google-cloud-pipeline-components 2.18.0__py3-none-any.whl → 2.20.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (64) hide show
  1. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +2 -2
  2. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +1 -1
  3. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +7 -4
  4. google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
  5. google_cloud_pipeline_components/container/v1/custom_job/remote_runner.py +13 -3
  6. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  7. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  8. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  9. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  10. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  11. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  12. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  13. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  14. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  15. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  16. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  17. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  18. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  19. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  20. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  21. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  22. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  23. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  24. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  25. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  26. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  27. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  28. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  29. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  30. google_cloud_pipeline_components/proto/README.md +49 -0
  31. google_cloud_pipeline_components/proto/gcp_resources.proto +25 -0
  32. google_cloud_pipeline_components/proto/task_error.proto +11 -0
  33. google_cloud_pipeline_components/proto/template_metadata.proto +323 -0
  34. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  35. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  36. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  37. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  38. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  39. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  40. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  41. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  42. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  43. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  44. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  45. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  46. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  48. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  49. google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
  50. google_cloud_pipeline_components/v1/custom_job/utils.py +3 -0
  51. google_cloud_pipeline_components/version.py +1 -1
  52. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/METADATA +18 -21
  53. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/RECORD +56 -60
  54. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/WHEEL +1 -1
  55. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/__init__.py +0 -14
  56. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
  57. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py +0 -180
  58. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py +0 -178
  59. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py +0 -20
  60. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -13
  61. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +0 -109
  62. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -58
  63. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/LICENSE +0 -0
  64. {google_cloud_pipeline_components-2.18.0.dist-info → google_cloud_pipeline_components-2.20.0.dist-info}/top_level.txt +0 -0
@@ -18,7 +18,7 @@ from typing import NamedTuple
18
18
  from kfp import dsl
19
19
 
20
20
 
21
- @dsl.component(packages_to_install=['tensorflow==2.11.0'])
21
+ @dsl.component(packages_to_install=['tensorflow==2.16.1'])
22
22
  def get_training_artifacts(
23
23
  docker_region: str,
24
24
  trainer_dir: dsl.InputPath(),
@@ -55,7 +55,7 @@ def get_training_artifacts(
55
55
  instance_schema_uri=str,
56
56
  )
57
57
  return outputs(
58
- f'{docker_region}-docker.pkg.dev/vertex-ai/starryn/predictor:20240723_0542_RC00', # pylint: disable=too-many-function-args
58
+ f'{docker_region}-docker.pkg.dev/vertex-ai/starryn/predictor:20250411_0542_RC00', # pylint: disable=too-many-function-args
59
59
  private_dir, # pylint: disable=too-many-function-args
60
60
  os.path.join(private_dir, 'predict_schema.yaml'), # pylint: disable=too-many-function-args
61
61
  os.path.join(private_dir, 'instance_schema.yaml'), # pylint: disable=too-many-function-args
@@ -18,7 +18,7 @@ from typing import NamedTuple
18
18
  from kfp import dsl
19
19
 
20
20
 
21
- @dsl.component(packages_to_install=['tensorflow==2.11.0'])
21
+ @dsl.component(packages_to_install=['tensorflow==2.16.1'])
22
22
  def set_test_set(
23
23
  dataprep_dir: dsl.InputPath(),
24
24
  ) -> NamedTuple('TestSetArtifact', uri=str, artifact=dsl.Artifact):
@@ -18,7 +18,7 @@ from kfp import dsl
18
18
 
19
19
  @dsl.component(
20
20
  packages_to_install=[
21
- 'google-cloud-aiplatform[tensorboard]',
21
+ 'google-cloud-aiplatform[tensorboard]==1.87.0',
22
22
  'protobuf==3.20.*',
23
23
  ]
24
24
  )
@@ -44,14 +44,17 @@ def upload_decomposition_plots(
44
44
  viewed.
45
45
  """
46
46
  import os # pylint: disable=g-import-not-at-top
47
+ import uuid # pylint: disable=g-import-not-at-top
47
48
  from google.cloud import aiplatform # pylint: disable=g-import-not-at-top
48
49
 
