gpjax 0.9.3__py3-none-any.whl → 0.9.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gpjax/__init__.py +1 -3
- gpjax/citation.py +0 -43
- gpjax/distributions.py +3 -1
- gpjax/gps.py +2 -1
- gpjax/variational_families.py +24 -19
- {gpjax-0.9.3.dist-info → gpjax-0.9.5.dist-info}/METADATA +20 -21
- {gpjax-0.9.3.dist-info → gpjax-0.9.5.dist-info}/RECORD +9 -23
- {gpjax-0.9.3.dist-info → gpjax-0.9.5.dist-info}/WHEEL +1 -1
- gpjax-0.9.5.dist-info/licenses/LICENSE.txt +19 -0
- gpjax/decision_making/__init__.py +0 -63
- gpjax/decision_making/decision_maker.py +0 -302
- gpjax/decision_making/posterior_handler.py +0 -152
- gpjax/decision_making/search_space.py +0 -96
- gpjax/decision_making/test_functions/__init__.py +0 -31
- gpjax/decision_making/test_functions/continuous_functions.py +0 -169
- gpjax/decision_making/test_functions/non_conjugate_functions.py +0 -90
- gpjax/decision_making/utility_functions/__init__.py +0 -37
- gpjax/decision_making/utility_functions/base.py +0 -106
- gpjax/decision_making/utility_functions/expected_improvement.py +0 -112
- gpjax/decision_making/utility_functions/probability_of_improvement.py +0 -125
- gpjax/decision_making/utility_functions/thompson_sampling.py +0 -101
- gpjax/decision_making/utility_maximizer.py +0 -157
- gpjax/decision_making/utils.py +0 -64
- gpjax-0.9.3.dist-info/licenses/LICENSE +0 -201
|
@@ -1,101 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
from dataclasses import dataclass
|
|
16
|
-
|
|
17
|
-
from beartype.typing import Mapping
|
|
18
|
-
|
|
19
|
-
from gpjax.dataset import Dataset
|
|
20
|
-
from gpjax.decision_making.utility_functions.base import (
|
|
21
|
-
AbstractSinglePointUtilityFunctionBuilder,
|
|
22
|
-
SinglePointUtilityFunction,
|
|
23
|
-
)
|
|
24
|
-
from gpjax.decision_making.utils import OBJECTIVE
|
|
25
|
-
from gpjax.gps import ConjugatePosterior
|
|
26
|
-
from gpjax.typing import KeyArray
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
@dataclass
|
|
30
|
-
class ThompsonSampling(AbstractSinglePointUtilityFunctionBuilder):
|
|
31
|
-
"""
|
|
32
|
-
Form a utility function by drawing an approximate sample from the posterior,
|
|
33
|
-
using decoupled sampling as introduced in [Wilson et. al.
|
|
34
|
-
(2020)](https://arxiv.org/abs/2002.09309). Note that we return the *negative* of the
|
|
35
|
-
sample as the utility function, as utility functions are *maximised*.
|
|
36
|
-
|
|
37
|
-
Note that this is a single batch utility function, as it doesn't support classical
|
|
38
|
-
batching. However, Thompson sampling can be used in a batched setting by drawing a
|
|
39
|
-
batch of different samples from the GP posterior. This can be done by calling
|
|
40
|
-
`build_utility_function` with different keys, an example of which can be seen in the
|
|
41
|
-
`ask` method of the `UtilityDrivenDecisionMaker` class. The samples can then be
|
|
42
|
-
optimised sequentially.
|
|
43
|
-
|
|
44
|
-
Attributes:
|
|
45
|
-
num_features (int): The number of random Fourier features to use when drawing
|
|
46
|
-
the approximate sample from the posterior. Defaults to 100.
|
|
47
|
-
"""
|
|
48
|
-
|
|
49
|
-
num_features: int = 100
|
|
50
|
-
|
|
51
|
-
def __post_init__(self):
|
|
52
|
-
if self.num_features <= 0:
|
|
53
|
-
raise ValueError(
|
|
54
|
-
"The number of random Fourier features must be a positive integer."
