hcpdiff 0.9.1__py3-none-any.whl → 2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hcpdiff/__init__.py +4 -4
- hcpdiff/ckpt_manager/__init__.py +4 -5
- hcpdiff/ckpt_manager/ckpt.py +24 -0
- hcpdiff/ckpt_manager/format/__init__.py +4 -0
- hcpdiff/ckpt_manager/format/diffusers.py +59 -0
- hcpdiff/ckpt_manager/format/emb.py +21 -0
- hcpdiff/ckpt_manager/format/lora_webui.py +244 -0
- hcpdiff/ckpt_manager/format/sd_single.py +41 -0
- hcpdiff/ckpt_manager/loader.py +64 -0
- hcpdiff/data/__init__.py +4 -28
- hcpdiff/data/cache/__init__.py +1 -0
- hcpdiff/data/cache/vae.py +102 -0
- hcpdiff/data/dataset.py +20 -0
- hcpdiff/data/handler/__init__.py +3 -0
- hcpdiff/data/handler/controlnet.py +18 -0
- hcpdiff/data/handler/diffusion.py +80 -0
- hcpdiff/data/handler/text.py +111 -0
- hcpdiff/data/source/__init__.py +1 -2
- hcpdiff/data/source/folder_class.py +12 -29
- hcpdiff/data/source/text2img.py +36 -74
- hcpdiff/data/source/text2img_cond.py +9 -15
- hcpdiff/diffusion/__init__.py +0 -0
- hcpdiff/diffusion/noise/__init__.py +2 -0
- hcpdiff/diffusion/noise/pyramid_noise.py +42 -0
- hcpdiff/diffusion/noise/zero_terminal.py +39 -0
- hcpdiff/diffusion/sampler/__init__.py +5 -0
- hcpdiff/diffusion/sampler/base.py +72 -0
- hcpdiff/diffusion/sampler/ddpm.py +20 -0
- hcpdiff/diffusion/sampler/diffusers.py +66 -0
- hcpdiff/diffusion/sampler/edm.py +22 -0
- hcpdiff/diffusion/sampler/sigma_scheduler/__init__.py +3 -0
- hcpdiff/diffusion/sampler/sigma_scheduler/base.py +14 -0
- hcpdiff/diffusion/sampler/sigma_scheduler/ddpm.py +197 -0
- hcpdiff/diffusion/sampler/sigma_scheduler/edm.py +48 -0
- hcpdiff/easy/__init__.py +2 -0
- hcpdiff/easy/cfg/__init__.py +3 -0
- hcpdiff/easy/cfg/sd15_train.py +201 -0
- hcpdiff/easy/cfg/sdxl_train.py +140 -0
- hcpdiff/easy/cfg/t2i.py +177 -0
- hcpdiff/easy/model/__init__.py +2 -0
- hcpdiff/easy/model/cnet.py +31 -0
- hcpdiff/easy/model/loader.py +79 -0
- hcpdiff/easy/sampler.py +46 -0
- hcpdiff/evaluate/__init__.py +1 -0
- hcpdiff/evaluate/previewer.py +60 -0
- hcpdiff/loss/__init__.py +4 -1
- hcpdiff/loss/base.py +41 -0
- hcpdiff/loss/gw.py +35 -0
- hcpdiff/loss/ssim.py +37 -0
- hcpdiff/loss/vlb.py +79 -0
- hcpdiff/loss/weighting.py +66 -0
- hcpdiff/models/__init__.py +2 -2
- hcpdiff/models/cfg_context.py +17 -14
- hcpdiff/models/compose/compose_hook.py +44 -23
- hcpdiff/models/compose/compose_tokenizer.py +21 -8
- hcpdiff/models/compose/sdxl_composer.py +4 -4
- hcpdiff/models/controlnet.py +16 -16
- hcpdiff/models/lora_base_patch.py +14 -25
- hcpdiff/models/lora_layers.py +3 -9
- hcpdiff/models/lora_layers_patch.py +14 -24
- hcpdiff/models/text_emb_ex.py +84 -6
- hcpdiff/models/textencoder_ex.py +54 -18
- hcpdiff/models/wrapper/__init__.py +3 -0
- hcpdiff/models/wrapper/pixart.py +19 -0
- hcpdiff/models/wrapper/sd.py +218 -0
- hcpdiff/models/wrapper/utils.py +20 -0
- hcpdiff/parser/__init__.py +1 -0
- hcpdiff/parser/embpt.py +32 -0
- hcpdiff/tools/convert_caption_txt2json.py +1 -1
- hcpdiff/tools/dataset_generator.py +94 -0
- hcpdiff/tools/download_hf_model.py +24 -0
- hcpdiff/tools/init_proj.py +3 -21
- hcpdiff/tools/lora_convert.py +18 -17
- hcpdiff/tools/save_model.py +12 -0
- hcpdiff/tools/sd2diffusers.py +1 -1
- hcpdiff/train_colo.py +1 -1
- hcpdiff/train_deepspeed.py +1 -1
- hcpdiff/trainer_ac.py +79 -0
- hcpdiff/trainer_ac_single.py +31 -0
- hcpdiff/utils/__init__.py +0 -2
- hcpdiff/utils/inpaint_pipe.py +7 -2
- hcpdiff/utils/net_utils.py +29 -6
- hcpdiff/utils/pipe_hook.py +24 -7
- hcpdiff/utils/utils.py +21 -4
- hcpdiff/workflow/__init__.py +15 -10
- hcpdiff/workflow/daam/__init__.py +1 -0
- hcpdiff/workflow/daam/act.py +66 -0
- hcpdiff/workflow/daam/hook.py +109 -0
- hcpdiff/workflow/diffusion.py +114 -125
- hcpdiff/workflow/fast.py +31 -0
- hcpdiff/workflow/flow.py +67 -0
- hcpdiff/workflow/io.py +36 -130
- hcpdiff/workflow/model.py +46 -43
- hcpdiff/workflow/text.py +78 -46
- hcpdiff/workflow/utils.py +32 -12
- hcpdiff/workflow/vae.py +37 -38
- hcpdiff-2.1.dist-info/METADATA +285 -0
- hcpdiff-2.1.dist-info/RECORD +114 -0
- {hcpdiff-0.9.1.dist-info → hcpdiff-2.1.dist-info}/WHEEL +1 -1
- hcpdiff-2.1.dist-info/entry_points.txt +5 -0
- hcpdiff/ckpt_manager/base.py +0 -16
- hcpdiff/ckpt_manager/ckpt_diffusers.py +0 -45
- hcpdiff/ckpt_manager/ckpt_pkl.py +0 -138
- hcpdiff/ckpt_manager/ckpt_safetensor.py +0 -64
- hcpdiff/ckpt_manager/ckpt_webui.py +0 -54
- hcpdiff/data/bucket.py +0 -358
- hcpdiff/data/caption_loader.py +0 -80
- hcpdiff/data/cond_dataset.py +0 -40
- hcpdiff/data/crop_info_dataset.py +0 -40
- hcpdiff/data/data_processor.py +0 -33
- hcpdiff/data/pair_dataset.py +0 -146
- hcpdiff/data/sampler.py +0 -54
- hcpdiff/data/source/base.py +0 -30
- hcpdiff/data/utils.py +0 -80
- hcpdiff/deprecated/__init__.py +0 -1
- hcpdiff/deprecated/cfg_converter.py +0 -81
- hcpdiff/deprecated/lora_convert.py +0 -31
- hcpdiff/infer_workflow.py +0 -57
- hcpdiff/loggers/__init__.py +0 -13
- hcpdiff/loggers/base_logger.py +0 -76
- hcpdiff/loggers/cli_logger.py +0 -40
- hcpdiff/loggers/preview/__init__.py +0 -1
- hcpdiff/loggers/preview/image_previewer.py +0 -149
- hcpdiff/loggers/tensorboard_logger.py +0 -30
- hcpdiff/loggers/wandb_logger.py +0 -31
- hcpdiff/loggers/webui_logger.py +0 -9
- hcpdiff/loss/min_snr_loss.py +0 -52
- hcpdiff/models/layers.py +0 -81
- hcpdiff/models/plugin.py +0 -348
- hcpdiff/models/wrapper.py +0 -75
- hcpdiff/noise/__init__.py +0 -3
- hcpdiff/noise/noise_base.py +0 -16
- hcpdiff/noise/pyramid_noise.py +0 -50
- hcpdiff/noise/zero_terminal.py +0 -44
- hcpdiff/train_ac.py +0 -566
- hcpdiff/train_ac_single.py +0 -39
- hcpdiff/utils/caption_tools.py +0 -105
- hcpdiff/utils/cfg_net_tools.py +0 -321
- hcpdiff/utils/cfg_resolvers.py +0 -16
- hcpdiff/utils/ema.py +0 -52
- hcpdiff/utils/img_size_tool.py +0 -248
- hcpdiff/vis/__init__.py +0 -3
- hcpdiff/vis/base_interface.py +0 -12
- hcpdiff/vis/disk_interface.py +0 -48
- hcpdiff/vis/webui_interface.py +0 -17
- hcpdiff/viser_fast.py +0 -138
- hcpdiff/visualizer.py +0 -265
- hcpdiff/visualizer_reloadable.py +0 -237
- hcpdiff/workflow/base.py +0 -59
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/anime/text2img_anime.yaml +0 -21
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/anime/text2img_anime_lora.yaml +0 -58
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/change_vae.yaml +0 -6