49
50
  log_dir = os.path.join(trainer_dir, 'tensorboard', 'r=1:gc=0')
50
51
  project_number = os.environ['CLOUD_ML_PROJECT_ID']
51
- aiplatform.init(project=project, location=location)
52
+ experiment_name = str(uuid.uuid4())
53
+ aiplatform.init(
54
+ experiment=experiment_name, project=project, location=location)
52
55
  aiplatform.upload_tb_log(
53
56
  tensorboard_id=tensorboard_id,
54
- tensorboard_experiment_name=display_name,
57
+ tensorboard_experiment_name=experiment_name,
55
58
  logdir=log_dir,
56
59
  experiment_display_name=display_name,
57
60
  description=f'Tensorboard for {display_name}',
@@ -59,6 +62,6 @@ def upload_decomposition_plots(
59
62
  uri = (
60
63
  f'https://{location}.tensorboard.googleusercontent.com/experiment/'
61
64
  f'projects+{project_number}+locations+{location}+tensorboards+'
62
- f'{tensorboard_id}+experiments+{display_name}/#images'
65
+ f'{tensorboard_id}+experiments+{experiment_name}/#images'
63
66
  )
64
67
  return dsl.Artifact(uri=uri)
@@ -13,6 +13,6 @@
13
13
  # limitations under the License.
14
14
  """Version constants for starry net components."""
15
15
 
16
- DATAPREP_VERSION = '20240722_2225_RC00'
17
- PREDICTOR_VERSION = '20240723_0542_RC00'
18
- TRAINER_VERSION = '20240723_0542_RC00'
16
+ DATAPREP_VERSION = '20250410_2225_RC00'
17
+ PREDICTOR_VERSION = '20250411_0542_RC00'
18
+ TRAINER_VERSION = '20250410_0542_RC00'
@@ -13,12 +13,12 @@
13
13
  # limitations under the License.
14
14
  """GCP launcher for custom jobs based on the AI Platform SDK."""
15
15
 
16
+ import json
17
+
16
18
  from google.api_core import retry
17
19
  from google_cloud_pipeline_components.container.v1.gcp_launcher import job_remote_runner
18
- from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import gcp_labels_util
19
20
  from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import error_util
20
-
21
- import json
21
+ from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import gcp_labels_util
22
22
 
23
23
  _CUSTOM_JOB_RETRY_DEADLINE_SECONDS = 10.0 * 60.0
24
24
  LABELS_PAYLOAD_KEY = 'labels'
@@ -34,6 +34,16 @@ def insert_system_labels_into_payload(payload):
34
34
 
35
35
  def create_custom_job_with_client(job_client, parent, job_spec):
36
36
  create_custom_job_fn = None
37
+ # max_wait_duration is acceptable only when strategy is FLEX_START in
38
+ # CustomJob API. Clear max_wait_duration if strategy is not FLEX_START.
39
+ if (
40
+ 'job_spec' in job_spec
41
+ and 'scheduling' in job_spec['job_spec']
42
+ and 'strategy' in job_spec['job_spec']['scheduling']
43
+ and job_spec['job_spec']['scheduling']['strategy'] != 'FLEX_START'
44
+ and 'max_wait_duration' in job_spec['job_spec']['scheduling']
45
+ ):
46
+ del job_spec['job_spec']['scheduling']['max_wait_duration']
37
47
  try:
38
48
  create_custom_job_fn = job_client.create_custom_job(
39
49
  parent=parent, custom_job=job_spec
@@ -72,7 +72,7 @@ def automl_forecasting_ensemble(
72
72
  # fmt: on
73
73
  job_id = dsl.PIPELINE_JOB_ID_PLACEHOLDER
74
74
  task_id = dsl.PIPELINE_TASK_ID_PLACEHOLDER
75
- image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625'
75
+ image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625'
76
76
  display_name = f'automl-forecasting-ensemble-{job_id}-{task_id}'
77
77
 
