gpjax 0.9.3__py3-none-any.whl → 0.9.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gpjax/__init__.py +1 -3
- gpjax/citation.py +0 -43
- gpjax/distributions.py +3 -1
- gpjax/gps.py +2 -1
- gpjax/variational_families.py +24 -19
- {gpjax-0.9.3.dist-info → gpjax-0.9.5.dist-info}/METADATA +20 -21
- {gpjax-0.9.3.dist-info → gpjax-0.9.5.dist-info}/RECORD +9 -23
- {gpjax-0.9.3.dist-info → gpjax-0.9.5.dist-info}/WHEEL +1 -1
- gpjax-0.9.5.dist-info/licenses/LICENSE.txt +19 -0
- gpjax/decision_making/__init__.py +0 -63
- gpjax/decision_making/decision_maker.py +0 -302
- gpjax/decision_making/posterior_handler.py +0 -152
- gpjax/decision_making/search_space.py +0 -96
- gpjax/decision_making/test_functions/__init__.py +0 -31
- gpjax/decision_making/test_functions/continuous_functions.py +0 -169
- gpjax/decision_making/test_functions/non_conjugate_functions.py +0 -90
- gpjax/decision_making/utility_functions/__init__.py +0 -37
- gpjax/decision_making/utility_functions/base.py +0 -106
- gpjax/decision_making/utility_functions/expected_improvement.py +0 -112
- gpjax/decision_making/utility_functions/probability_of_improvement.py +0 -125
- gpjax/decision_making/utility_functions/thompson_sampling.py +0 -101
- gpjax/decision_making/utility_maximizer.py +0 -157
- gpjax/decision_making/utils.py +0 -64
- gpjax-0.9.3.dist-info/licenses/LICENSE +0 -201
gpjax/__init__.py
CHANGED
|
@@ -19,7 +19,6 @@ from beartype.roar import BeartypeDecorHintPep585DeprecationWarning
|
|
|
19
19
|
filterwarnings("ignore", category=BeartypeDecorHintPep585DeprecationWarning)
|
|
20
20
|
|
|
21
21
|
from gpjax import (
|
|
22
|
-
decision_making,
|
|
23
22
|
gps,
|
|
24
23
|
integrators,
|
|
25
24
|
kernels,
|
|
@@ -40,11 +39,10 @@ __license__ = "MIT"
|
|
|
40
39
|
__description__ = "Didactic Gaussian processes in JAX"
|
|
41
40
|
__url__ = "https://github.com/JaxGaussianProcesses/GPJax"
|
|
42
41
|
__contributors__ = "https://github.com/JaxGaussianProcesses/GPJax/graphs/contributors"
|
|
43
|
-
__version__ = "0.9.
|
|
42
|
+
__version__ = "0.9.5"
|
|
44
43
|
|
|
45
44
|
__all__ = [
|
|
46
45
|
"base",
|
|
47
|
-
"decision_making",
|
|
48
46
|
"gps",
|
|
49
47
|
"integrators",
|
|
50
48
|
"kernels",
|
gpjax/citation.py
CHANGED
|
@@ -10,11 +10,6 @@ from beartype.typing import (
|
|
|
10
10
|
)
|
|
11
11
|
from jaxlib.xla_extension import PjitFunction
|
|
12
12
|
|
|
13
|
-
from gpjax.decision_making.test_functions import (
|
|
14
|
-
Forrester,
|
|
15
|
-
LogarithmicGoldsteinPrice,
|
|
16
|
-
)
|
|
17
|
-
from gpjax.decision_making.utility_functions import ThompsonSampling
|
|
18
13
|
from gpjax.kernels import (
|
|
19
14
|
RFF,
|
|
20
15
|
ArcCosine,
|
|
@@ -149,41 +144,3 @@ def _(tree) -> PaperCitation:
|
|
|
149
144
|
booktitle="Advances in neural information processing systems",
|
|
150
145
|
citation_type="article",
|
|
151
146
|
)
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
####################
|
|
155
|
-
# Decision making citations
|
|
156
|
-
####################
|
|
157
|
-
@cite.register(ThompsonSampling)
|
|
158
|
-
def _(tree) -> PaperCitation:
|
|
159
|
-
return PaperCitation(
|
|
160
|
-
citation_key="wilson2020efficiently",
|
|
161