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/euler_a.yaml +0 -8
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/img2img.yaml +0 -10
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/img2img_controlnet.yaml +0 -19
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/inpaint.yaml +0 -11
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/load_lora.yaml +0 -26
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/load_unet_part.yaml +0 -18
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/offload_2GB.yaml +0 -6
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/save_model.yaml +0 -44
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/text2img.yaml +0 -53
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/text2img_DA++.yaml +0 -34
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/infer/text2img_sdxl.yaml +0 -9
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/plugins/plugin_controlnet.yaml +0 -17
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/te_struct.txt +0 -193
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/dataset/base_dataset.yaml +0 -29
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/dataset/regularization_dataset.yaml +0 -31
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/CustomDiffusion.yaml +0 -74
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/DreamArtist++.yaml +0 -135
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/DreamArtist.yaml +0 -45
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/DreamBooth.yaml +0 -62
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/FT_sdxl.yaml +0 -33
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/Lion_optimizer.yaml +0 -17
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/TextualInversion.yaml +0 -41
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/add_logger_tensorboard_wandb.yaml +0 -15
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/controlnet.yaml +0 -53
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/ema.yaml +0 -10
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/fine-tuning.yaml +0 -53
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/locon.yaml +0 -24
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/lora_anime_character.yaml +0 -77
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/lora_conventional.yaml +0 -56
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/lora_sdxl.yaml +0 -41
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/min_snr.yaml +0 -7
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples/preview_in_training.yaml +0 -6
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/DreamBooth.yaml +0 -70
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/TextualInversion.yaml +0 -45
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/fine-tuning.yaml +0 -45
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/examples_noob/lora.yaml +0 -63
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/train_base.yaml +0 -81
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/train/tuning_base.yaml +0 -42
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/unet_struct.txt +0 -932
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/highres_fix_latent.yaml +0 -86
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/highres_fix_pixel.yaml +0 -99
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/text2img.yaml +0 -59
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/workflow/text2img_lora.yaml +0 -70
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/zero2.json +0 -32
- hcpdiff-0.9.1.data/data/hcpdiff/cfgs/zero3.json +0 -39
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/caption.txt +0 -1
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/name.txt +0 -1
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/name_2pt_caption.txt +0 -1
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/name_caption.txt +0 -1
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/object.txt +0 -27
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/object_caption.txt +0 -27
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/style.txt +0 -19
- hcpdiff-0.9.1.data/data/hcpdiff/prompt_tuning_template/style_caption.txt +0 -19
- hcpdiff-0.9.1.dist-info/METADATA +0 -199
- hcpdiff-0.9.1.dist-info/RECORD +0 -160
- hcpdiff-0.9.1.dist-info/entry_points.txt +0 -2
- {hcpdiff-0.9.1.dist-info → hcpdiff-2.1.dist-info/licenses}/LICENSE +0 -0
- {hcpdiff-0.9.1.dist-info → hcpdiff-2.1.dist-info}/top_level.txt +0 -0
@@ -1,932 +0,0 @@
|
|
1
|
-
UNet2DConditionModel(
|
2
|
-
(conv_in): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
3
|
-
(time_proj): Timesteps()
|
4
|
-
(time_embedding): TimestepEmbedding(
|
5
|
-
(linear_1): Linear(in_features=320, out_features=1280, bias=True)
|
6
|
-
(act): SiLU()
|
7
|
-
(linear_2): Linear(in_features=1280, out_features=1280, bias=True)
|
8
|
-
)
|
9
|
-
(down_blocks): ModuleList(
|
10
|
-
(0): CrossAttnDownBlock2D(
|
11
|
-
(attentions): ModuleList(
|
12
|
-
(0): Transformer2DModel(
|
13
|
-
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
14
|
-
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
15
|
-
(transformer_blocks): ModuleList(
|
16
|
-
(0): BasicTransformerBlock(
|
17
|
-
(attn1): CrossAttention(
|
18
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
19
|
-
(to_k): Linear(in_features=320, out_features=320, bias=False)
|
20
|
-
(to_v): Linear(in_features=320, out_features=320, bias=False)
|
21
|
-
(to_out): ModuleList(
|
22
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
23
|
-
(1): Dropout(p=0.0, inplace=False)
|
24
|
-
)
|
25
|
-
)
|
26
|
-
(ff): FeedForward(
|
27
|
-
(net): ModuleList(
|
28
|
-
(0): GEGLU(
|
29
|
-
(proj): Linear(in_features=320, out_features=2560, bias=True)
|
30
|
-
)
|
31
|
-
(1): Dropout(p=0.0, inplace=False)
|
32
|
-
(2): Linear(in_features=1280, out_features=320, bias=True)
|
33
|
-
)
|
34
|
-
)
|
35
|
-
(attn2): CrossAttention(
|
36
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
37
|
-
(to_k): Linear(in_features=768, out_features=320, bias=False)
|
38
|
-
(to_v): Linear(in_features=768, out_features=320, bias=False)
|
39
|
-
(to_out): ModuleList(
|
40
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
41
|
-
(1): Dropout(p=0.0, inplace=False)
|
42
|
-
)
|
43
|
-
)
|
44
|
-
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
45
