google-cloud-pipeline-components 2.18.0__py3-none-any.whl → 2.20.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (64) hide show
  1. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +2 -2
  2. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +1 -1
  3. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +7 -4
  4. google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
  5. google_cloud_pipeline_components/container/v1/custom_job/remote_runner.py +13 -3
  6. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  7. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  8. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  9. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  10. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  11. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  12. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  13. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  14. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  15. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  16. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  17. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  18. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  19. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  20. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  21. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  22. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  23. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  24. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  25. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  26. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  27. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  28. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  29. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  30. google_cloud_pipeline_components/proto/README.md +49 -0
  31. google_cloud_pipeline_components/proto/gcp_resources.proto +25 -0
  32. google_cloud_pipeline_components/proto/task_error.proto +11 -0
  33. google_cloud_pipeline_components/proto/template_metadata.proto +323 -0
  34. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  35. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  36. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  37. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  38. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  39. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  40. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  41. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  42. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  43. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  44. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  45. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  46. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  48. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  49. google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
  50. google_cloud_pipeline_components/v1/custom_job/utils.py +3 -0
  51. google_cloud_pipeline_components/version.py +1 -1
  52. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/METADATA +18 -21
  53. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/RECORD +56 -60
  54. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/WHEEL +1 -1
  55. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/__init__.py +0 -14
  56. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
  57. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py +0 -180
  58. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py +0 -178
  59. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py +0 -20
  60. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -13
  61. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +0 -109
  62. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -58
  63. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/LICENSE +0 -0
  64. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/top_level.txt +0 -0
@@ -5577,7 +5577,7 @@ deploymentSpec:
5577
5577
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5578
5578
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5579
5579
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5580
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5580
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5581
5581
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5582
5582
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5583
5583
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5611,7 +5611,7 @@ deploymentSpec:
5611
5611
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5612
5612
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5613
5613
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5614
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5614
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5615
5615
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5616
5616
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5617
5617
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5646,11 +5646,11 @@ deploymentSpec:
5646
5646
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5647
5647
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5648
5648
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5650
5650
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5651
5651
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5652
5652
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5653
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5653
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5654
5654
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5655
5655
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5656
5656
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5689,11 +5689,11 @@ deploymentSpec:
5689
5689
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5690
5690
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5691
5691
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5693
5693
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5694
5694
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5695
5695
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5696
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5696
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5697
5697
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5698
5698
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5699
5699
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5732,7 +5732,7 @@ deploymentSpec:
5732
5732
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5733
5733
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5734
5734
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5735
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
5735
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
5736
5736
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5737
5737
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5738
5738
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5797,7 +5797,7 @@ deploymentSpec:
5797
5797
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5798
5798
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5799
5799
  \ stage_2_single_run_max_secs,\n )\n\n"
5800
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5800
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5801
5801
  exec-calculate-training-parameters-2:
5802
5802
  container:
5803
5803
  args:
@@ -5853,7 +5853,7 @@ deploymentSpec:
5853
5853
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5854
5854
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5855
5855
  \ stage_2_single_run_max_secs,\n )\n\n"
5856
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5856
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5857
5857
  exec-feature-attribution:
5858
5858
  container:
5859
5859
  args:
@@ -6044,8 +6044,8 @@ deploymentSpec:
6044
6044
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6045
6045
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6046
6046
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6047
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6048
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6047
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6048
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6049
6049
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6050
6050
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6051
6051
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6062,7 +6062,7 @@ deploymentSpec:
6062
6062