|
-
title="Efficiently sampling functions from Gaussian process posteriors",
|
|
162
|
-
authors="Wilson, James and Borovitskiy, Viacheslav and Terenin, Alexander and Mostowsky, Peter and Deisenroth, Marc",
|
|
163
|
-
year="2020",
|
|
164
|
-
booktitle="International Conference on Machine Learning",
|
|
165
|
-
citation_type="article",
|
|
166
|
-
)
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
@cite.register(Forrester)
|
|
170
|
-
def _(tree) -> BookCitation:
|
|
171
|
-
return BookCitation(
|
|
172
|
-
citation_key="forrester2008engineering",
|
|
173
|
-
authors="Forrester, Alexander and Sobester, Andras and Keane, Andy",
|
|
174
|
-
title="Engineering design via surrogate modelling: a practical guide",
|
|
175
|
-
year="2008",
|
|
176
|
-
publisher="John Wiley & Sons",
|
|
177
|
-
)
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
@cite.register(LogarithmicGoldsteinPrice)
|
|
181
|
-
def _(tree) -> PaperCitation:
|
|
182
|
-
return PaperCitation(
|
|
183
|
-
citation_key="picheny2013benchmark",
|
|
184
|
-
authors="Picheny, Victor and Wagner, Tobias and Ginsbourger, David",
|
|
185
|
-
title="A benchmark of kriging-based infill criteria for noisy optimization",
|
|
186
|
-
year="2013",
|
|
187
|
-
booktitle="Structural and multidisciplinary optimization",
|
|
188
|
-
citation_type="article",
|
|
189
|
-
)
|
gpjax/distributions.py
CHANGED
|
@@ -162,7 +162,9 @@ class GaussianDistribution(tfd.Distribution):
|
|
|
162
162
|
|
|
163
163
|
return vmap(affine_transformation)(Z)
|
|
164
164
|
|
|
165
|
-
def sample(
|
|
165
|
+
def sample(
|
|
166
|
+
self, seed: KeyArray, sample_shape: Tuple[int, ...]
|
|
167
|
+
): # pylint: disable=useless-super-delegation
|
|
166
168
|
r"""See `Distribution.sample`."""
|
|
167
169
|
return self._sample_n(
|
|
168
170
|
seed, sample_shape[0]
|
gpjax/gps.py
CHANGED
|
@@ -652,7 +652,8 @@ class NonConjugatePosterior(AbstractPosterior[P, NGL]):
|
|
|
652
652
|
"""
|
|
653
653
|
super().__init__(prior=prior, likelihood=likelihood, jitter=jitter)
|
|
654
654
|
|
|
655
|
-
|
|
655
|
+
if latent is None:
|
|
656
|
+
latent = jr.normal(key, shape=(self.likelihood.num_datapoints, 1))
|
|
656
657
|
|
|
657
658
|
# TODO: static or intermediate?
|
|
658
659
|
self.latent = latent if isinstance(latent, Parameter) else Real(latent)
|
gpjax/variational_families.py
CHANGED
|
@@ -149,12 +149,14 @@ class VariationalGaussian(AbstractVariationalGaussian[L]):
|
|
|
149
149
|
):
|
|
150
150
|
super().__init__(posterior, inducing_inputs, jitter)
|
|
151
151
|
|
|
152
|
-
|
|
153
|
-
variational_mean
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
variational_root_covariance
|
|
157
|
-
|
|
152
|
+
if variational_mean is None:
|
|
153
|
+
variational_mean = jnp.zeros((self.num_inducing, 1))
|
|
154
|
+
|
|
155
|
+
if variational_root_covariance is None:
|
|
156
|
+
variational_root_covariance = jnp.eye(self.num_inducing)
|
|
157
|
+
|
|
158
|
+
self.variational_mean = Real(variational_mean)
|
|
159
|
+
self.variational_root_covariance = LowerTriangular(variational_root_covariance)
|
|
158
160
|
|
|
159
161
|
def prior_kl(self) -> ScalarFloat:
|
|
160
162
|
r"""Compute the prior KL divergence.