|
-
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
46
|
-
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
47
|
-
)
|
48
|
-
)
|
49
|
-
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
50
|
-
)
|
51
|
-
(1): Transformer2DModel(
|
52
|
-
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
53
|
-
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
54
|
-
(transformer_blocks): ModuleList(
|
55
|
-
(0): BasicTransformerBlock(
|
56
|
-
(attn1): CrossAttention(
|
57
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
58
|
-
(to_k): Linear(in_features=320, out_features=320, bias=False)
|
59
|
-
(to_v): Linear(in_features=320, out_features=320, bias=False)
|
60
|
-
(to_out): ModuleList(
|
61
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
62
|
-
(1): Dropout(p=0.0, inplace=False)
|
63
|
-
)
|
64
|
-
)
|
65
|
-
(ff): FeedForward(
|
66
|
-
(net): ModuleList(
|
67
|
-
(0): GEGLU(
|
68
|
-
(proj): Linear(in_features=320, out_features=2560, bias=True)
|
69
|
-
)
|
70
|
-
(1): Dropout(p=0.0, inplace=False)
|
71
|
-
(2): Linear(in_features=1280, out_features=320, bias=True)
|
72
|
-
)
|
73
|
-
)
|
74
|
-
(attn2): CrossAttention(
|
75
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
76
|
-
(to_k): Linear(in_features=768, out_features=320, bias=False)
|
77
|
-
(to_v): Linear(in_features=768, out_features=320, bias=False)
|
78
|
-
(to_out): ModuleList(
|
79
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
80
|
-
(1): Dropout(p=0.0, inplace=False)
|
81
|
-
)
|
82
|
-
)
|
83
|
-
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
84
|
-
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
85
|
-
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
86
|
-
)
|
87
|
-
)
|
88
|
-
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
89
|
-
)
|
90
|
-
)
|
91
|
-
(resnets): ModuleList(
|
92
|
-
(0): ResnetBlock2D(
|
93
|
-
(norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
|
94
|
-
(conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
95
|
-
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
96
|
-
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
97
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
98
|
-
(conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
99
|
-
(nonlinearity): SiLU()
|
100
|
-
)
|
101
|
-
(1): ResnetBlock2D(
|
102
|
-
(norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
|
103
|
-
(conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
104
|
-
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
105
|
-
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
106
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
107
|
-
(conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
108
|
-
(nonlinearity): SiLU()
|
109
|
-
)
|
110
|
-
)
|
111
|
-
(downsamplers): ModuleList(
|
112
|
-
(0): Downsample2D(
|
113
|
-
(conv): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
114
|
-
)
|
115
|
-
)
|
116
|
-
)
|
117
|
-
(1): CrossAttnDownBlock2D(
|
118
|
-
(attentions): ModuleList(
|
119
|
-
(0): Transformer2DModel(
|
120
|
-
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
121
|
-
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
122
|
-
(transformer_blocks): ModuleList(
|
123
|
-
(0): BasicTransformerBlock(
|
124
|
-
(attn1): CrossAttention(
|
125
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
126
|
-
(to_k): Linear(in_features=640, out_features=640, bias=False)
|
127
|
-
(to_v): Linear(in_features=640, out_features=640, bias=False)
|
128
|
-
(to_out): ModuleList(
|
129
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
130
|
-
(1): Dropout(p=0.0, inplace=False)
|
131
|
-
)
|
132
|
-
)
|
133
|
-
(ff): FeedForward(
|
134
|
-
(net): ModuleList(
|
135
|
-
(0): GEGLU(
|
136
|
-
(proj): Linear(in_features=640, out_features=5120, bias=True)
|
137
|
-
)
|
138
|
-
(1): Dropout(p=0.0, inplace=False)
|
139
|
-
(2): Linear(in_features=2560, out_features=640, bias=True)
|
140
|
-
)
|
141
|
-
)
|
142
|
-
(attn2): CrossAttention(
|
143
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
144
|
-
(to_k): Linear(in_features=768, out_features=640, bias=False)
|
145
|
-
(to_v): Linear(in_features=768, out_features=640, bias=False)
|
146
|
-
(to_out): ModuleList(
|
147
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
148
|
-
(1): Dropout(p=0.0, inplace=False)
|
149
|
-
)
|
150
|
-
)
|
151
|
-
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
152
|
-
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
153
|
-
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
154
|
-
)
|
155
|
-
)
|
156
|
-
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
157
|
-
)
|
158
|
-
(1): Transformer2DModel(
|
159
|
-
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
160
|
-
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
161
|
-
(transformer_blocks): ModuleList(
|
162
|
-
(0): BasicTransformerBlock(
|
163
|
-
(attn1): CrossAttention(
|
164
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
165
|
-
(to_k): Linear(in_features=640, out_features=640, bias=False)
|
166
|
-
(to_v): Linear(in_features=640, out_features=640, bias=False)
|
167
|
-
(to_out): ModuleList(
|
168
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
169
|
-
(1): Dropout(p=0.0, inplace=False)
|
170
|
-
)
|
171
|
-
)
|
172
|
-
(ff): FeedForward(
|
173
|
-
(net): ModuleList(
|
174
|
-
(0): GEGLU(
|
175
|
-
(proj): Linear(in_features=640, out_features=5120, bias=True)
|
176
|
-
)
|
177
|
-
(1): Dropout(p=0.0, inplace=False)
|
178
|
-
(2): Linear(in_features=2560, out_features=640, bias=True)
|
179
|
-
)
|
180
|
-
)
|
181
|
-
(attn2): CrossAttention(
|
182
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
183
|
-
(to_k): Linear(in_features=768, out_features=640, bias=False)
|
184
|
-
(to_v): Linear(in_features=768, out_features=640, bias=False)
|
185
|
-
(to_out): ModuleList(
|
186
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
187
|
-
(1): Dropout(p=0.0, inplace=False)
|
188
|
-
)
|
189
|
-
)
|
190
|
-
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
191
|
-
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
192
|
-
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
193
|
-
)
|
194
|
-
)
|
195
|
-
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
196
|
-
)
|
197
|
-
)
|
198
|
-
(resnets): ModuleList(
|
199
|
-
(0): ResnetBlock2D(