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6063
6063
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6064
6064
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6065
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6065
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6066
6066
  resources:
6067
6067
  cpuLimit: 8.0
6068
6068
  memoryLimit: 30.0
@@ -6093,7 +6093,7 @@ deploymentSpec:
6093
6093
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6094
6094
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6095
6095
  \ ),\n )(forecasting_type, quantiles)\n\n"
6096
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6096
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6097
6097
  exec-finalize-eval-quantile-parameters-2:
6098
6098
  container:
6099
6099
  args:
@@ -6121,7 +6121,7 @@ deploymentSpec:
6121
6121
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6122
6122
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6123
6123
  \ ),\n )(forecasting_type, quantiles)\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6125
6125
  exec-get-or-create-model-description:
6126
6126
  container:
6127
6127
  args:
@@ -6150,7 +6150,7 @@ deploymentSpec:
6150
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6154
6154
  exec-get-or-create-model-description-2:
6155
6155
  container:
6156
6156
  args:
@@ -6179,7 +6179,7 @@ deploymentSpec:
6179
6179
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6180
6180
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6181
6181
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6182
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6183
6183
  exec-get-prediction-image-uri:
6184
6184
  container:
6185
6185
  args:
@@ -6202,14 +6202,14 @@ deploymentSpec:
6202
6202
  Returns the prediction image corresponding to the given model type.\"\"\"\
6203
6203
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6204
6204
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6205
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6206
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6207
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6208
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6205
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6206
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6207
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6208
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6209
6209
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6210
6210
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6211
6211
  \ )\n return images[model_type]\n\n"
6212
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6212
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6213
6213
  exec-get-prediction-image-uri-2:
6214
6214
  container:
6215
6215
  args:
@@ -6232,14 +6232,14 @@ deploymentSpec:
6232
6232
  Returns the prediction image corresponding to the given model type.\"\"\"\
6233
6233
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6234
6234
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6235
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6236
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6237
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6238
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6235
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6236
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6237
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6238
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6239
6239
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6240
6240
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6241
6241
  \ )\n return images[model_type]\n\n"
6242
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6242
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6243
6243
  exec-get-predictions-column:
6244
6244
  container:
6245
6245
  args:
@@ -6262,7 +6262,7 @@ deploymentSpec:
6262
6262
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6263
6263
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6264
6264
  \ return f'predicted_{target_column}.value'\n\n"
6265
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6265
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6266
6266
  exec-get-predictions-column-2:
6267
6267
  container:
6268
6268
  args:
@@ -6285,7 +6285,7 @@ deploymentSpec:
6285
6285
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6286
6286
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6287
6287
  \ return f'predicted_{target_column}.value'\n\n"
6288
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6288
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6289
6289
  exec-importer:
6290
6290
  importer:
6291
6291
  artifactUri:
@@ -6817,7 +6817,7 @@ deploymentSpec:
6817
6817
  \ 'model_display_name',\n 'transformations',\n ],\n\
6818
6818
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6819
6819
  \ model_display_name,\n transformations,\n )\n\n"
6820
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6821
6821
  exec-split-materialized-data:
6822
6822
  container:
6823
6823
  args:
@@ -6863,7 +6863,7 @@ deploymentSpec:
6863
6863
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6864
6864
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6865
6865
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6866
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6866
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6867
6867
  exec-string-not-empty:
6868
6868
  container:
6869
6869
  args:
@@ -6887,7 +6887,7 @@ deploymentSpec:
6887
6887
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6888
6888
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6889
6889
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6890
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6891
6891
  exec-table-to-uri:
6892
6892
  container:
6893
6893
  args:
@@ -6917,7 +6917,7 @@ deploymentSpec:
6917
6917
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6918
6918
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6919
6919
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6920
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6920
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6921
6921
  exec-table-to-uri-2:
6922
6922
  container:
6923
6923
  args:
@@ -6947,7 +6947,7 @@ deploymentSpec:
6947
6947
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6948
6948
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6949
6949
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6950
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6950
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6951
6951
  exec-training-configurator-and-validator:
6952
6952
  container:
6953
6953
  args:
@@ -6992,7 +6992,7 @@ deploymentSpec:
6992
6992
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6993
6993
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6994
6994
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6995
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6995
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6996
6996
  pipelineInfo:
6997
6997
  description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
6998
6998
  name: time-series-dense-encoder-forecasting
@@ -65,7 +65,7 @@ def automated_feature_engineering(
65
65
  ' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
66
66
  ' "container_spec": {"image_uri":"'
67
67
  ),
68
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625',
68
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625',
69
69
  '", "args": ["feature_engineering", "--project=', project,
70
70
  '", "--location=', location, '", "--data_source_bigquery_table_path=',
71
71
  data_source_bigquery_table_path,
@@ -8622,9 +8622,9 @@ deploymentSpec:
8622
8622
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8623
8623
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8624
8624
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8625
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8625
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8626
8626
  \"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8627
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625",
8627
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
8628
8628
  "\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
8629
8629
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
8630
8630
  \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -8665,9 +8665,9 @@ deploymentSpec:
8665
8665
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8666
8666
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8667
