gpjax 0.9.3__py3-none-any.whl → 0.9.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,101 +0,0 @@
1
- # Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- from dataclasses import dataclass
16
-
17
- from beartype.typing import Mapping
18
-
19
- from gpjax.dataset import Dataset
20
- from gpjax.decision_making.utility_functions.base import (
21
- AbstractSinglePointUtilityFunctionBuilder,
22
- SinglePointUtilityFunction,
23
- )
24
- from gpjax.decision_making.utils import OBJECTIVE
25
- from gpjax.gps import ConjugatePosterior
26
- from gpjax.typing import KeyArray
27
-
28
-
29
- @dataclass
30
- class ThompsonSampling(AbstractSinglePointUtilityFunctionBuilder):
31
- """
32
- Form a utility function by drawing an approximate sample from the posterior,
33
- using decoupled sampling as introduced in [Wilson et. al.
34
- (2020)](https://arxiv.org/abs/2002.09309). Note that we return the *negative* of the
35
- sample as the utility function, as utility functions are *maximised*.
36
-
37
- Note that this is a single batch utility function, as it doesn't support classical
38
- batching. However, Thompson sampling can be used in a batched setting by drawing a
39
- batch of different samples from the GP posterior. This can be done by calling
40
- `build_utility_function` with different keys, an example of which can be seen in the
41
- `ask` method of the `UtilityDrivenDecisionMaker` class. The samples can then be
42
- optimised sequentially.
43
-
44
- Attributes:
45
- num_features (int): The number of random Fourier features to use when drawing
46
- the approximate sample from the posterior. Defaults to 100.
47
- """
48
-
49
- num_features: int = 100
50
-
51
- def __post_init__(self):
52
- if self.num_features <= 0:
53
- raise ValueError(
54
- "The number of random Fourier features must be a positive integer."
55
- )
56
-
57
- def build_utility_function(
58
- self,
59
- posteriors: Mapping[str, ConjugatePosterior],
60
- datasets: Mapping[str, Dataset],
61
- key: KeyArray,
62
- ) -> SinglePointUtilityFunction:
63
- """
64
- Draw an approximate sample from the posterior of the objective model and return
65
- the *negative* of this sample as a utility function, as utility functions
66
- are *maximised*.
67
-
68
- Args:
69
- posteriors (Mapping[str, ConjugatePosterior]): Dictionary of posteriors to
70
- be used to form the utility function. One of the posteriors must correspond
71
- to the `OBJECTIVE` key, as we sample from the objective posterior to form
72
- the utility function.
73
- datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
74
- to form the utility function. Keys in `datasets` should correspond to
75
- keys in `posteriors`. One of the datasets must correspond
76
- to the `OBJECTIVE` key.
77
- key (KeyArray): JAX PRNG key used for random number generation. This can be
78
- changed to draw different samples.
79
-
80
- Returns:
81
- SinglePointUtilityFunction: An appproximate sample from the objective model
82
- posterior to to be *maximised* in order to decide which point to query
83
- next.
84
- """
85
- self.check_objective_present(posteriors, datasets)
86
-
87
- objective_posterior = posteriors[OBJECTIVE]
88
- if not isinstance(objective_posterior, ConjugatePosterior):
89
- raise ValueError(
90
- "Objective posterior must be a ConjugatePosterior to draw an approximate sample."
91
- )
92
-
93
- objective_dataset = datasets[OBJECTIVE]
94
- thompson_sample = objective_posterior.sample_approx(
95
- num_samples=1,
96
- train_data=objective_dataset,
97
- key=key,
98
- num_features=self.num_features,
99
- )
100
-
101
- return lambda x: -1.0 * thompson_sample(x) # Utility functions are *maximised*
@@ -1,157 +0,0 @@
1
- # Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- from abc import (
16
- ABC,
17
- abstractmethod,
18
- )
19
- from dataclasses import dataclass
20
-
21
- import jax.numpy as jnp
22
- import jax.random as jr
23
- from jaxopt import ScipyBoundedMinimize
24
-
25
- from gpjax.decision_making.search_space import (
26
- AbstractSearchSpace,
27
- ContinuousSearchSpace,
28
- )
29
- from gpjax.decision_making.utility_functions import SinglePointUtilityFunction
30
- from gpjax.typing import (
31
- Array,
32
- Float,
33
- KeyArray,
34
- ScalarFloat,
35
- )
36
-
37
-
38
- def _get_discrete_maximizer(
39
- query_points: Float[Array, "N D"], utility_function: SinglePointUtilityFunction
40
- ) -> Float[Array, "1 D"]:
41
- """Get the point which maximises the utility function evaluated at a given set of points.
42
-
43
- Args:
44
- query_points: set of points at which to evaluate the utility function, as an array
45
- of shape `[n_points, n_dims]`.
46
- utility_function: the single point utility function to be evaluated at `query_points`.
47
-
48
- Returns:
49
- Array of shape `[1, n_dims]` representing the point which maximises the utility function.
50
- """
51
- utility_function_values = utility_function(query_points)
52
- max_utility_function_value_idx = jnp.argmax(
53
- utility_function_values, axis=0, keepdims=True
54
- )
55
- best_sample_point = jnp.take_along_axis(
56
- query_points, max_utility_function_value_idx, axis=0
57
- )
58
- return best_sample_point
59
-
60
-
61
- @dataclass
62
- class AbstractSinglePointUtilityMaximizer(ABC):
63
- """Abstract base class for single point utility function maximizers."""
64
-
65
- @abstractmethod
66
- def maximize(
67
- self,
68
- utility_function: SinglePointUtilityFunction,
69
- search_space: AbstractSearchSpace,
70
- key: KeyArray,
71
- ) -> Float[Array, "1 D"]:
72
- """Maximize the given utility function over the search space provided.