|
200
|
-
(norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
|
201
|
-
(conv1): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
202
|
-
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
203
|
-
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
204
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
205
|
-
(conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
206
|
-
(nonlinearity): SiLU()
|
207
|
-
(conv_shortcut): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1))
|
208
|
-
)
|
209
|
-
(1): ResnetBlock2D(
|
210
|
-
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
211
|
-
(conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
212
|
-
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
213
|
-
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
214
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
215
|
-
(conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
216
|
-
(nonlinearity): SiLU()
|
217
|
-
)
|
218
|
-
)
|
219
|
-
(downsamplers): ModuleList(
|
220
|
-
(0): Downsample2D(
|
221
|
-
(conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
222
|
-
)
|
223
|
-
)
|
224
|
-
)
|
225
|
-
(2): CrossAttnDownBlock2D(
|
226
|
-
(attentions): ModuleList(
|
227
|
-
(0): Transformer2DModel(
|
228
|
-
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
229
|
-
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
230
|
-
(transformer_blocks): ModuleList(
|
231
|
-
(0): BasicTransformerBlock(
|
232
|
-
(attn1): CrossAttention(
|
233
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
234
|
-
(to_k): Linear(in_features=1280, out_features=1280, bias=False)
|
235
|
-
(to_v): Linear(in_features=1280, out_features=1280, bias=False)
|
236
|
-
(to_out): ModuleList(
|
237
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
238
|
-
(1): Dropout(p=0.0, inplace=False)
|
239
|
-
)
|
240
|
-
)
|
241
|
-
(ff): FeedForward(
|
242
|
-
(net): ModuleList(
|
243
|
-
(0): GEGLU(
|
244
|
-
(proj): Linear(in_features=1280, out_features=10240, bias=True)
|
245
|
-
)
|
246
|
-
(1): Dropout(p=0.0, inplace=False)
|
247
|
-
(2): Linear(in_features=5120, out_features=1280, bias=True)
|
248
|
-
)
|
249
|
-
)
|
250
|
-
(attn2): CrossAttention(
|
251
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
252
|
-
(to_k): Linear(in_features=768, out_features=1280, bias=False)
|
253
|
-
(to_v): Linear(in_features=768, out_features=1280, bias=False)
|
254
|
-
(to_out): ModuleList(
|
255
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
256
|
-
(1): Dropout(p=0.0, inplace=False)
|
257
|
-
)
|
258
|
-
)
|
259
|
-
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
260
|
-
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
261
|
-
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
262
|
-
)
|
263
|
-
)
|
264
|
-
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
265
|
-
)
|
266
|
-
(1): Transformer2DModel(
|
267
|
-
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
268
|
-
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
269
|
-
(transformer_blocks): ModuleList(
|
270
|
-
(0): BasicTransformerBlock(
|
271
|
-
(attn1): CrossAttention(
|
272
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
273
|
-
(to_k): Linear(in_features=1280, out_features=1280, bias=False)
|
274
|
-
(to_v): Linear(in_features=1280, out_features=1280, bias=False)
|
275
|
-
(to_out): ModuleList(
|
276
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
277
|
-
(1): Dropout(p=0.0, inplace=False)
|
278
|
-
)
|
279
|
-
)
|
280
|
-
(ff): FeedForward(
|
281
|
-
(net): ModuleList(
|
282
|
-
(0): GEGLU(
|
283
|
-
(proj): Linear(in_features=1280, out_features=10240, bias=True)
|
284
|
-
)
|
285
|
-
(1): Dropout(p=0.0, inplace=False)
|
286
|
-
(2): Linear(in_features=5120, out_features=1280, bias=True)
|
287
|
-
)
|
288
|
-
)
|
289
|
-
(attn2): CrossAttention(
|
290
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
291
|
-
(to_k): Linear(in_features=768, out_features=1280, bias=False)
|
292
|
-
(to_v): Linear(in_features=768, out_features=1280, bias=False)
|
293
|
-
(to_out): ModuleList(
|
294
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
295
|
-
(1): Dropout(p=0.0, inplace=False)
|
296
|
-
)
|
297
|
-
)
|
298
|
-
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
299
|
-
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
300
|
-
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
301
|
-
)
|
302
|
-
)
|
303
|
-
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
304
|
-
)
|
305
|
-
)
|
306
|
-
(resnets): ModuleList(
|
307
|
-
(0): ResnetBlock2D(
|
308
|
-
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
309
|
-
(conv1): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
310
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
311
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
312
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
313
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
314
|
-
(nonlinearity): SiLU()
|
315
|
-
(conv_shortcut): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1))
|
316
|
-
)
|
317
|
-
(1): ResnetBlock2D(
|
318
|
-
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
319
|
-
(conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
320
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
321
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
322
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
323
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
324
|
-
(nonlinearity): SiLU()
|
325
|
-
)
|
326
|
-
)
|
327
|
-
(downsamplers): ModuleList(
|
328
|
-
(0): Downsample2D(
|
329
|
-
(conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
330
|
-
)
|
331
|
-
)
|
332
|
-
)
|
333
|
-
(3): DownBlock2D(
|
334
|
-
(resnets): ModuleList(
|
335
|
-
(0): ResnetBlock2D(
|
336
|
-
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
337
|
-
(conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
338
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
339
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
340
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
341
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
342
|
-
(nonlinearity): SiLU()
|
343
|
-
)
|
344
|
-
(1): ResnetBlock2D(
|
345
|
-
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
346
|
-
(conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