|
|
@@ -378,12 +380,14 @@ class NaturalVariationalGaussian(AbstractVariationalGaussian[L]):
|
|
|
378
380
|
):
|
|
379
381
|
super().__init__(posterior, inducing_inputs, jitter)
|
|
380
382
|
|
|
381
|
-
|
|
382
|
-
natural_vector
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
natural_matrix
|
|
386
|
-
|
|
383
|
+
if natural_vector is None:
|
|
384
|
+
natural_vector = jnp.zeros((self.num_inducing, 1))
|
|
385
|
+
|
|
386
|
+
if natural_matrix is None:
|
|
387
|
+
natural_matrix = -0.5 * jnp.eye(self.num_inducing)
|
|
388
|
+
|
|
389
|
+
self.natural_vector = Static(natural_vector)
|
|
390
|
+
self.natural_matrix = Static(natural_matrix)
|
|
387
391
|
|
|
388
392
|
def prior_kl(self) -> ScalarFloat:
|
|
389
393
|
r"""Compute the KL-divergence between our current variational approximation
|
|
@@ -540,13 +544,14 @@ class ExpectationVariationalGaussian(AbstractVariationalGaussian[L]):
|
|
|
540
544
|
):
|
|
541
545
|
super().__init__(posterior, inducing_inputs, jitter)
|
|
542
546
|
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
)
|
|
547
|
+
if expectation_vector is None:
|
|
548
|
+
expectation_vector = jnp.zeros((self.num_inducing, 1))
|
|
549
|
+
|
|
550
|
+
if expectation_matrix is None:
|
|
551
|
+
expectation_matrix = jnp.eye(self.num_inducing)
|
|
552
|
+
|
|
553
|
+
self.expectation_vector = Static(expectation_vector)
|
|
554
|
+
self.expectation_matrix = Static(expectation_matrix)
|
|
550
555
|
|
|
551
556
|
def prior_kl(self) -> ScalarFloat:
|
|
552
557
|
r"""Evaluate the prior KL-divergence.
|
|
@@ -1,13 +1,13 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: gpjax
|
|
3
|
-
Version: 0.9.
|
|
3
|
+
Version: 0.9.5
|
|
4
4
|
Summary: Gaussian processes in JAX.
|
|
5
5
|
Project-URL: Documentation, https://docs.jaxgaussianprocesses.com/
|
|
6
6
|
Project-URL: Issues, https://github.com/JaxGaussianProcesses/GPJax/issues
|
|
7
7
|
Project-URL: Source, https://github.com/JaxGaussianProcesses/GPJax
|
|
8
8
|
Author-email: Thomas Pinder <tompinder@live.co.uk>
|
|
9
|
-
License
|
|
10
|
-
License-File: LICENSE
|
|
9
|
+
License: MIT
|
|
10
|
+
License-File: LICENSE.txt
|
|
11
11
|
Keywords: gaussian-processes jax machine-learning bayesian
|
|
12
12
|
Classifier: Development Status :: 4 - Beta
|
|
13
13
|
Classifier: Programming Language :: Python
|
|
@@ -19,10 +19,9 @@ Classifier: Programming Language :: Python :: Implementation :: PyPy
|
|
|
19
19
|
Requires-Python: <3.13,>=3.10
|
|
20
20
|
Requires-Dist: beartype>0.16.1
|
|
21
21
|
Requires-Dist: cola-ml==0.0.5
|
|
22
|
-
Requires-Dist: flax
|
|
22
|
+
Requires-Dist: flax<0.10.0
|
|
23
23
|
Requires-Dist: jax<0.4.28
|
|
24
24
|
Requires-Dist: jaxlib<0.4.28
|
|
25
|
-
Requires-Dist: jaxopt==0.8.2
|
|
26
25
|
Requires-Dist: jaxtyping>0.2.10
|
|
27
26
|
Requires-Dist: numpy<2.0.0
|
|
28
27
|
Requires-Dist: optax>0.2.1
|
|
@@ -103,23 +102,23 @@ helped to shape GPJax into the package it is today.