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
def build_utility_function(
|
|
58
|
-
self,
|
|
59
|
-
posteriors: Mapping[str, ConjugatePosterior],
|
|
60
|
-
datasets: Mapping[str, Dataset],
|
|
61
|
-
key: KeyArray,
|
|
62
|
-
) -> SinglePointUtilityFunction:
|
|
63
|
-
"""
|
|
64
|
-
Draw an approximate sample from the posterior of the objective model and return
|
|
65
|
-
the *negative* of this sample as a utility function, as utility functions
|
|
66
|
-
are *maximised*.
|
|
67
|
-
|
|
68
|
-
Args:
|
|
69
|
-
posteriors (Mapping[str, ConjugatePosterior]): Dictionary of posteriors to
|
|
70
|
-
be used to form the utility function. One of the posteriors must correspond
|
|
71
|
-
to the `OBJECTIVE` key, as we sample from the objective posterior to form
|
|
72
|
-
the utility function.
|
|
73
|
-
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
|
|
74
|
-
to form the utility function. Keys in `datasets` should correspond to
|
|
75
|
-
keys in `posteriors`. One of the datasets must correspond
|
|
76
|
-
to the `OBJECTIVE` key.
|
|
77
|
-
key (KeyArray): JAX PRNG key used for random number generation. This can be
|
|
78
|
-
changed to draw different samples.
|
|
79
|
-
|
|
80
|
-
Returns:
|
|
81
|
-
SinglePointUtilityFunction: An appproximate sample from the objective model
|
|
82
|
-
posterior to to be *maximised* in order to decide which point to query
|
|
83
|
-
next.
|
|
84
|
-
"""
|
|
85
|
-
self.check_objective_present(posteriors, datasets)
|
|
86
|
-
|
|
87
|
-
objective_posterior = posteriors[OBJECTIVE]
|
|
88
|
-
if not isinstance(objective_posterior, ConjugatePosterior):
|
|
89
|
-
raise ValueError(
|
|
90
|
-
"Objective posterior must be a ConjugatePosterior to draw an approximate sample."
|
|
91
|
-
)
|
|
92
|
-
|
|
93
|
-
objective_dataset = datasets[OBJECTIVE]
|
|
94
|
-
thompson_sample = objective_posterior.sample_approx(
|
|
95
|
-
num_samples=1,
|
|
96
|
-
train_data=objective_dataset,
|
|
97
|
-
key=key,
|
|
98
|
-
num_features=self.num_features,
|
|
99
|
-
)
|
|
100
|
-
|
|
101
|
-
return lambda x: -1.0 * thompson_sample(x) # Utility functions are *maximised*
|
|
@@ -1,157 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
from abc import (
|
|
16
|
-
ABC,
|
|
17
|
-
abstractmethod,
|
|
18
|
-
)
|
|
19
|
-
from dataclasses import dataclass
|
|
20
|
-
|
|
21
|
-
import jax.numpy as jnp
|
|
22
|
-
import jax.random as jr
|
|
23
|
-
from jaxopt import ScipyBoundedMinimize
|
|
24
|
-
|
|
25
|
-
from gpjax.decision_making.search_space import (
|
|
26
|
-
AbstractSearchSpace,
|
|
27
|
-
ContinuousSearchSpace,
|
|
28
|
-
)
|
|
29
|
-
from gpjax.decision_making.utility_functions import SinglePointUtilityFunction
|
|
30
|
-
from gpjax.typing import (
|
|
31
|
-
Array,
|
|
32
|
-
Float,
|
|
33
|
-
KeyArray,
|
|
34
|
-
ScalarFloat,
|
|
35
|
-
)
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
def _get_discrete_maximizer(
|
|
39
|
-
query_points: Float[Array, "N D"], utility_function: SinglePointUtilityFunction
|
|
40
|
-
) -> Float[Array, "1 D"]:
|
|
41
|
-
"""Get the point which maximises the utility function evaluated at a given set of points.
|
|
42
|
-
|
|
43
|
-
Args:
|
|
44
|
-
query_points: set of points at which to evaluate the utility function, as an array
|
|
45
|
-
of shape `[n_points, n_dims]`.
|
|
46
|
-
utility_function: the single point utility function to be evaluated at `query_points`.