73
-
74
- Args:
75
- utility_function: utility function to be maximized.
76
- search_space: search space over which to maximize the utility function.
77
- key: JAX PRNG key.
78
-
79
- Returns:
80
- Float[Array, "1 D"]: Point at which the utility function is maximized.
81
- """
82
- raise NotImplementedError
83
-
84
-
85
- @dataclass
86
- class ContinuousSinglePointUtilityMaximizer(AbstractSinglePointUtilityMaximizer):
87
- """The `ContinuousUtilityMaximizer` class is used to maximize utility
88
- functions over the continuous domain with L-BFGS-B. First we sample the utility
89
- function at `num_initial_samples` points from the search space, and then we run
90
- L-BFGS-B from the best of these initial points. We run this process `num_restarts`
91
- number of times, each time sampling a different random set of
92
- `num_initial_samples`initial points.
93
- """
94
-
95
- num_initial_samples: int
96
- num_restarts: int
97
-
98
- def __post_init__(self):
99
- if self.num_initial_samples < 1:
100
- raise ValueError(
101
- f"num_initial_samples must be greater than 0, got {self.num_initial_samples}."
102
- )
103
- elif self.num_restarts < 1:
104
- raise ValueError(
105
- f"num_restarts must be greater than 0, got {self.num_restarts}."
106
- )
107
-
108
- def maximize(
109
- self,
110
- utility_function: SinglePointUtilityFunction,
111
- search_space: ContinuousSearchSpace,
112
- key: KeyArray,
113
- ) -> Float[Array, "1 D"]:
114
- max_observed_utility_function_value = None
115
- maximizer = None
116
-
117
- for _ in range(self.num_restarts):
118
- key, _ = jr.split(key)
119
- initial_sample_points = search_space.sample(
120
- self.num_initial_samples, key=key
121
- )
122
- best_initial_sample_point = _get_discrete_maximizer(
123
- initial_sample_points, utility_function
124
- )
125
-
126
- def _scalar_utility_function(x: Float[Array, "1 D"]) -> ScalarFloat:
127
- """
128
- The Jaxopt minimizer requires a function which returns a scalar. It calls the
129
- utility function with one point at a time, so the utility function
130
- returns an array of shape [1, 1], so we index to return a scalar. Note that
131
- we also return the negative of the utility function - this is because
132
- utility functions should be *maximimized* but the Jaxopt minimizer
133
- minimizes functions.
134
- """
135
- return -utility_function(x)[0][0]
136
-
137
- lbfgsb = ScipyBoundedMinimize(
138
- fun=_scalar_utility_function, method="l-bfgs-b"
139
- )
140
- bounds = (search_space.lower_bounds, search_space.upper_bounds)
141
- optimized_point = lbfgsb.run(
142
- best_initial_sample_point, bounds=bounds
143
- ).params
144
- optimized_utility_function_value = _scalar_utility_function(optimized_point)
145
- if (max_observed_utility_function_value is None) or (
146
- optimized_utility_function_value > max_observed_utility_function_value
147
- ):
148
- max_observed_utility_function_value = optimized_utility_function_value
149
- maximizer = optimized_point
150
- return maximizer
151
-
152
-
153
- AbstractUtilityMaximizer = AbstractSinglePointUtilityMaximizer
154
- """
155
- Type alias for a utility maximizer. Currently we only support single point utility
156
- functions, but in future may support batched utility functions.
157
- """
@@ -1,64 +0,0 @@
1
- # Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- from beartype.typing import (
16
- Callable,
17
- Dict,
18
- Final,
19
- )
20
- import jax.numpy as jnp
21
-
22
- from gpjax.dataset import Dataset
23
- from gpjax.gps import AbstractPosterior
24
- from gpjax.typing import (
25
- Array,
26
- Float,
27
- )
28
-
29
- OBJECTIVE: Final[str] = "OBJECTIVE"
30
- """
31
- Tag for the objective dataset/function in standard utility functions.
32
- """
33
-
34
-
35
- FunctionEvaluator = Callable[[Float[Array, "N D"]], Dict[str, Dataset]]
36
- """
37
- Type alias for function evaluators, which take an array of points of shape $[N, D]$
38
- and evaluate a set of functions at each point, returning a mapping from function tags
39
- to datasets of the evaluated points. This is the same as the `Observer` in Trieste:
40
- https://github.com/secondmind-labs/trieste/blob/develop/trieste/observer.py
41
- """
42
-
43
-
44
- def build_function_evaluator(
45
- functions: Dict[str, Callable[[Float[Array, "N D"]], Float[Array, "N 1"]]],
46
- ) -> FunctionEvaluator:
47
- """
48
- Takes a dictionary of functions and returns a `FunctionEvaluator` which can be
49
- used to evaluate each of the functions at a supplied set of points and return a
50
- dictionary of datasets storing the evaluated points.
51
- """
52
- return lambda x: {tag: Dataset(x, f(x)) for tag, f in functions.items()}
53
-
54
-
55
- def get_best_latent_observation_val(
56
- posterior: AbstractPosterior, dataset: Dataset
57
- ) -> Float[Array, ""]:
58
- """
59
- Takes a posterior and dataset and returns the best (latent) function value in the
60
- dataset, corresponding to the minimum of the posterior mean value evaluated at
61
- locations in the dataset. In the noiseless case, this corresponds to the minimum
62
- value in the dataset.
63
- """
64
- return jnp.min(posterior(dataset.X, dataset).mean())
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "{}"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright {yyyy} {name of copyright owner}
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.