|
|
|
103
102
|
|
|
104
103
|
## Notebook examples
|
|
105
104
|
|
|
106
|
-
> - [**Conjugate Inference**](https://docs.jaxgaussianprocesses.com/
|
|
107
|
-
> - [**Classification**](https://docs.jaxgaussianprocesses.com/
|
|
108
|
-
> - [**Sparse Variational Inference**](https://docs.jaxgaussianprocesses.com/
|
|
109
|
-
> - [**Stochastic Variational Inference**](https://docs.jaxgaussianprocesses.com/
|
|
110
|
-
> - [**Laplace Approximation**](https://docs.jaxgaussianprocesses.com/
|
|
111
|
-
> - [**Inference on Non-Euclidean Spaces**](https://docs.jaxgaussianprocesses.com/
|
|
112
|
-
> - [**Inference on Graphs**](https://docs.jaxgaussianprocesses.com/
|
|
113
|
-
> - [**Pathwise Sampling**](https://docs.jaxgaussianprocesses.com/
|
|
114
|
-
> - [**Learning Gaussian Process Barycentres**](https://docs.jaxgaussianprocesses.com/
|
|
115
|
-
> - [**Deep Kernel Regression**](https://docs.jaxgaussianprocesses.com/
|
|
116
|
-
> - [**Poisson Regression**](https://docs.jaxgaussianprocesses.com/
|
|
117
|
-
> - [**Bayesian Optimisation**](https://docs.jaxgaussianprocesses.com/
|
|
105
|
+
> - [**Conjugate Inference**](https://docs.jaxgaussianprocesses.com/_examples/regression/)
|
|
106
|
+
> - [**Classification**](https://docs.jaxgaussianprocesses.com/_examples/classification/)
|
|
107
|
+
> - [**Sparse Variational Inference**](https://docs.jaxgaussianprocesses.com/_examples/collapsed_vi/)
|
|
108
|
+
> - [**Stochastic Variational Inference**](https://docs.jaxgaussianprocesses.com/_examples/uncollapsed_vi/)
|
|
109
|
+
> - [**Laplace Approximation**](https://docs.jaxgaussianprocesses.com/_examples/classification/#laplace-approximation)
|
|
110
|
+
> - [**Inference on Non-Euclidean Spaces**](https://docs.jaxgaussianprocesses.com/_examples/constructing_new_kernels/#custom-kernel)
|
|
111
|
+
> - [**Inference on Graphs**](https://docs.jaxgaussianprocesses.com/_examples/graph_kernels/)
|
|
112
|
+
> - [**Pathwise Sampling**](https://docs.jaxgaussianprocesses.com/_examples/spatial/)
|
|
113
|
+
> - [**Learning Gaussian Process Barycentres**](https://docs.jaxgaussianprocesses.com/_examples/barycentres/)
|
|
114
|
+
> - [**Deep Kernel Regression**](https://docs.jaxgaussianprocesses.com/_examples/deep_kernels/)
|
|
115
|
+
> - [**Poisson Regression**](https://docs.jaxgaussianprocesses.com/_examples/poisson/)
|
|
116
|
+
> - [**Bayesian Optimisation**](https://docs.jaxgaussianprocesses.com/_examples/bayesian_optimisation/)