|
|
47
|
-
|
|
48
|
-
Returns:
|
|
49
|
-
Array of shape `[1, n_dims]` representing the point which maximises the utility function.
|
|
50
|
-
"""
|
|
51
|
-
utility_function_values = utility_function(query_points)
|
|
52
|
-
max_utility_function_value_idx = jnp.argmax(
|
|
53
|
-
utility_function_values, axis=0, keepdims=True
|
|
54
|
-
)
|
|
55
|
-
best_sample_point = jnp.take_along_axis(
|
|
56
|
-
query_points, max_utility_function_value_idx, axis=0
|
|
57
|
-
)
|
|
58
|
-
return best_sample_point
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
@dataclass
|
|
62
|
-
class AbstractSinglePointUtilityMaximizer(ABC):
|
|
63
|
-
"""Abstract base class for single point utility function maximizers."""
|
|
64
|
-
|
|
65
|
-
@abstractmethod
|
|
66
|
-
def maximize(
|
|
67
|
-
self,
|
|
68
|
-
utility_function: SinglePointUtilityFunction,
|
|
69
|
-
search_space: AbstractSearchSpace,
|
|
70
|
-
key: KeyArray,
|
|
71
|
-
) -> Float[Array, "1 D"]:
|
|
72
|
-
"""Maximize the given utility function over the search space provided.
|
|
73
|
-
|
|
74
|
-
Args:
|
|
75
|
-
utility_function: utility function to be maximized.
|
|
76
|
-
search_space: search space over which to maximize the utility function.
|
|
77
|
-
key: JAX PRNG key.
|
|
78
|
-
|
|
79
|
-
Returns:
|
|
80
|
-
Float[Array, "1 D"]: Point at which the utility function is maximized.
|
|
81
|
-
"""
|
|
82
|
-
raise NotImplementedError
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
@dataclass
|
|
86
|
-
class ContinuousSinglePointUtilityMaximizer(AbstractSinglePointUtilityMaximizer):
|
|
87
|
-
"""The `ContinuousUtilityMaximizer` class is used to maximize utility
|
|
88
|
-
functions over the continuous domain with L-BFGS-B. First we sample the utility
|
|
89
|
-
function at `num_initial_samples` points from the search space, and then we run
|
|
90
|
-
L-BFGS-B from the best of these initial points. We run this process `num_restarts`
|
|
91
|
-
number of times, each time sampling a different random set of
|
|
92
|
-
`num_initial_samples`initial points.
|
|
93
|
-
"""
|
|
94
|
-
|
|
95
|
-
num_initial_samples: int
|
|
96
|
-
num_restarts: int
|
|
97
|
-
|
|
98
|
-
def __post_init__(self):
|
|
99
|
-
if self.num_initial_samples < 1:
|
|
100
|
-
raise ValueError(
|
|
101
|
-
f"num_initial_samples must be greater than 0, got {self.num_initial_samples}."
|
|
102
|
-
)
|
|
103
|
-
elif self.num_restarts < 1:
|
|
104
|
-
raise ValueError(
|
|
105
|
-
f"num_restarts must be greater than 0, got {self.num_restarts}."
|
|
106
|
-
)
|
|
107
|
-
|
|
108
|
-
def maximize(
|
|
109
|
-
self,
|
|
110
|
-
utility_function: SinglePointUtilityFunction,
|
|
111
|
-
search_space: ContinuousSearchSpace,
|
|
112
|
-
key: KeyArray,
|
|
113
|
-
) -> Float[Array, "1 D"]:
|
|
114
|
-
max_observed_utility_function_value = None
|
|
115
|
-
maximizer = None
|
|
116
|
-
|
|
117
|
-
for _ in range(self.num_restarts):
|
|
118
|
-
key, _ = jr.split(key)
|
|
119
|
-
initial_sample_points = search_space.sample(
|
|
120
|
-
self.num_initial_samples, key=key
|
|
121
|
-
)
|
|
122
|
-
best_initial_sample_point = _get_discrete_maximizer(
|
|
123
|
-
initial_sample_points, utility_function
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
def _scalar_utility_function(x: Float[Array, "1 D"]) -> ScalarFloat:
|
|
127
|
-
"""
|
|
128
|
-
The Jaxopt minimizer requires a function which returns a scalar. It calls the
|
|
129
|
-
utility function with one point at a time, so the utility function
|
|
130
|
-
returns an array of shape [1, 1], so we index to return a scalar. Note that
|
|
131
|
-
we also return the negative of the utility function - this is because
|
|
132
|
-
utility functions should be *maximimized* but the Jaxopt minimizer
|
|
133
|
-
minimizes functions.