78
78
  error_file_path = f'{root_dir}/{job_id}/{task_id}/error.pb'
@@ -99,14 +99,14 @@ def automl_forecasting_stage_1_tuner(
99
99
  ' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
100
100
  ' "container_spec": {"image_uri":"'
101
101
  ),
102
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625',
102
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
103
103
  '", "args": ["forecasting_mp_l2l_stage_1_tuner',
104
104
  '", "--region=',
105
105
  location,
106
106
  '", "--transform_output_path=',
107
107
  transform_output.uri,
108
108
  '", "--training_docker_uri=',
109
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625',
109
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
110
110
  '", "--reduce_search_space_mode=',
111
111
  reduce_search_space_mode,
112
112
  f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
@@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
97
97
  ' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
98
98
  ' "container_spec": {"image_uri":"'
99
99
  ),
100
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625',
100
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
101
101
  '", "args": ["forecasting_mp_l2l_stage_2_tuner',
102
102
  '", "--region=',
103
103
  location,
104
104
  '", "--transform_output_path=',
105
105
  transform_output.uri,
106
106
  '", "--training_docker_uri=',
107
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625',
107
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
108
108
  f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
109
109
  '", "--training_base_dir=',
110
110
  root_dir,
@@ -5577,7 +5577,7 @@ deploymentSpec:
5577
5577
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5578
5578
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5579
5579
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5580
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5580
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5581
5581
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5582
5582
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5583
5583
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5611,7 +5611,7 @@ deploymentSpec:
5611
5611
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5612
5612
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5613
5613
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5614
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5614
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5615
5615
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5616
5616
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5617
5617
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5646,11 +5646,11 @@ deploymentSpec:
5646
5646
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5647
5647
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5648
5648
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5650
5650
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5651
5651
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5652
5652
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5653
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5653
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5654
5654
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5655
5655
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5656
5656
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5689,11 +5689,11 @@ deploymentSpec:
5689
5689
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5690
5690
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5691
5691
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5693
5693
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5694
5694
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5695
5695
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5696
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20241121_0625",
5696
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5697
5697
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5698
5698
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5699
5699
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5732,7 +5732,7 @@ deploymentSpec:
5732
5732
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5733
5733
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5734
5734
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5735
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20241121_0625", "\",
5735
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
5736
5736
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5737
5737
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5738
5738
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5797,7 +5797,7 @@ deploymentSpec:
5797
5797
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5798
5798
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5799
5799
  \ stage_2_single_run_max_secs,\n )\n\n"
5800
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5800
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5801
5801
  exec-calculate-training-parameters-2:
5802
5802
  container:
5803
5803
  args:
@@ -5853,7 +5853,7 @@ deploymentSpec:
5853
5853
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5854
5854
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5855
5855
  \ stage_2_single_run_max_secs,\n )\n\n"
5856
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
5856
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5857
5857
  exec-feature-attribution:
5858
5858
  container:
5859
5859
  args:
@@ -6044,8 +6044,8 @@ deploymentSpec:
6044
6044
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6045
6045
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6046
6046
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6047
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6048
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6047
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6048
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6049
6049
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6050
6050
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6051
6051
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6062,7 +6062,7 @@ deploymentSpec:
6062
6062
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6063
6063
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6064
6064
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6065
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6065
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6066
6066
  resources:
6067
6067
  cpuLimit: 8.0
6068
6068
  memoryLimit: 30.0
@@ -6093,7 +6093,7 @@ deploymentSpec:
6093
6093
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6094
6094
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6095
6095