|
|
118
117
|
|
|
119
118
|
## Guides for customisation
|
|
120
119
|
>
|
|
121
|
-
> - [**Custom kernels**](https://docs.jaxgaussianprocesses.com/
|
|
122
|
-
> - [**UCI regression**](https://docs.jaxgaussianprocesses.com/
|
|
120
|
+
> - [**Custom kernels**](https://docs.jaxgaussianprocesses.com/_examples/constructing_new_kernels/#custom-kernel)
|
|
121
|
+
> - [**UCI regression**](https://docs.jaxgaussianprocesses.com/_examples/yacht/)
|
|
123
122
|
|
|
124
123
|
## Conversion between `.ipynb` and `.py`
|
|
125
124
|
Above examples are stored in [examples](docs/examples) directory in the double
|
|
@@ -180,7 +179,7 @@ optimiser = ox.adam(learning_rate=1e-2)
|
|
|
180
179
|
# Obtain Type 2 MLEs of the hyperparameters
|
|
181
180
|
opt_posterior, history = gpx.fit(
|
|
182
181
|
model=posterior,
|
|
183
|
-
objective=gpx.objectives.conjugate_mll,
|
|
182
|
+
objective=lambda p, d: -gpx.objectives.conjugate_mll(p, d),
|
|
184
183
|
train_data=D,
|
|
185
184
|
optim=optimiser,
|
|
186
185
|
num_iters=500,
|
|
@@ -1,9 +1,9 @@
|
|
|
1
|
-
gpjax/__init__.py,sha256=
|
|
2
|
-
gpjax/citation.py,sha256=
|
|
1
|
+
gpjax/__init__.py,sha256=T-2EbsNxg5VcdTeSH_G-mWwNcMTJVqbdI55gl9HMvG8,1653
|
|
2
|
+
gpjax/citation.py,sha256=f2Hzj5MLyCE7l0hHAzsEQoTORZH5hgV_eis4uoBiWvE,3811
|
|
3
3
|
gpjax/dataset.py,sha256=NsToLKq4lOsHnfLfukrUIRKvhOEuoUk8aHTF0oAqRbU,4079
|
|
4
|
-
gpjax/distributions.py,sha256=
|
|
4
|
+
gpjax/distributions.py,sha256=X48FJr3reop9maherdMVt7-XZOm2f26T8AJt_IKM_oE,9339
|
|
5
5
|
gpjax/fit.py,sha256=OHv8jUHxa1ndpqMERSDRtYtUDzubk9rMPVIhfCiIH5Q,11551
|
|
6
|
-
gpjax/gps.py,sha256=
|
|
6
|
+
gpjax/gps.py,sha256=97lYGrsmsufQxKEd8qz5wPNvui6FKXTF_Ps-sMFIjnY,31246
|
|
7
7
|
gpjax/integrators.py,sha256=eyJPqWNPKj6pKP5da0fEj4HW7BVyevqeGrurEuy_XPw,5694
|
|
8
8
|
gpjax/likelihoods.py,sha256=DOyV1L0ompkpeImMTiOOiWLJfqSqvDX_acOumuFqPEc,9234
|
|
9
9
|
gpjax/lower_cholesky.py,sha256=3pnHaBrlGckFsrfYJ9Lsbd0pGmO7NIXdyY4aGm48MpY,1952
|
|
@@ -12,21 +12,7 @@ gpjax/objectives.py,sha256=XwkPyL_iovTNKpKGVNt0Lt2_OMTJitSPhuyCtUrJpbc,15383
|
|
|
12
12
|
gpjax/parameters.py,sha256=Z4Wy3gEzPZG23-dtqC437_ZWnd_sPe9LcLCKn21ZBvA,4886
|
|
13
13
|
gpjax/scan.py,sha256=jStQvwkE9MGttB89frxam1kaeXdWih7cVxkGywyaeHQ,5365
|
|
14
14
|
gpjax/typing.py,sha256=M3CvWsYtZ3PFUvBvvbRNjpwerNII0w4yGuP0I-sLeYI,1705
|
|
15
|
-
gpjax/variational_families.py,sha256=
|
|
16
|
-
gpjax/decision_making/__init__.py,sha256=SDuPQl80lJ7nhfRsiB_7c22wCMiQO5ehSNohxUGnB7w,2170