347
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
348
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
349
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
350
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
351
|
-
(nonlinearity): SiLU()
|
352
|
-
)
|
353
|
-
)
|
354
|
-
)
|
355
|
-
)
|
356
|
-
(up_blocks): ModuleList(
|
357
|
-
(0): UpBlock2D(
|
358
|
-
(resnets): ModuleList(
|
359
|
-
(0): ResnetBlock2D(
|
360
|
-
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
361
|
-
(conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
362
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
363
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
364
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
365
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
366
|
-
(nonlinearity): SiLU()
|
367
|
-
(conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
368
|
-
)
|
369
|
-
(1): ResnetBlock2D(
|
370
|
-
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
371
|
-
(conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
372
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
373
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
374
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
375
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
376
|
-
(nonlinearity): SiLU()
|
377
|
-
(conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
378
|
-
)
|
379
|
-
(2): ResnetBlock2D(
|
380
|
-
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
381
|
-
(conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
382
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
383
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
384
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
385
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
386
|
-
(nonlinearity): SiLU()
|
387
|
-
(conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
388
|
-
)
|
389
|
-
)
|
390
|
-
(upsamplers): ModuleList(
|
391
|
-
(0): Upsample2D(
|
392
|
-
(conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
393
|
-
)
|
394
|
-
)
|
395
|
-
)
|
396
|
-
(1): CrossAttnUpBlock2D(
|
397
|
-
(attentions): ModuleList(
|
398
|
-
(0): Transformer2DModel(
|
399
|
-
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
400
|
-
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
401
|
-
(transformer_blocks): ModuleList(
|
402
|
-
(0): BasicTransformerBlock(
|
403
|
-
(attn1): CrossAttention(
|
404
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
405
|
-
(to_k): Linear(in_features=1280, out_features=1280, bias=False)
|
406
|
-
(to_v): Linear(in_features=1280, out_features=1280, bias=False)
|
407
|
-
(to_out): ModuleList(
|
408
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
409
|
-
(1): Dropout(p=0.0, inplace=False)
|
410
|
-
)
|
411
|
-
)
|
412
|
-
(ff): FeedForward(
|
413
|
-
(net): ModuleList(
|
414
|
-
(0): GEGLU(
|
415
|
-
(proj): Linear(in_features=1280, out_features=10240, bias=True)
|
416
|
-
)
|
417
|
-
(1): Dropout(p=0.0, inplace=False)
|
418
|
-
(2): Linear(in_features=5120, out_features=1280, bias=True)
|
419
|
-
)
|
420
|
-
)
|
421
|
-
(attn2): CrossAttention(
|
422
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
423
|
-
(to_k): Linear(in_features=768, out_features=1280, bias=False)
|
424
|
-
(to_v): Linear(in_features=768, out_features=1280, bias=False)
|
425
|
-
(to_out): ModuleList(
|
426
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
427
|
-
(1): Dropout(p=0.0, inplace=False)
|
428
|
-
)
|
429
|
-
)
|
430
|
-
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
431
|
-
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
432
|
-
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
433
|
-
)
|
434
|
-
)
|
435
|
-
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
436
|
-
)
|
437
|
-
(1): Transformer2DModel(
|
438
|
-
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
439
|
-
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
440
|
-
(transformer_blocks): ModuleList(
|
441
|
-
(0): BasicTransformerBlock(
|
442
|
-
(attn1): CrossAttention(
|
443
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
444
|
-
(to_k): Linear(in_features=1280, out_features=1280, bias=False)
|
445
|
-
(to_v): Linear(in_features=1280, out_features=1280, bias=False)
|
446
|
-
(to_out): ModuleList(
|
447
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
448
|
-
(1): Dropout(p=0.0, inplace=False)
|
449
|
-
)
|
450
|
-
)
|
451
|
-
(ff): FeedForward(
|
452
|
-
(net): ModuleList(
|
453
|
-
(0): GEGLU(
|
454
|
-
(proj): Linear(in_features=1280, out_features=10240, bias=True)
|
455
|
-
)
|
456
|
-
(1): Dropout(p=0.0, inplace=False)
|
457
|
-
(2): Linear(in_features=5120, out_features=1280, bias=True)
|
458
|
-
)
|
459
|
-
)
|
460
|
-
(attn2): CrossAttention(
|
461
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
462
|
-
(to_k): Linear(in_features=768, out_features=1280, bias=False)
|
463
|
-
(to_v): Linear(in_features=768, out_features=1280, bias=False)
|
464
|
-
(to_out): ModuleList(
|
465
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
466
|
-
(1): Dropout(p=0.0, inplace=False)
|
467
|
-
)
|
468
|
-
)
|
469
|
-
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
470
|
-
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
471
|
-
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
472
|
-
)
|
473
|
-
)
|
474
|
-
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
475
|
-
)
|
476
|
-
(2): Transformer2DModel(
|
477
|
-
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
478
|
-
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
479
|
-
(transformer_blocks): ModuleList(
|
480
|
-
(0): BasicTransformerBlock(
|
481
|
-
(attn1): CrossAttention(
|
482
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
483
|
-
(to_k): Linear(in_features=1280, out_features=1280, bias=False)
|
484
|
-
(to_v): Linear(in_features=1280, out_features=1280, bias=False)
|
485
|
-
(to_out): ModuleList(
|
486
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
487
|
-
(1): Dropout(p=0.0, inplace=False)
|
488
|
-
)
|
489
|
-
)
|
490
|
-
(ff): FeedForward(
|
491
|
-
(net): ModuleList(
|
492
|
-
(0): GEGLU(
|
493
|
-
(proj): Linear(in_features=1280, out_features=10240, bias=True)
|
494
|
-
)
|
495
|
-
(1): Dropout(p=0.0, inplace=False)
|
496
|
-
(2): Linear(in_features=5120, out_features=1280, bias=True)