|
|
134
|
-
"""
|
|
135
|
-
return -utility_function(x)[0][0]
|
|
136
|
-
|
|
137
|
-
lbfgsb = ScipyBoundedMinimize(
|
|
138
|
-
fun=_scalar_utility_function, method="l-bfgs-b"
|
|
139
|
-
)
|
|
140
|
-
bounds = (search_space.lower_bounds, search_space.upper_bounds)
|
|
141
|
-
optimized_point = lbfgsb.run(
|
|
142
|
-
best_initial_sample_point, bounds=bounds
|
|
143
|
-
).params
|
|
144
|
-
optimized_utility_function_value = _scalar_utility_function(optimized_point)
|
|
145
|
-
if (max_observed_utility_function_value is None) or (
|
|
146
|
-
optimized_utility_function_value > max_observed_utility_function_value
|
|
147
|
-
):
|
|
148
|
-
max_observed_utility_function_value = optimized_utility_function_value
|
|
149
|
-
maximizer = optimized_point
|
|
150
|
-
return maximizer
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
AbstractUtilityMaximizer = AbstractSinglePointUtilityMaximizer
|
|
154
|
-
"""
|
|
155
|
-
Type alias for a utility maximizer. Currently we only support single point utility
|
|
156
|
-
functions, but in future may support batched utility functions.
|
|
157
|
-
"""
|
gpjax/decision_making/utils.py
DELETED
|
@@ -1,64 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
from beartype.typing import (
|
|
16
|
-
Callable,
|
|
17
|
-
Dict,
|
|
18
|
-
Final,
|
|
19
|
-
)
|
|
20
|
-
import jax.numpy as jnp
|
|
21
|
-
|
|
22
|
-
from gpjax.dataset import Dataset
|
|
23
|
-
from gpjax.gps import AbstractPosterior
|
|
24
|
-
from gpjax.typing import (
|
|
25
|
-
Array,
|
|
26
|
-
Float,
|
|
27
|
-
)
|
|
28
|
-
|
|
29
|
-
OBJECTIVE: Final[str] = "OBJECTIVE"
|
|
30
|
-
"""
|
|
31
|
-
Tag for the objective dataset/function in standard utility functions.
|
|
32
|
-
"""
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
FunctionEvaluator = Callable[[Float[Array, "N D"]], Dict[str, Dataset]]
|
|
36
|
-
"""
|
|
37
|
-
Type alias for function evaluators, which take an array of points of shape $[N, D]$
|
|
38
|
-
and evaluate a set of functions at each point, returning a mapping from function tags
|
|
39
|
-
to datasets of the evaluated points. This is the same as the `Observer` in Trieste:
|
|
40
|
-
https://github.com/secondmind-labs/trieste/blob/develop/trieste/observer.py
|
|
41
|
-
"""
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def build_function_evaluator(
|
|
45
|
-
functions: Dict[str, Callable[[Float[Array, "N D"]], Float[Array, "N 1"]]],
|
|
46
|
-
) -> FunctionEvaluator:
|
|
47
|
-
"""
|
|
48
|
-
Takes a dictionary of functions and returns a `FunctionEvaluator` which can be
|
|
49
|
-
used to evaluate each of the functions at a supplied set of points and return a
|
|
50
|
-
dictionary of datasets storing the evaluated points.