  \ ),\n )(forecasting_type, quantiles)\n\n"
6096
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6096
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6097
6097
  exec-finalize-eval-quantile-parameters-2:
6098
6098
  container:
6099
6099
  args:
@@ -6121,7 +6121,7 @@ deploymentSpec:
6121
6121
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6122
6122
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6123
6123
  \ ),\n )(forecasting_type, quantiles)\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6125
6125
  exec-get-or-create-model-description:
6126
6126
  container:
6127
6127
  args:
@@ -6150,7 +6150,7 @@ deploymentSpec:
6150
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6154
6154
  exec-get-or-create-model-description-2:
6155
6155
  container:
6156
6156
  args:
@@ -6179,7 +6179,7 @@ deploymentSpec:
6179
6179
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6180
6180
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6181
6181
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6182
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6183
6183
  exec-get-prediction-image-uri:
6184
6184
  container:
6185
6185
  args:
@@ -6202,14 +6202,14 @@ deploymentSpec:
6202
6202
  Returns the prediction image corresponding to the given model type.\"\"\"\
6203
6203
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6204
6204
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6205
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6206
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6207
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6208
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6205
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6206
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6207
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6208
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6209
6209
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6210
6210
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6211
6211
  \ )\n return images[model_type]\n\n"
6212
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6212
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6213
6213
  exec-get-prediction-image-uri-2:
6214
6214
  container:
6215
6215
  args:
@@ -6232,14 +6232,14 @@ deploymentSpec:
6232
6232
  Returns the prediction image corresponding to the given model type.\"\"\"\
6233
6233
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6234
6234
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6235
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20241121_0625',\n\
6236
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20241121_0625',\n\
6237
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20241121_0625',\n\
6238
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20241121_0625',\n\
6235
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6236
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6237
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6238
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6239
6239
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6240
6240
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6241
6241
  \ )\n return images[model_type]\n\n"
6242
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6242
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6243
6243
  exec-get-predictions-column:
6244
6244
  container:
6245
6245
  args:
@@ -6262,7 +6262,7 @@ deploymentSpec:
6262
6262
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6263
6263
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6264
6264
  \ return f'predicted_{target_column}.value'\n\n"
6265
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6265
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6266
6266
  exec-get-predictions-column-2:
6267
6267
  container:
6268
6268
  args:
@@ -6285,7 +6285,7 @@ deploymentSpec:
6285
6285
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6286
6286
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6287
6287
  \ return f'predicted_{target_column}.value'\n\n"
6288
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6288
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6289
6289
  exec-importer:
6290
6290
  importer:
6291
6291
  artifactUri:
@@ -6817,7 +6817,7 @@ deploymentSpec:
6817
6817
  \ 'model_display_name',\n 'transformations',\n ],\n\
6818
6818
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6819
6819
  \ model_display_name,\n transformations,\n )\n\n"
6820
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6821
6821
  exec-split-materialized-data:
6822
6822
  container:
6823
6823
  args:
@@ -6863,7 +6863,7 @@ deploymentSpec:
6863
6863
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6864
6864
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6865
6865
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6866
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20241121_0625
6866
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6867
6867
  exec-string-not-empty:
6868
6868
  container:
6869
6869
  args:
@@ -6887,7 +6887,7 @@ deploymentSpec:
6887
6887
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6888
6888
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6889
6889
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6890
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6891
6891
  exec-table-to-uri:
6892
6892
  container:
6893
6893
  args:
@@ -6917,7 +6917,7 @@ deploymentSpec:
6917
6917
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6918
6918
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6919
6919
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6920
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6920
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6921
6921
  exec-table-to-uri-2:
6922
6922
  container:
6923
6923
  args:
@@ -6947,7 +6947,7 @@ deploymentSpec:
6947
6947
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6948
6948
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6949
6949
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6950
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20241121_0625
6950
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6951
6951
  exec-training-configurator-and-validator:
6952
6952
  container:
6953
6953
  args:
@@ -6992,7 +6992,7 @@ deploymentSpec:
6992
6992
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6993
6993
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6994
6994
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6995
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20241121_0625
6995
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6996
6996
  pipelineInfo:
6997
6997
  description: The AutoML Forecasting pipeline.
6998
6998
  name: learn-to-learn-forecasting