|
497
|
-
)
|
498
|
-
)
|
499
|
-
(attn2): CrossAttention(
|
500
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
501
|
-
(to_k): Linear(in_features=768, out_features=1280, bias=False)
|
502
|
-
(to_v): Linear(in_features=768, out_features=1280, bias=False)
|
503
|
-
(to_out): ModuleList(
|
504
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
505
|
-
(1): Dropout(p=0.0, inplace=False)
|
506
|
-
)
|
507
|
-
)
|
508
|
-
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
509
|
-
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
510
|
-
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
511
|
-
)
|
512
|
-
)
|
513
|
-
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
514
|
-
)
|
515
|
-
)
|
516
|
-
(resnets): ModuleList(
|
517
|
-
(0): ResnetBlock2D(
|
518
|
-
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
519
|
-
(conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
520
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
521
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
522
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
523
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
524
|
-
(nonlinearity): SiLU()
|
525
|
-
(conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
526
|
-
)
|
527
|
-
(1): ResnetBlock2D(
|
528
|
-
(norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
|
529
|
-
(conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
530
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
531
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
532
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
533
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
534
|
-
(nonlinearity): SiLU()
|
535
|
-
(conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
|
536
|
-
)
|
537
|
-
(2): ResnetBlock2D(
|
538
|
-
(norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
|
539
|
-
(conv1): Conv2d(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
540
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
541
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
542
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
543
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
544
|
-
(nonlinearity): SiLU()
|
545
|
-
(conv_shortcut): Conv2d(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
|
546
|
-
)
|
547
|
-
)
|
548
|
-
(upsamplers): ModuleList(
|
549
|
-
(0): Upsample2D(
|
550
|
-
(conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
551
|
-
)
|
552
|
-
)
|
553
|
-
)
|
554
|
-
(2): CrossAttnUpBlock2D(
|
555
|
-
(attentions): ModuleList(
|
556
|
-
(0): Transformer2DModel(
|
557
|
-
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
558
|
-
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
559
|
-
(transformer_blocks): ModuleList(
|
560
|
-
(0): BasicTransformerBlock(
|
561
|
-
(attn1): CrossAttention(
|
562
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
563
|
-
(to_k): Linear(in_features=640, out_features=640, bias=False)
|
564
|
-
(to_v): Linear(in_features=640, out_features=640, bias=False)
|
565
|
-
(to_out): ModuleList(
|
566
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
567
|
-
(1): Dropout(p=0.0, inplace=False)
|
568
|
-
)
|
569
|
-
)
|
570
|
-
(ff): FeedForward(
|
571
|
-
(net): ModuleList(
|
572
|
-
(0): GEGLU(
|
573
|
-
(proj): Linear(in_features=640, out_features=5120, bias=True)
|
574
|
-
)
|
575
|
-
(1): Dropout(p=0.0, inplace=False)
|
576
|
-
(2): Linear(in_features=2560, out_features=640, bias=True)
|
577
|
-
)
|
578
|
-
)
|
579
|
-
(attn2): CrossAttention(
|
580
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
581
|
-
(to_k): Linear(in_features=768, out_features=640, bias=False)
|
582
|
-
(to_v): Linear(in_features=768, out_features=640, bias=False)
|
583
|
-
(to_out): ModuleList(
|
584
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
585
|
-
(1): Dropout(p=0.0, inplace=False)
|
586
|
-
)
|
587
|
-
)
|
588
|
-
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
589
|
-
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
590
|
-
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
591
|
-
)
|
592
|
-
)
|
593
|
-
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
594
|
-
)
|
595
|
-
(1): Transformer2DModel(
|
596
|
-
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
597
|
-
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
598
|
-
(transformer_blocks): ModuleList(
|
599
|
-
(0): BasicTransformerBlock(
|
600
|
-
(attn1): CrossAttention(
|
601
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
602
|
-
(to_k): Linear(in_features=640, out_features=640, bias=False)
|
603
|
-
(to_v): Linear(in_features=640, out_features=640, bias=False)
|
604
|
-
(to_out): ModuleList(
|
605
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
606
|
-
(1): Dropout(p=0.0, inplace=False)
|
607
|
-
)
|
608
|
-
)
|
609
|
-
(ff): FeedForward(
|
610
|
-
(net): ModuleList(
|
611
|
-
(0): GEGLU(
|
612
|
-
(proj): Linear(in_features=640, out_features=5120, bias=True)
|
613
|
-
)
|
614
|
-
(1): Dropout(p=0.0, inplace=False)
|
615
|
-
(2): Linear(in_features=2560, out_features=640, bias=True)
|
616
|
-
)
|
617
|
-
)
|
618
|
-
(attn2): CrossAttention(
|
619
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
620
|
-
(to_k): Linear(in_features=768, out_features=640, bias=False)
|
621
|
-
(to_v): Linear(in_features=768, out_features=640, bias=False)
|
622
|
-
(to_out): ModuleList(
|
623
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
624
|
-
(1): Dropout(p=0.0, inplace=False)
|
625
|
-
)
|
626
|
-
)
|
627
|
-
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
628
|
-
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
629
|
-
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
630
|
-
)
|
631
|
-
)
|
632
|
-
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
633
|
-
)
|
634
|
-
(2): Transformer2DModel(
|
635
|
-
(norm): GroupNorm(32, 640, eps=1e-06, affine=True)
|
636
|
-
(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
637
|
-
(transformer_blocks): ModuleList(
|
638
|
-
(0): BasicTransformerBlock(
|
639
|
-
(attn1): CrossAttention(
|
640
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
641
|
-
(to_k): Linear(in_features=640, out_features=640, bias=False)
|
642
|
-
(to_v): Linear(in_features=640, out_features=640, bias=False)
|
643
|
-