|
|
51
|
-
"""
|
|
52
|
-
return lambda x: {tag: Dataset(x, f(x)) for tag, f in functions.items()}
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def get_best_latent_observation_val(
|
|
56
|
-
posterior: AbstractPosterior, dataset: Dataset
|
|
57
|
-
) -> Float[Array, ""]:
|
|
58
|
-
"""
|
|
59
|
-
Takes a posterior and dataset and returns the best (latent) function value in the
|
|
60
|
-
dataset, corresponding to the minimum of the posterior mean value evaluated at
|
|
61
|
-
locations in the dataset. In the noiseless case, this corresponds to the minimum
|
|
62
|
-
value in the dataset.
|
|
63
|
-
"""
|
|
64
|
-
return jnp.min(posterior(dataset.X, dataset).mean())
|
|
@@ -1,201 +0,0 @@
|
|
|
1
|
-
Apache License
|
|
2
|
-
Version 2.0, January 2004
|
|
3
|
-
http://www.apache.org/licenses/
|
|
4
|
-
|
|
5
|
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
-
|
|
7
|
-
1. Definitions.
|
|
8
|
-
|
|
9
|
-
"License" shall mean the terms and conditions for use, reproduction,
|
|
10
|
-
and distribution as defined by Sections 1 through 9 of this document.
|
|
11
|
-
|
|
12
|
-
"Licensor" shall mean the copyright owner or entity authorized by
|
|
13
|
-
the copyright owner that is granting the License.
|
|
14
|
-
|
|
15
|
-
"Legal Entity" shall mean the union of the acting entity and all
|
|
16
|
-
other entities that control, are controlled by, or are under common
|
|
17
|
-
control with that entity. For the purposes of this definition,
|
|
18
|
-
"control" means (i) the power, direct or indirect, to cause the
|
|
19
|
-
direction or management of such entity, whether by contract or
|
|
20
|
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
21
|
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
22
|
-
|
|
23
|
-
"You" (or "Your") shall mean an individual or Legal Entity
|
|
24
|
-
exercising permissions granted by this License.
|
|
25
|
-
|
|
26
|
-
"Source" form shall mean the preferred form for making modifications,
|
|
27
|
-
including but not limited to software source code, documentation
|
|
28
|
-
source, and configuration files.
|
|
29
|
-
|
|
30
|
-
"Object" form shall mean any form resulting from mechanical
|
|
31
|
-
transformation or translation of a Source form, including but
|
|
32
|
-
not limited to compiled object code, generated documentation,
|
|
33
|
-
and conversions to other media types.
|
|
34
|
-
|
|
35
|
-
"Work" shall mean the work of authorship, whether in Source or
|
|
36
|
-
Object form, made available under the License, as indicated by a
|
|
37
|
-
copyright notice that is included in or attached to the work
|
|
38
|
-
(an example is provided in the Appendix below).
|
|
39
|
-
|
|
40
|
-
"Derivative Works" shall mean any work, whether in Source or Object
|
|
41
|
-
form, that is based on (or derived from) the Work and for which the
|
|
42
|
-
editorial revisions, annotations, elaborations, or other modifications
|
|
43
|
-
represent, as a whole, an original work of authorship. For the purposes
|
|
44
|
-
of this License, Derivative Works shall not include works that remain
|
|
45
|
-
separable from, or merely link (or bind by name) to the interfaces of,
|
|
46
|
-
the Work and Derivative Works thereof.
|
|
47
|
-
|
|
48
|
-
"Contribution" shall mean any work of authorship, including
|
|
49
|
-
the original version of the Work and any modifications or additions
|
|
50
|
-
to that Work or Derivative Works thereof, that is intentionally
|
|
51
|
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
52
|
-
or by an individual or Legal Entity authorized to submit on behalf of
|
|
53
|
-
the copyright owner. For the purposes of this definition, "submitted"
|
|
54
|
-
means any form of electronic, verbal, or written communication sent
|
|
55
|
-
to the Licensor or its representatives, including but not limited to
|
|
56
|
-
communication on electronic mailing lists, source code control systems,
|
|
57
|
-
and issue tracking systems that are managed by, or on behalf of, the
|
|
58
|
-
Licensor for the purpose of discussing and improving the Work, but
|
|
59
|
-
excluding communication that is conspicuously marked or otherwise
|
|
60
|
-
designated in writing by the copyright owner as "Not a Contribution."
