluginBlock, PluginGroup, SinglePluginBlock, MultiPluginBlock, PatchPluginBlock
2
1
  # from .lora_base import LoraBlock, LoraGroup
3
2
  # from .lora_layers import lora_layer_map
4
3
  from .lora_base_patch import LoraBlock, LoraGroup
@@ -7,4 +6,5 @@ from .text_emb_ex import EmbeddingPTHook
7
6
  from .textencoder_ex import TEEXHook
8
7
  from .tokenizer_ex import TokenizerHook
9
8
  from .cfg_context import CFGContext, DreamArtistPTContext
10
- from .wrapper import TEUnetWrapper, SDXLTEUnetWrapper
9
+ from .wrapper import SD15Wrapper, SDXLWrapper, PixArtWrapper, TEHookCFG
10
+ from .controlnet import ControlNetPlugin