8667
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8668
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8668
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8669
8669
  \"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8670
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625",
8670
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
8671
8671
  "\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
8672
8672
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
8673
8673
  \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -8708,7 +8708,7 @@ deploymentSpec:
8708
8708
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8709
8709
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8710
8710
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
8711
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8711
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8712
8712
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8713
8713
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
8714
8714
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -8720,7 +8720,7 @@ deploymentSpec:
8720
8720
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
8721
8721
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
8722
8722
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
8723
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20241121_0625",
8723
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
8724
8724
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
8725
8725
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
8726
8726
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -8749,7 +8749,7 @@ deploymentSpec:
8749
8749
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8750
8750
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8751
8751
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
8752
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8752
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8753
8753
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8754
8754
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
8755
8755
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -8761,7 +8761,7 @@ deploymentSpec:
8761
8761
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
8762
8762
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
8763
8763
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
8764
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20241121_0625",
8764
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
8765
8765
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
8766
8766
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
8767
8767
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -8790,7 +8790,7 @@ deploymentSpec:
8790
8790
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8791
8791
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8792
8792
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
8793
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8793
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8794
8794
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8795
8795
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
8796
8796
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -8802,7 +8802,7 @@ deploymentSpec:
8802
8802
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
8803
8803
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
8804
8804
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
8805
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20241121_0625",
8805
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625",
8806
8806
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
8807
8807
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
8808
8808
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -8831,7 +8831,7 @@ deploymentSpec:
8831
8831
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8832
8832
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8833
8833
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8834
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8834
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8835
8835
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
8836
8836
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
8837
8837
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -8846,7 +8846,7 @@ deploymentSpec:
8846
8846
  args:
8847
8847
  - --executor_input
8848
8848
  - '{{$}}'
8849
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20241121_0625
8849
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
8850
8850
  resources:
8851
8851
  cpuLimit: 8.0
8852
8852
  memoryLimit: 52.0
@@ -8855,7 +8855,7 @@ deploymentSpec:
8855
8855
  args:
8856
8856
  - --executor_input
8857
8857
  - '{{$}}'
8858
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20241121_0625
8858
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
8859
8859
  resources:
8860
8860
  cpuLimit: 8.0
8861
8861
  memoryLimit: 52.0
@@ -8864,7 +8864,7 @@ deploymentSpec:
8864
8864
  args:
8865
8865
  - --executor_input
8866
8866
  - '{{$}}'
8867
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20241121_0625
8867
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20250129_0625
8868
8868
  resources:
8869
8869
  cpuLimit: 8.0
8870
8870
  memoryLimit: 52.0
@@ -8884,9 +8884,9 @@ deploymentSpec:
8884
8884
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8885
8885
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8886
8886
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8887
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8887
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8888
8888
  \"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8889
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625",
8889
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
8890
8890
  "\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
8891
8891
  "\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
8892
8892
  "\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
@@ -8931,9 +8931,9 @@ deploymentSpec:
8931
8931
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8932
8932
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8933
8933
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8934
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8934
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8935
8935
  \"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8936
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625",
8936
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625",
8937
8937
  "\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
8938
8938
  "\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
8939
8939
  "\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
@@ -8978,7 +8978,7 @@ deploymentSpec:
8978
8978
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8979
8979
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8980
8980
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8981
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
8981
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
8982
8982
  \"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
8983
8983
  "{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
8984
8984
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
@@ -8999,7 +8999,7 @@ deploymentSpec:
8999
8999
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
9000
9000
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
9001
9001
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
9002
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625",
9002
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625",
9003
9003
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
9004
9004
  "\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
9005
9005
  "\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
@@ -9030,7 +9030,7 @@ deploymentSpec:
9030
9030
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9031
9031
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9032
9032
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9033
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
9033
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
9034
9034
  \"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
9035
9035
  "{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
9036
9036
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
@@ -9051,7 +9051,7 @@ deploymentSpec:
9051
9051
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
9052
9052
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