|
|
61
|
-
|
|
62
|
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
63
|
-
on behalf of whom a Contribution has been received by Licensor and
|
|
64
|
-
subsequently incorporated within the Work.
|
|
65
|
-
|
|
66
|
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
67
|
-
this License, each Contributor hereby grants to You a perpetual,
|
|
68
|
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
69
|
-
copyright license to reproduce, prepare Derivative Works of,
|
|
70
|
-
publicly display, publicly perform, sublicense, and distribute the
|
|
71
|
-
Work and such Derivative Works in Source or Object form.
|
|
72
|
-
|
|
73
|
-
3. Grant of Patent License. Subject to the terms and conditions of
|
|
74
|
-
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
-
(except as stated in this section) patent license to make, have made,
|
|
77
|
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
78
|
-
where such license applies only to those patent claims licensable
|
|
79
|
-
by such Contributor that are necessarily infringed by their
|
|
80
|
-
Contribution(s) alone or by combination of their Contribution(s)
|
|
81
|
-
with the Work to which such Contribution(s) was submitted. If You
|
|
82
|
-
institute patent litigation against any entity (including a
|
|
83
|
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
84
|
-
or a Contribution incorporated within the Work constitutes direct
|
|
85
|
-
or contributory patent infringement, then any patent licenses
|
|
86
|
-
granted to You under this License for that Work shall terminate
|
|
87
|
-
as of the date such litigation is filed.
|
|
88
|
-
|
|
89
|
-
4. Redistribution. You may reproduce and distribute copies of the
|
|
90
|
-
Work or Derivative Works thereof in any medium, with or without
|
|
91
|
-
modifications, and in Source or Object form, provided that You
|
|
92
|
-
meet the following conditions:
|
|
93
|
-
|
|
94
|
-
(a) You must give any other recipients of the Work or
|
|
95
|
-
Derivative Works a copy of this License; and
|
|
96
|
-
|
|
97
|
-
(b) You must cause any modified files to carry prominent notices
|
|
98
|
-
stating that You changed the files; and
|
|
99
|
-
|
|
100
|
-
(c) You must retain, in the Source form of any Derivative Works
|
|
101
|
-
that You distribute, all copyright, patent, trademark, and
|
|
102
|
-
attribution notices from the Source form of the Work,
|
|
103
|
-
excluding those notices that do not pertain to any part of
|
|
104
|
-
the Derivative Works; and
|
|
105
|
-
|
|
106
|
-
(d) If the Work includes a "NOTICE" text file as part of its
|
|
107
|
-
distribution, then any Derivative Works that You distribute must
|
|
108
|
-
include a readable copy of the attribution notices contained
|
|
109
|
-
within such NOTICE file, excluding those notices that do not
|
|
110
|
-
pertain to any part of the Derivative Works, in at least one
|
|
111
|
-
of the following places: within a NOTICE text file distributed
|
|
112
|
-
as part of the Derivative Works; within the Source form or
|
|
113
|
-
documentation, if provided along with the Derivative Works; or,
|
|
114
|
-
within a display generated by the Derivative Works, if and
|
|
115
|
-
wherever such third-party notices normally appear. The contents
|
|
116
|
-
of the NOTICE file are for informational purposes only and
|
|
117
|
-
do not modify the License. You may add Your own attribution
|
|
118
|
-
notices within Derivative Works that You distribute, alongside
|
|
119
|
-
or as an addendum to the NOTICE text from the Work, provided
|
|
120
|
-
that such additional attribution notices cannot be construed
|
|
121
|
-
as modifying the License.
|
|
122
|
-
|
|
123
|
-
You may add Your own copyright statement to Your modifications and
|
|
124
|
-
may provide additional or different license terms and conditions
|
|
125
|
-
for use, reproduction, or distribution of Your modifications, or
|
|
126
|
-
for any such Derivative Works as a whole, provided Your use,
|
|
127
|
-
reproduction, and distribution of the Work otherwise complies with
|
|
128
|
-
the conditions stated in this License.
|
|
129
|
-
|
|
130
|
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
131
|
-
any Contribution intentionally submitted for inclusion in the Work
|
|
132
|
-
by You to the Licensor shall be under the terms and conditions of
|
|
133
|
-
this License, without any additional terms or conditions.