|
|
17
|
-
gpjax/decision_making/decision_maker.py,sha256=S4pOXrWcEHy0NDA0gfWzhk7pG0NJfaPpMXvq03yTy0g,13915
|
|
18
|
-
gpjax/decision_making/posterior_handler.py,sha256=UgXf1Gu7GMh2YDSmiSWJIzmWlFW06KTS44HYz3mazZQ,5905
|
|
19
|
-
gpjax/decision_making/search_space.py,sha256=bXwtMOhHZ2klnABpXm5Raxe7b0NTRDjo_cN3ecbk53Y,3545
|
|
20
|
-
gpjax/decision_making/utility_maximizer.py,sha256=VT2amwSJbB64IL_MiWNl9ZgjcqO757qK6NW2gUBKsqs,5965
|
|
21
|
-
gpjax/decision_making/utils.py,sha256=5j1GO5kcmG2laZR39NjhqgEjRekAWWzrnREv_5Zct_Y,2367
|
|
22
|
-
gpjax/decision_making/test_functions/__init__.py,sha256=GDCY9_kaAnxDWwzo1FkdxnDx-80MErAHchbGybT9xYs,1109
|
|
23
|
-
gpjax/decision_making/test_functions/continuous_functions.py,sha256=oL5ZQkvmbC3u9rEvSYI2DRAN3r7Ynf7wRZQlUWjKjt0,5612
|
|
24
|
-
gpjax/decision_making/test_functions/non_conjugate_functions.py,sha256=cfo3xQOzB5ajMjjl0YFfNlJClkAcY7ZbT23UyBYEofQ,2955
|
|
25
|
-
gpjax/decision_making/utility_functions/__init__.py,sha256=xXI-4JKWAfTJ7XZ1vRDpqtb91MNzSPD0lP6xo0tOc7o,1445
|
|
26
|
-
gpjax/decision_making/utility_functions/base.py,sha256=FOqrsRDmtHiCVl6IHr12-AEYBLStzMT5EBs-F92e1Og,3882
|
|
27
|
-
gpjax/decision_making/utility_functions/expected_improvement.py,sha256=H6hjC-lj1oiHf2BomeQqroORQ7vtcOngiDAWxRwkNbg,4481
|
|
28
|
-
gpjax/decision_making/utility_functions/probability_of_improvement.py,sha256=O_rHH1yR34JJlpAueSDJ_yo95fPI2aAGkwphS8snBYk,5220
|
|
29
|
-
gpjax/decision_making/utility_functions/thompson_sampling.py,sha256=S-Yyn-9jsKkaXTvKFBP4sG_eCCKApGbHao5RR5tqXAo,4353
|
|
15
|
+
gpjax/variational_families.py,sha256=s1rk7PtNTjQPabmVu-jBsuJBoqsxAAXwKFZJOEswkNQ,28161
|
|
30
16
|
gpjax/kernels/__init__.py,sha256=WZanH0Tpdkt0f7VfMqnalm_VZAMVwBqeOVaICNj6xQU,1901
|
|
31
17
|
gpjax/kernels/base.py,sha256=abkj3zidsBs7YSkYEfjeJ5jTs1YyDCPoBM2ZzqaqrgI,11561
|
|
32
18
|
gpjax/kernels/approximations/__init__.py,sha256=bK9HlGd-PZeGrqtG5RpXxUTXNUrZTgfjH1dP626yNMA,68
|
|
@@ -56,7 +42,7 @@ gpjax/kernels/stationary/rational_quadratic.py,sha256=dYONp3i4rnKj3ET8UyxAKXv6UO
|
|
|
56
42
|
gpjax/kernels/stationary/rbf.py,sha256=G13gg5phO7ite7D9QgoCy7gB2_y0FM6GZhgFW4RL6Xw,1734
|
|
57
43
|
gpjax/kernels/stationary/utils.py,sha256=Xa9EEnxgFqEi08ZSFAZYYHhJ85_3Ac-ZUyUk18B63M4,2225
|
|
58
44
|
gpjax/kernels/stationary/white.py,sha256=TkdXXZCCjDs7JwR_gj5uvn2s1wyfRbe1vyHhUMJ8jjI,2212
|
|
59
|
-
gpjax-0.9.
|
|
60
|
-
gpjax-0.9.
|
|
61
|
-
gpjax-0.9.
|
|
62
|
-
gpjax-0.9.
