google-cloud-pipeline-components 2.17.0__py3-none-any.whl → 2.19.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. google_cloud_pipeline_components/container/v1/custom_job/remote_runner.py +13 -3
  2. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  3. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  4. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  5. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  6. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  7. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  8. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  9. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  10. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  11. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  12. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  13. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  14. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  15. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  16. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  17. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  18. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  19. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  20. google_cloud_pipeline_components/preview/automl/tabular/utils.py +1 -1
  21. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  23. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  24. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  25. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  26. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  27. google_cloud_pipeline_components/preview/custom_job/__init__.py +9 -0
  28. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  29. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  30. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  31. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  32. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  33. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  34. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  35. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  36. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  37. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  38. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  39. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  40. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  41. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  42. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  43. google_cloud_pipeline_components/v1/automl/tabular/utils.py +1 -1
  44. google_cloud_pipeline_components/v1/custom_job/component.py +8 -2
  45. google_cloud_pipeline_components/v1/custom_job/utils.py +26 -0
  46. google_cloud_pipeline_components/v1/model_evaluation/regression_component.py +1 -1
  47. google_cloud_pipeline_components/version.py +1 -1
  48. {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/METADATA +5 -3
  49. {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/RECORD +52 -52
  50. {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/LICENSE +0 -0
  51. {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/WHEEL +0 -0
  52. {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/top_level.txt +0 -0
@@ -5552,7 +5552,7 @@ deploymentSpec:
5552
5552
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5553
5553
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5554
5554
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5555
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5555
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5556
5556
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5557
5557
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5558
5558
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5586,7 +5586,7 @@ deploymentSpec:
5586
5586
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5587
5587
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5588
5588
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5589
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5589
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5590
5590
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5591
5591
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5592
5592
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5621,11 +5621,11 @@ deploymentSpec:
5621
5621
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5622
5622
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5623
5623
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5624
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5624
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5625
5625
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5626
5626
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5627
5627
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5628
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5628
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5629
5629
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5630
5630
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5631
5631
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5664,11 +5664,11 @@ deploymentSpec:
5664
5664
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5665
5665
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5666
5666
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5667
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5667
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5668
5668
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5669
5669
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5670
5670
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5671
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5671
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5672
5672
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5673
5673
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5674
5674
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5707,7 +5707,7 @@ deploymentSpec:
5707
5707
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5708
5708
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5709
5709
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5710
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
5710
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
5711
5711
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5712
5712
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5713
5713
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5772,7 +5772,7 @@ deploymentSpec:
5772
5772
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5773
5773
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5774
5774
  \ stage_2_single_run_max_secs,\n )\n\n"
5775
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5775
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5776
5776
  exec-calculate-training-parameters-2:
5777
5777
  container:
5778
5778
  args:
@@ -5828,7 +5828,7 @@ deploymentSpec:
5828
5828
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5829
5829
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5830
5830
  \ stage_2_single_run_max_secs,\n )\n\n"
5831
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5831
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5832
5832
  exec-feature-attribution:
5833
5833
  container:
5834
5834
  args:
@@ -6019,8 +6019,8 @@ deploymentSpec:
6019
6019
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6020
6020
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6021
6021
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6022
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6023
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6022
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6023
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6024
6024
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6025
6025
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6026
6026
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6037,7 +6037,7 @@ deploymentSpec:
6037
6037
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6038
6038
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6039
6039
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6040
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6040
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6041
6041
  resources:
6042
6042
  cpuLimit: 8.0
6043
6043
  memoryLimit: 30.0
@@ -6068,7 +6068,7 @@ deploymentSpec:
6068
6068
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6069
6069
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6070
6070
  \ ),\n )(forecasting_type, quantiles)\n\n"
6071
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6071
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6072
6072
  exec-finalize-eval-quantile-parameters-2:
6073
6073
  container:
6074
6074
  args:
@@ -6096,7 +6096,7 @@ deploymentSpec:
6096
6096
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6097
6097
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6098
6098
  \ ),\n )(forecasting_type, quantiles)\n\n"
6099
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6099
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6100
6100
  exec-get-or-create-model-description:
6101
6101
  container:
6102
6102
  args:
@@ -6125,7 +6125,7 @@ deploymentSpec:
6125
6125