9053
9053
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
9054
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625",
9054
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625",
9055
9055
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
9056
9056
  "\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
9057
9057
  "\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
@@ -9087,7 +9087,7 @@ deploymentSpec:
9087
9087
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9088
9088
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9089
9089
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9090
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9090
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9091
9091
  exec-bool-identity-2:
9092
9092
  container:
9093
9093
  args:
@@ -9109,7 +9109,7 @@ deploymentSpec:
9109
9109
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9110
9110
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9111
9111
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9112
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9112
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9113
9113
  exec-bool-identity-3:
9114
9114
  container:
9115
9115
  args:
@@ -9131,7 +9131,7 @@ deploymentSpec:
9131
9131
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9132
9132
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9133
9133
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9134
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9134
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9135
9135
  exec-calculate-training-parameters:
9136
9136
  container:
9137
9137
  args:
@@ -9223,7 +9223,7 @@ deploymentSpec:
9223
9223
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
9224
9224
  \ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
9225
9225
  \ reduce_search_space_mode,\n )\n\n"
9226
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9226
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9227
9227
  exec-calculate-training-parameters-2:
9228
9228
  container:
9229
9229
  args:
@@ -9315,7 +9315,7 @@ deploymentSpec:
9315
9315
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
9316
9316
  \ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
9317
9317
  \ reduce_search_space_mode,\n )\n\n"
9318
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9318
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9319
9319
  exec-check-if-binary-classification:
9320
9320
  container:
9321
9321
  args:
@@ -9343,7 +9343,7 @@ deploymentSpec:
9343
9343
  \ with open(example_gen_metadata, 'r') as f:\n metadata_path = f.read()\n\
9344
9344
  \ metadata = json.loads(metadata_path)\n return str(metadata['objective']\
9345
9345
  \ == 'binary_classification').lower()\n\n"
9346
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9346
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9347
9347
  exec-feature-attribution:
9348
9348
  container:
9349
9349
  args:
@@ -9536,7 +9536,7 @@ deploymentSpec:
9536
9536
  \ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
9537
9537
  \ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
9538
9538
  \ f.write(','.join([split_0_content, split_1_content]))\n\n"
9539
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
9539
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
9540
9540
  exec-model-batch-explanation:
9541
9541
  container:
9542
9542
  args:
@@ -10383,7 +10383,7 @@ deploymentSpec:
10383
10383
  \n train_spec['transformations'] = purged_transformation_list\n metadata['train_spec']\
10384
10384
  \ = train_spec\n\n with open(output_metadata, 'w') as f:\n f.write(json.dumps(metadata))\n\
10385
10385
  \n"
10386
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
10386
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10387
10387
  exec-read-input-uri:
10388
10388
  container:
10389
10389
  args:
@@ -10411,7 +10411,7 @@ deploymentSpec:
10411
10411
  \ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
10412
10412
  \ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
10413
10413
  \ return data_source['tf_record_data_source']['file_patterns']\n\n"
10414
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
10414
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10415
10415
  exec-read-input-uri-2:
10416
10416
  container:
10417
10417
  args:
@@ -10439,7 +10439,7 @@ deploymentSpec:
10439
10439
  \ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
10440
10440
  \ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
10441
10441
  \ return data_source['tf_record_data_source']['file_patterns']\n\n"
10442
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
10442
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10443
10443
  exec-string-not-empty:
10444
10444
  container:
10445
10445
  args:
@@ -10463,7 +10463,7 @@ deploymentSpec:
10463
10463
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
10464
10464
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
10465
10465
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
10466
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
10466
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10467
10467
  exec-tabular-feature-ranking-and-selection:
10468
10468
  container:
10469
10469
  args:
@@ -10480,7 +10480,7 @@ deploymentSpec:
10480
10480
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
10481
10481
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
10482
10482
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
10483
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
10483
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
10484
10484
  \"args\": [\"feature_selection\", \"--data_source=", "{{$.inputs.artifacts[''data_source''].uri}}",
10485
10485
  "\", \"--target_column=", "{{$.inputs.parameters[''target_column_name'']}}",
10486
10486
  "\", \"--prediction_type=", "{{$.inputs.parameters[''prediction_type'']}}",
@@ -10493,7 +10493,7 @@ deploymentSpec:
10493
10493
  \"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
10494
10494
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
10495
10495
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
10496
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625",
10496
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625",
10497
10497
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
10498
10498
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
10499
10499
  "\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
@@ -10526,7 +10526,7 @@ deploymentSpec:
10526
10526
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
10527
10527
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
10528
10528
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
10529
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
10529
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
10530
10530
  \"args\": [\"stats_generator\",", "\"--train_spec={\\\"prediction_type\\\":
10531
10531
  \\\"", "{{$.inputs.parameters[''prediction_type'']}}", "\\\", \\\"target_column\\\":
10532
10532
  \\\"", "{{$.inputs.parameters[''target_column_name'']}}", "\\\", \\\"optimization_objective\\\":
@@ -10559,7 +10559,7 @@ deploymentSpec:
10559
10559
  \"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
10560
10560
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
10561
10561
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
10562
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625",
10562
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625",
10563
10563
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
10564
10564
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
10565
10565
  "\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
@@ -10614,7 +10614,7 @@ deploymentSpec:
10614
10614
  \ f'{directory}/prediction.results-*',\n ],\n 'coder':\
10615
10615
  \ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
10616
10616
  \n"
10617
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
10617
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10618
10618
  exec-write-bp-result-path-2:
10619
10619
  container:
10620
10620
  args:
@@ -10644,7 +10644,7 @@ deploymentSpec:
10644
10644
  \ f'{directory}/prediction.results-*',\n ],\n 'coder':\
10645
10645
  \ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
10646
10646
  \n"
10647
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
10647
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
10648
10648
  pipelineInfo:
10649
10649
  description: The AutoML Tabular pipeline.
10650
10650
  name: automl-tabular-feature-selection-pipeline