|
|
134
|
-
Notwithstanding the above, nothing herein shall supersede or modify
|
|
135
|
-
the terms of any separate license agreement you may have executed
|
|
136
|
-
with Licensor regarding such Contributions.
|
|
137
|
-
|
|
138
|
-
6. Trademarks. This License does not grant permission to use the trade
|
|
139
|
-
names, trademarks, service marks, or product names of the Licensor,
|
|
140
|
-
except as required for reasonable and customary use in describing the
|
|
141
|
-
origin of the Work and reproducing the content of the NOTICE file.
|
|
142
|
-
|
|
143
|
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
144
|
-
agreed to in writing, Licensor provides the Work (and each
|
|
145
|
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
146
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
147
|
-
implied, including, without limitation, any warranties or conditions
|
|
148
|
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
149
|
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
150
|
-
appropriateness of using or redistributing the Work and assume any
|
|
151
|
-
risks associated with Your exercise of permissions under this License.
|
|
152
|
-
|
|
153
|
-
8. Limitation of Liability. In no event and under no legal theory,
|
|
154
|
-
whether in tort (including negligence), contract, or otherwise,
|
|
155
|
-
unless required by applicable law (such as deliberate and grossly
|
|
156
|
-
negligent acts) or agreed to in writing, shall any Contributor be
|
|
157
|
-
liable to You for damages, including any direct, indirect, special,
|
|
158
|
-
incidental, or consequential damages of any character arising as a
|
|
159
|
-
result of this License or out of the use or inability to use the
|
|
160
|
-
Work (including but not limited to damages for loss of goodwill,
|
|
161
|
-
work stoppage, computer failure or malfunction, or any and all
|
|
162
|
-
other commercial damages or losses), even if such Contributor
|
|
163
|
-
has been advised of the possibility of such damages.
|
|
164
|
-
|
|
165
|
-
9. Accepting Warranty or Additional Liability. While redistributing
|
|
166
|
-
the Work or Derivative Works thereof, You may choose to offer,
|
|
167
|
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
168
|
-
or other liability obligations and/or rights consistent with this
|
|
169
|
-
License. However, in accepting such obligations, You may act only
|
|
170
|
-
on Your own behalf and on Your sole responsibility, not on behalf
|
|
171
|
-
of any other Contributor, and only if You agree to indemnify,
|
|
172
|
-
defend, and hold each Contributor harmless for any liability
|
|
173
|
-
incurred by, or claims asserted against, such Contributor by reason
|
|
174
|
-
of your accepting any such warranty or additional liability.
|
|
175
|
-
|
|
176
|
-
END OF TERMS AND CONDITIONS
|
|
177
|
-
|
|
178
|
-
APPENDIX: How to apply the Apache License to your work.
|
|
179
|
-
|
|
180
|
-
To apply the Apache License to your work, attach the following
|
|
181
|
-
boilerplate notice, with the fields enclosed by brackets "{}"
|
|
182
|
-
replaced with your own identifying information. (Don't include
|
|
183
|
-
the brackets!) The text should be enclosed in the appropriate
|
|
184
|
-
comment syntax for the file format. We also recommend that a
|
|
185
|
-
file or class name and description of purpose be included on the
|
|
186
|
-
same "printed page" as the copyright notice for easier
|
|
187
|
-
identification within third-party archives.
|
|
188
|
-
|
|
189
|
-
Copyright {yyyy} {name of copyright owner}
|
|
190
|
-
|
|
191
|
-
Licensed under the Apache License, Version 2.0 (the "License");
|
|
192
|
-
you may not use this file except in compliance with the License.
|
|
193
|
-
You may obtain a copy of the License at
|
|
194
|
-
|
|
195
|
-
http://www.apache.org/licenses/LICENSE-2.0
|
|
196
|
-
|
|
197
|
-
Unless required by applicable law or agreed to in writing, software
|
|
198
|
-
distributed under the License is distributed on an "AS IS" BASIS,
|
|
199
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
200
|
-
See the License for the specific language governing permissions and
|
|
201
|
-
limitations under the License.
|