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6126
6126
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6127
6127
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6128
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6128
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6129
6129
  exec-get-or-create-model-description-2:
6130
6130
  container:
6131
6131
  args:
@@ -6154,7 +6154,7 @@ deploymentSpec:
6154
6154
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6155
6155
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6156
6156
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6157
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6157
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6158
6158
  exec-get-prediction-image-uri:
6159
6159
  container:
6160
6160
  args:
@@ -6177,14 +6177,14 @@ deploymentSpec:
6177
6177
  Returns the prediction image corresponding to the given model type.\"\"\"\
6178
6178
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6179
6179
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6180
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6181
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6182
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6183
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6180
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6181
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6182
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6183
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6184
6184
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6185
6185
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6186
6186
  \ )\n return images[model_type]\n\n"
6187
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6187
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6188
6188
  exec-get-prediction-image-uri-2:
6189
6189
  container:
6190
6190
  args:
@@ -6207,14 +6207,14 @@ deploymentSpec:
6207
6207
  Returns the prediction image corresponding to the given model type.\"\"\"\
6208
6208
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6209
6209
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6210
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6211
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6212
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6213
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6210
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6211
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6212
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6213
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6214
6214
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6215
6215
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6216
6216
  \ )\n return images[model_type]\n\n"
6217
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6217
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6218
6218
  exec-get-predictions-column:
6219
6219
  container:
6220
6220
  args:
@@ -6237,7 +6237,7 @@ deploymentSpec:
6237
6237
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6238
6238
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6239
6239
  \ return f'predicted_{target_column}.value'\n\n"
6240
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6240
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6241
6241
  exec-get-predictions-column-2:
6242
6242
  container:
6243
6243
  args:
@@ -6260,7 +6260,7 @@ deploymentSpec:
6260
6260
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6261
6261
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6262
6262
  \ return f'predicted_{target_column}.value'\n\n"
6263
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6263
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6264
6264
  exec-importer:
6265
6265
  importer:
6266
6266
  artifactUri:
@@ -6792,7 +6792,7 @@ deploymentSpec:
6792
6792
  \ 'model_display_name',\n 'transformations',\n ],\n\
6793
6793
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6794
6794
  \ model_display_name,\n transformations,\n )\n\n"
6795
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6795
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6796
6796
  exec-split-materialized-data:
6797
6797
  container:
6798
6798
  args:
@@ -6838,7 +6838,7 @@ deploymentSpec:
6838
6838
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6839
6839
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6840
6840
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6841
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6841
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6842
6842
  exec-string-not-empty:
6843
6843
  container:
6844
6844
  args:
@@ -6862,7 +6862,7 @@ deploymentSpec:
6862
6862
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6863
6863
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6864
6864
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6865
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6865
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6866
6866
  exec-table-to-uri:
6867
6867
  container:
6868
6868
  args:
@@ -6892,7 +6892,7 @@ deploymentSpec:
6892
6892
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6893
6893
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6894
6894
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6895
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6895
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6896
6896
  exec-table-to-uri-2:
6897
6897
  container:
6898
6898
  args:
@@ -6922,7 +6922,7 @@ deploymentSpec:
6922
6922
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6923
6923
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6924
6924
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6925
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6925
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6926
6926
  exec-training-configurator-and-validator:
6927
6927
  container:
6928
6928
  args:
@@ -6967,7 +6967,7 @@ deploymentSpec:
6967
6967
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6968
6968
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6969
6969
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6970
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6970
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6971
6971
  pipelineInfo:
6972
6972
  description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
6973
6973
  name: temporal-fusion-transformer-forecasting
@@ -5577,7 +5577,7 @@ deploymentSpec:
5577
5577
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5578
5578
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5579
5579
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5580
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5580
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5581
5581
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5582
5582
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5583
5583
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5611,7 +5611,7 @@ deploymentSpec:
5611
5611
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5612
5612
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5613
5613
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5614
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5614
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5615
5615
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5616
5616
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5617
5617
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5646,11 +5646,11 @@ deploymentSpec:
5646
5646
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5647
5647
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5648
5648
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5650
5650
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5651
5651
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5652
5652
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5653
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5653
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5654
5654
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5655
5655
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5656
5656
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5689,11 +5689,11 @@ deploymentSpec:
5689
5689
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5690
5690
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5691
5691
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5693
5693
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5694
5694
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5695
5695
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5696
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5696
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
5697
5697
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5698
5698
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5699
5699
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5732,7 +5732,7 @@ deploymentSpec:
5732
5732
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5733
5733
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5734
5734
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5735
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
5735
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
5736
5736
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5737
5737