|
|
45
|
+
gpjax-0.9.5.dist-info/METADATA,sha256=T-OvGAyBe1N_QW6F9RbV-sx8wBJSAYQjpildBdhotS0,9967
|
|
46
|
+
gpjax-0.9.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
47
|
+
gpjax-0.9.5.dist-info/licenses/LICENSE.txt,sha256=3umwi0h8wmKXOZO8XwRBwSl3vJt2hpWKEqSrSXLR7-I,1084
|
|
48
|
+
gpjax-0.9.5.dist-info/RECORD,,
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
(C) Copyright 2019 Hewlett Packard Enterprise Development LP
|
|
2
|
+
|
|
3
|
+
Permission is hereby granted, free of charge, to any person obtaining a
|
|
4
|
+
copy of this software and associated documentation files (the "Software"),
|
|
5
|
+
to deal in the Software without restriction, including without limitation
|
|
6
|
+
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
7
|
+
and/or sell copies of the Software, and to permit persons to whom the
|
|
8
|
+
Software is furnished to do so, subject to the following conditions:
|
|
9
|
+
|
|
10
|
+
The above copyright notice and this permission notice shall be included
|
|
11
|
+
in all copies or substantial portions of the Software.
|
|
12
|
+
|
|
13
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
15
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
16
|
+
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
17
|
+
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
18
|
+
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
19
|
+
OTHER DEALINGS IN THE SOFTWARE.
|
|
@@ -1,63 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 The JaxGaussianProcesses Contributors. All Rights Reserved.
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ==============================================================================
|
|
15
|
-
from gpjax.decision_making.decision_maker import (
|
|
16
|
-
AbstractDecisionMaker,
|
|
17
|
-
UtilityDrivenDecisionMaker,
|
|
18
|
-
)
|
|
19
|
-
from gpjax.decision_making.posterior_handler import PosteriorHandler
|
|
20
|
-
from gpjax.decision_making.search_space import (
|
|
21
|
-
AbstractSearchSpace,
|
|
22
|
-
ContinuousSearchSpace,
|
|
23
|
-
)
|
|
24
|
-
from gpjax.decision_making.test_functions import (
|
|
25
|
-
AbstractContinuousTestFunction,
|
|
26
|
-
Forrester,
|
|
27
|
-
LogarithmicGoldsteinPrice,
|
|
28
|
-
Quadratic,
|
|
29
|
-
)
|
|
30
|
-
from gpjax.decision_making.utility_functions import (
|
|
31
|
-
AbstractSinglePointUtilityFunctionBuilder,
|
|
32
|
-
AbstractUtilityFunctionBuilder,
|
|
33
|
-
SinglePointUtilityFunction,
|
|
34
|
-
ThompsonSampling,
|
|
35
|
-
UtilityFunction,
|
|
36
|
-
)
|
|
37
|
-
from gpjax.decision_making.utility_maximizer import (
|
|
38
|
-
AbstractSinglePointUtilityMaximizer,
|
|
39
|
-
AbstractUtilityMaximizer,
|
|
40
|
-
ContinuousSinglePointUtilityMaximizer,
|
|
41
|
-
)
|
|
42
|
-
from gpjax.decision_making.utils import build_function_evaluator
|
|
43
|
-
|
|
44
|
-
__all__ = [
|
|
45
|
-
"AbstractUtilityFunctionBuilder",
|
|
46
|
-
"AbstractUtilityMaximizer",
|
|
47
|
-
"AbstractDecisionMaker",
|
|
48
|
-
"AbstractSearchSpace",
|
|
49
|
-
"AbstractSinglePointUtilityFunctionBuilder",
|
|
50
|
-
"AbstractSinglePointUtilityMaximizer",
|
|
51
|
-
"UtilityFunction",
|
|
52
|
-
"build_function_evaluator",
|
|
53
|
-
"ContinuousSinglePointUtilityMaximizer",
|
|
54
|
-
"ContinuousSearchSpace",
|
|
55
|
-
"UtilityDrivenDecisionMaker",
|
|
56
|
-
"AbstractContinuousTestFunction",
|
|
57
|
-
"Forrester",
|
|
58
|
-
"LogarithmicGoldsteinPrice",
|
|
59
|
-
"PosteriorHandler",
|
|
60
|
-
"Quadratic",
|
|
61
|
-
"SinglePointUtilityFunction",
|
|
62
|
-
"ThompsonSampling",
|
|
63
|
-
]
|