(to_out): ModuleList(
|
644
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
645
|
-
(1): Dropout(p=0.0, inplace=False)
|
646
|
-
)
|
647
|
-
)
|
648
|
-
(ff): FeedForward(
|
649
|
-
(net): ModuleList(
|
650
|
-
(0): GEGLU(
|
651
|
-
(proj): Linear(in_features=640, out_features=5120, bias=True)
|
652
|
-
)
|
653
|
-
(1): Dropout(p=0.0, inplace=False)
|
654
|
-
(2): Linear(in_features=2560, out_features=640, bias=True)
|
655
|
-
)
|
656
|
-
)
|
657
|
-
(attn2): CrossAttention(
|
658
|
-
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
659
|
-
(to_k): Linear(in_features=768, out_features=640, bias=False)
|
660
|
-
(to_v): Linear(in_features=768, out_features=640, bias=False)
|
661
|
-
(to_out): ModuleList(
|
662
|
-
(0): Linear(in_features=640, out_features=640, bias=True)
|
663
|
-
(1): Dropout(p=0.0, inplace=False)
|
664
|
-
)
|
665
|
-
)
|
666
|
-
(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
667
|
-
(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
668
|
-
(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
|
669
|
-
)
|
670
|
-
)
|
671
|
-
(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
|
672
|
-
)
|
673
|
-
)
|
674
|
-
(resnets): ModuleList(
|
675
|
-
(0): ResnetBlock2D(
|
676
|
-
(norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
|
677
|
-
(conv1): Conv2d(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
678
|
-
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
679
|
-
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
680
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
681
|
-
(conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
682
|
-
(nonlinearity): SiLU()
|
683
|
-
(conv_shortcut): Conv2d(1920, 640, kernel_size=(1, 1), stride=(1, 1))
|
684
|
-
)
|
685
|
-
(1): ResnetBlock2D(
|
686
|
-
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
687
|
-
(conv1): Conv2d(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
688
|
-
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
689
|
-
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
690
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
691
|
-
(conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
692
|
-
(nonlinearity): SiLU()
|
693
|
-
(conv_shortcut): Conv2d(1280, 640, kernel_size=(1, 1), stride=(1, 1))
|
694
|
-
)
|
695
|
-
(2): ResnetBlock2D(
|
696
|
-
(norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
|
697
|
-
(conv1): Conv2d(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
698
|
-
(time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
|
699
|
-
(norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
|
700
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
701
|
-
(conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
702
|
-
(nonlinearity): SiLU()
|
703
|
-
(conv_shortcut): Conv2d(960, 640, kernel_size=(1, 1), stride=(1, 1))
|
704
|
-
)
|
705
|
-
)
|
706
|
-
(upsamplers): ModuleList(
|
707
|
-
(0): Upsample2D(
|
708
|
-
(conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
709
|
-
)
|
710
|
-
)
|
711
|
-
)
|
712
|
-
(3): CrossAttnUpBlock2D(
|
713
|
-
(attentions): ModuleList(
|
714
|
-
(0): Transformer2DModel(
|
715
|
-
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
716
|
-
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
717
|
-
(transformer_blocks): ModuleList(
|
718
|
-
(0): BasicTransformerBlock(
|
719
|
-
(attn1): CrossAttention(
|
720
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
721
|
-
(to_k): Linear(in_features=320, out_features=320, bias=False)
|
722
|
-
(to_v): Linear(in_features=320, out_features=320, bias=False)
|
723
|
-
(to_out): ModuleList(
|
724
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
725
|
-
(1): Dropout(p=0.0, inplace=False)
|
726
|
-
)
|
727
|
-
)
|
728
|
-
(ff): FeedForward(
|
729
|
-
(net): ModuleList(
|
730
|
-
(0): GEGLU(
|
731
|
-
(proj): Linear(in_features=320, out_features=2560, bias=True)
|
732
|
-
)
|
733
|
-
(1): Dropout(p=0.0, inplace=False)
|
734
|
-
(2): Linear(in_features=1280, out_features=320, bias=True)
|
735
|
-
)
|
736
|
-
)
|
737
|
-
(attn2): CrossAttention(
|
738
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
739
|
-
(to_k): Linear(in_features=768, out_features=320, bias=False)
|
740
|
-
(to_v): Linear(in_features=768, out_features=320, bias=False)
|
741
|
-
(to_out): ModuleList(
|
742
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
743
|
-
(1): Dropout(p=0.0, inplace=False)
|
744
|
-
)
|
745
|
-
)
|
746
|
-
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
747
|
-
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
748
|
-
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
749
|
-
)
|
750
|
-
)
|
751
|
-
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
752
|
-
)
|
753
|
-
(1): Transformer2DModel(
|
754
|
-
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
755
|
-
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
756
|
-
(transformer_blocks): ModuleList(
|
757
|
-
(0): BasicTransformerBlock(
|
758
|
-
(attn1): CrossAttention(
|
759
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
760
|
-
(to_k): Linear(in_features=320, out_features=320, bias=False)
|
761
|
-
(to_v): Linear(in_features=320, out_features=320, bias=False)
|
762
|
-
(to_out): ModuleList(
|
763
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
764
|
-
(1): Dropout(p=0.0, inplace=False)
|
765
|
-
)
|
766
|
-
)
|
767
|
-
(ff): FeedForward(
|
768
|
-
(net): ModuleList(
|
769
|
-
(0): GEGLU(
|
770
|
-
(proj): Linear(in_features=320, out_features=2560, bias=True)
|
771
|
-
)
|
772
|
-
(1): Dropout(p=0.0, inplace=False)
|
773
|
-
(2): Linear(in_features=1280, out_features=320, bias=True)
|
774
|
-
)
|
775
|
-
)
|
776
|
-
(attn2): CrossAttention(
|
777
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
778
|
-
(to_k): Linear(in_features=768, out_features=320, bias=False)
|
779
|
-
(to_v): Linear(in_features=768, out_features=320, bias=False)
|
780
|
-
(to_out): ModuleList(
|
781
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
782
|
-
(1): Dropout(p=0.0, inplace=False)
|
783
|
-
)
|
784
|
-
)
|
785
|
-
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
786
|
-
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
787
|
-
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
788
|
-
)
|
789
|
-
)
|
790
|
-
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