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5738
5738
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5797,7 +5797,7 @@ deploymentSpec:
5797
5797
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5798
5798
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5799
5799
  \ stage_2_single_run_max_secs,\n )\n\n"
5800
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5800
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5801
5801
  exec-calculate-training-parameters-2:
5802
5802
  container:
5803
5803
  args:
@@ -5853,7 +5853,7 @@ deploymentSpec:
5853
5853
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5854
5854
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5855
5855
  \ stage_2_single_run_max_secs,\n )\n\n"
5856
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5856
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
5857
5857
  exec-feature-attribution:
5858
5858
  container:
5859
5859
  args:
@@ -6044,8 +6044,8 @@ deploymentSpec:
6044
6044
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6045
6045
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6046
6046
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6047
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6048
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6047
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6048
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6049
6049
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6050
6050
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6051
6051
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6062,7 +6062,7 @@ deploymentSpec:
6062
6062
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6063
6063
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6064
6064
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6065
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6065
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6066
6066
  resources:
6067
6067
  cpuLimit: 8.0
6068
6068
  memoryLimit: 30.0
@@ -6093,7 +6093,7 @@ deploymentSpec:
6093
6093
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6094
6094
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6095
6095
  \ ),\n )(forecasting_type, quantiles)\n\n"
6096
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6096
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6097
6097
  exec-finalize-eval-quantile-parameters-2:
6098
6098
  container:
6099
6099
  args:
@@ -6121,7 +6121,7 @@ deploymentSpec:
6121
6121
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6122
6122
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6123
6123
  \ ),\n )(forecasting_type, quantiles)\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6125
6125
  exec-get-or-create-model-description:
6126
6126
  container:
6127
6127
  args:
@@ -6150,7 +6150,7 @@ deploymentSpec:
6150
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6154
6154
  exec-get-or-create-model-description-2:
6155
6155
  container:
6156
6156
  args:
@@ -6179,7 +6179,7 @@ deploymentSpec:
6179
6179
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6180
6180
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6181
6181
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6182
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6183
6183
  exec-get-prediction-image-uri:
6184
6184
  container:
6185
6185
  args:
@@ -6202,14 +6202,14 @@ deploymentSpec:
6202
6202
  Returns the prediction image corresponding to the given model type.\"\"\"\
6203
6203
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6204
6204
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6205
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6206
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6207
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6208
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6205
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6206
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6207
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6208
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6209
6209
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6210
6210
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6211
6211
  \ )\n return images[model_type]\n\n"
6212
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6212
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6213
6213
  exec-get-prediction-image-uri-2:
6214
6214
  container:
6215
6215
  args:
@@ -6232,14 +6232,14 @@ deploymentSpec:
6232
6232
  Returns the prediction image corresponding to the given model type.\"\"\"\
6233
6233
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6234
6234
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6235
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6236
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6237
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6238
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6235
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
6236
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
6237
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
6238
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
6239
6239
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6240
6240
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6241
6241
  \ )\n return images[model_type]\n\n"
6242
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6242
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6243
6243
  exec-get-predictions-column:
6244
6244
  container:
6245
6245
  args:
@@ -6262,7 +6262,7 @@ deploymentSpec:
6262
6262
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6263
6263
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6264
6264
  \ return f'predicted_{target_column}.value'\n\n"
6265
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6265
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6266
6266
  exec-get-predictions-column-2:
6267
6267
  container:
6268
6268
  args:
@@ -6285,7 +6285,7 @@ deploymentSpec:
6285
6285
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6286
6286
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6287
6287
  \ return f'predicted_{target_column}.value'\n\n"
6288
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6288
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6289
6289
  exec-importer:
6290
6290
  importer:
6291
6291
  artifactUri:
@@ -6817,7 +6817,7 @@ deploymentSpec:
6817
6817
  \ 'model_display_name',\n 'transformations',\n ],\n\
6818
6818
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6819
6819
  \ model_display_name,\n transformations,\n )\n\n"
6820
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6821
6821
  exec-split-materialized-data:
6822
6822
  container:
6823
6823
  args:
@@ -6863,7 +6863,7 @@ deploymentSpec:
6863
6863
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6864
6864
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6865
6865
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6866
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6866
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
6867
6867
  exec-string-not-empty:
6868
6868
  container:
6869
6869
  args:
@@ -6887,7 +6887,7 @@ deploymentSpec:
6887
6887
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6888
6888
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6889
6889
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6890
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6891
6891
  exec-table-to-uri:
6892
6892
  container:
6893
6893
  args:
@@ -6917,7 +6917,7 @@ deploymentSpec:
6917
6917
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6918
6918
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6919
6919
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6920
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6920
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6921
6921
  exec-table-to-uri-2:
6922
6922
  container:
6923
6923
  args:
@@ -6947,7 +6947,7 @@ deploymentSpec:
6947
6947
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6948
6948
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6949
6949
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6950
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6950
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
6951
6951
  exec-training-configurator-and-validator:
6952
6952
  container:
6953
6953
  args:
@@ -6992,7 +6992,7 @@ deploymentSpec:
6992
6992
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6993
6993
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6994
6994
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6995
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6995
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
6996
6996
  pipelineInfo:
6997
6997
  description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
6998
6998
  name: time-series-dense-encoder-forecasting
@@ -65,7 +65,7 @@ def automated_feature_engineering(
65
65
  ' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
66
66
  ' "container_spec": {"image_uri":"'
67
67
  ),
68
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625',
68
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625',
69
69
  '", "args": ["feature_engineering", "--project=', project,
70
70
  '", "--location=', location, '", "--data_source_bigquery_table_path=',
71
71
  data_source_bigquery_table_path,