791
|
-
)
|
792
|
-
(2): Transformer2DModel(
|
793
|
-
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
|
794
|
-
(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
795
|
-
(transformer_blocks): ModuleList(
|
796
|
-
(0): BasicTransformerBlock(
|
797
|
-
(attn1): CrossAttention(
|
798
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
799
|
-
(to_k): Linear(in_features=320, out_features=320, bias=False)
|
800
|
-
(to_v): Linear(in_features=320, out_features=320, bias=False)
|
801
|
-
(to_out): ModuleList(
|
802
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
803
|
-
(1): Dropout(p=0.0, inplace=False)
|
804
|
-
)
|
805
|
-
)
|
806
|
-
(ff): FeedForward(
|
807
|
-
(net): ModuleList(
|
808
|
-
(0): GEGLU(
|
809
|
-
(proj): Linear(in_features=320, out_features=2560, bias=True)
|
810
|
-
)
|
811
|
-
(1): Dropout(p=0.0, inplace=False)
|
812
|
-
(2): Linear(in_features=1280, out_features=320, bias=True)
|
813
|
-
)
|
814
|
-
)
|
815
|
-
(attn2): CrossAttention(
|
816
|
-
(to_q): Linear(in_features=320, out_features=320, bias=False)
|
817
|
-
(to_k): Linear(in_features=768, out_features=320, bias=False)
|
818
|
-
(to_v): Linear(in_features=768, out_features=320, bias=False)
|
819
|
-
(to_out): ModuleList(
|
820
|
-
(0): Linear(in_features=320, out_features=320, bias=True)
|
821
|
-
(1): Dropout(p=0.0, inplace=False)
|
822
|
-
)
|
823
|
-
)
|
824
|
-
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
825
|
-
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
826
|
-
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
|
827
|
-
)
|
828
|
-
)
|
829
|
-
(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
|
830
|
-
)
|
831
|
-
)
|
832
|
-
(resnets): ModuleList(
|
833
|
-
(0): ResnetBlock2D(
|
834
|
-
(norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
|
835
|
-
(conv1): Conv2d(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
836
|
-
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
837
|
-
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
838
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
839
|
-
(conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840
|
-
(nonlinearity): SiLU()
|
841
|
-
(conv_shortcut): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
|
842
|
-
)
|
843
|
-
(1): ResnetBlock2D(
|
844
|
-
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
845
|
-
(conv1): Conv2d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
846
|
-
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
847
|
-
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
848
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
849
|
-
(conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
850
|
-
(nonlinearity): SiLU()
|
851
|
-
(conv_shortcut): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1))
|
852
|
-
)
|
853
|
-
(2): ResnetBlock2D(
|
854
|
-
(norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
|
855
|
-
(conv1): Conv2d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
856
|
-
(time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
|
857
|
-
(norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
|
858
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
859
|
-
(conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
860
|
-
(nonlinearity): SiLU()
|
861
|
-
(conv_shortcut): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1))
|
862
|
-
)
|
863
|
-
)
|
864
|
-
)
|
865
|
-
)
|
866
|
-
(mid_block): UNetMidBlock2DCrossAttn(
|
867
|
-
(attentions): ModuleList(
|
868
|
-
(0): Transformer2DModel(
|
869
|
-
(norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
|
870
|
-
(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
871
|
-
(transformer_blocks): ModuleList(
|
872
|
-
(0): BasicTransformerBlock(
|
873
|
-
(attn1): CrossAttention(
|
874
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
875
|
-
(to_k): Linear(in_features=1280, out_features=1280, bias=False)
|
876
|
-
(to_v): Linear(in_features=1280, out_features=1280, bias=False)
|
877
|
-
(to_out): ModuleList(
|
878
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
879
|
-
(1): Dropout(p=0.0, inplace=False)
|
880
|
-
)
|
881
|
-
)
|
882
|
-
(ff): FeedForward(
|
883
|
-
(net): ModuleList(
|
884
|
-
(0): GEGLU(
|
885
|
-
(proj): Linear(in_features=1280, out_features=10240, bias=True)
|
886
|
-
)
|
887
|
-
(1): Dropout(p=0.0, inplace=False)
|
888
|
-
(2): Linear(in_features=5120, out_features=1280, bias=True)
|
889
|
-
)
|
890
|
-
)
|
891
|
-
(attn2): CrossAttention(
|
892
|
-
(to_q): Linear(in_features=1280, out_features=1280, bias=False)
|
893
|
-
(to_k): Linear(in_features=768, out_features=1280, bias=False)
|
894
|
-
(to_v): Linear(in_features=768, out_features=1280, bias=False)
|
895
|
-
(to_out): ModuleList(
|
896
|
-
(0): Linear(in_features=1280, out_features=1280, bias=True)
|
897
|
-
(1): Dropout(p=0.0, inplace=False)
|
898
|
-
)
|
899
|
-
)
|
900
|
-
(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
901
|
-
(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
902
|
-
(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
|
903
|
-
)
|
904
|
-
)
|
905
|
-
(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
|
906
|
-
)
|
907
|
-
)
|
908
|
-
(resnets): ModuleList(
|
909
|
-
(0): ResnetBlock2D(
|
910
|
-
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
911
|
-
(conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
912
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
913
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
914
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
915
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
916
|
-
(nonlinearity): SiLU()
|
917
|
-
)
|
918
|
-
(1): ResnetBlock2D(
|
919
|
-
(norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
920
|
-
(conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
921
|
-
(time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
|
922
|
-
(norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
|
923
|
-
(dropout): Dropout(p=0.0, inplace=False)
|
924
|
-
(conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
925
|
-
(nonlinearity): SiLU()
|
926
|
-
)
|
927
|
-
)
|
928
|
-
)
|
929
|
-
(conv_norm_out): GroupNorm(32, 320, eps=1e-05, affine=True)
|
930
|
-
(conv_act): SiLU()
|
931
|
-
(conv_out): Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
932
|
-
)
|