google-cloud-pipeline-components 2.17.0__py3-none-any.whl → 2.19.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google_cloud_pipeline_components/container/v1/custom_job/remote_runner.py +13 -3
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/utils.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/__init__.py +9 -0
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/utils.py +1 -1
- google_cloud_pipeline_components/v1/custom_job/component.py +8 -2
- google_cloud_pipeline_components/v1/custom_job/utils.py +26 -0
- google_cloud_pipeline_components/v1/model_evaluation/regression_component.py +1 -1
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/METADATA +5 -3
- {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/RECORD +52 -52
- {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/WHEEL +0 -0
- {google_cloud_pipeline_components-2.17.0.dist-info → google_cloud_pipeline_components-2.19.0.dist-info}/top_level.txt +0 -0
|
@@ -13,12 +13,12 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
"""GCP launcher for custom jobs based on the AI Platform SDK."""
|
|
15
15
|
|
|
16
|
+
import json
|
|
17
|
+
|
|
16
18
|
from google.api_core import retry
|
|
17
19
|
from google_cloud_pipeline_components.container.v1.gcp_launcher import job_remote_runner
|
|
18
|
-
from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import gcp_labels_util
|
|
19
20
|
from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import error_util
|
|
20
|
-
|
|
21
|
-
import json
|
|
21
|
+
from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import gcp_labels_util
|
|
22
22
|
|
|
23
23
|
_CUSTOM_JOB_RETRY_DEADLINE_SECONDS = 10.0 * 60.0
|
|
24
24
|
LABELS_PAYLOAD_KEY = 'labels'
|
|
@@ -34,6 +34,16 @@ def insert_system_labels_into_payload(payload):
|
|
|
34
34
|
|
|
35
35
|
def create_custom_job_with_client(job_client, parent, job_spec):
|
|
36
36
|
create_custom_job_fn = None
|
|
37
|
+
# max_wait_duration is acceptable only when strategy is FLEX_START in
|
|
38
|
+
# CustomJob API. Clear max_wait_duration if strategy is not FLEX_START.
|
|
39
|
+
if (
|
|
40
|
+
'job_spec' in job_spec
|
|
41
|
+
and 'scheduling' in job_spec['job_spec']
|
|
42
|
+
and 'strategy' in job_spec['job_spec']['scheduling']
|
|
43
|
+
and job_spec['job_spec']['scheduling']['strategy'] != 'FLEX_START'
|
|
44
|
+
and 'max_wait_duration' in job_spec['job_spec']['scheduling']
|
|
45
|
+
):
|
|
46
|
+
del job_spec['job_spec']['scheduling']['max_wait_duration']
|
|
37
47
|
try:
|
|
38
48
|
create_custom_job_fn = job_client.create_custom_job(
|
|
39
49
|
parent=parent, custom_job=job_spec
|
|
@@ -72,7 +72,7 @@ def automl_forecasting_ensemble(
|
|
|
72
72
|
# fmt: on
|
|
73
73
|
job_id = dsl.PIPELINE_JOB_ID_PLACEHOLDER
|
|
74
74
|
task_id = dsl.PIPELINE_TASK_ID_PLACEHOLDER
|
|
75
|
-
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
75
|
+
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625'
|
|
76
76
|
display_name = f'automl-forecasting-ensemble-{job_id}-{task_id}'
|
|
77
77
|
|
|
78
78
|
error_file_path = f'{root_dir}/{job_id}/{task_id}/error.pb'
|
|
@@ -99,14 +99,14 @@ def automl_forecasting_stage_1_tuner(
|
|
|
99
99
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
100
100
|
' "container_spec": {"image_uri":"'
|
|
101
101
|
),
|
|
102
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
102
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
|
|
103
103
|
'", "args": ["forecasting_mp_l2l_stage_1_tuner',
|
|
104
104
|
'", "--region=',
|
|
105
105
|
location,
|
|
106
106
|
'", "--transform_output_path=',
|
|
107
107
|
transform_output.uri,
|
|
108
108
|
'", "--training_docker_uri=',
|
|
109
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
109
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
|
|
110
110
|
'", "--reduce_search_space_mode=',
|
|
111
111
|
reduce_search_space_mode,
|
|
112
112
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
|
|
@@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
|
|
|
97
97
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
98
98
|
' "container_spec": {"image_uri":"'
|
|
99
99
|
),
|
|
100
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
100
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
|
|
101
101
|
'", "args": ["forecasting_mp_l2l_stage_2_tuner',
|
|
102
102
|
'", "--region=',
|
|
103
103
|
location,
|
|
104
104
|
'", "--transform_output_path=',
|
|
105
105
|
transform_output.uri,
|
|
106
106
|
'", "--training_docker_uri=',
|
|
107
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
107
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625',
|
|
108
108
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
|
|
109
109
|
'", "--training_base_dir=',
|
|
110
110
|
root_dir,
|
google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml
CHANGED
|
@@ -5577,7 +5577,7 @@ deploymentSpec:
|
|
|
5577
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5578
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5579
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5580
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5581
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5582
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5583
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5611,7 +5611,7 @@ deploymentSpec:
|
|
|
5611
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5612
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5613
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5614
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5615
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5616
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5617
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5646,11 +5646,11 @@ deploymentSpec:
|
|
|
5646
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5647
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5648
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5650
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5651
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5652
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5653
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5654
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5655
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5656
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5689,11 +5689,11 @@ deploymentSpec:
|
|
|
5689
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5690
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5691
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5693
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5694
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5695
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5696
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5697
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5698
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5699
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5732,7 +5732,7 @@ deploymentSpec:
|
|
|
5732
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5733
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5734
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5735
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
|
|
5736
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5737
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5738
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5797,7 +5797,7 @@ deploymentSpec:
|
|
|
5797
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5798
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5799
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5800
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
5801
5801
|
exec-calculate-training-parameters-2:
|
|
5802
5802
|
container:
|
|
5803
5803
|
args:
|
|
@@ -5853,7 +5853,7 @@ deploymentSpec:
|
|
|
5853
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5854
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5855
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5856
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
5857
5857
|
exec-feature-attribution:
|
|
5858
5858
|
container:
|
|
5859
5859
|
args:
|
|
@@ -6044,8 +6044,8 @@ deploymentSpec:
|
|
|
6044
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6045
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6046
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6047
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6048
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
6049
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6050
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6051
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6062,7 +6062,7 @@ deploymentSpec:
|
|
|
6062
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6063
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6064
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6065
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
6066
6066
|
resources:
|
|
6067
6067
|
cpuLimit: 8.0
|
|
6068
6068
|
memoryLimit: 30.0
|
|
@@ -6093,7 +6093,7 @@ deploymentSpec:
|
|
|
6093
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6094
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6095
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6096
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6097
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6098
6098
|
container:
|
|
6099
6099
|
args:
|
|
@@ -6121,7 +6121,7 @@ deploymentSpec:
|
|
|
6121
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6122
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6123
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6125
6125
|
exec-get-or-create-model-description:
|
|
6126
6126
|
container:
|
|
6127
6127
|
args:
|
|
@@ -6150,7 +6150,7 @@ deploymentSpec:
|
|
|
6150
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6154
6154
|
exec-get-or-create-model-description-2:
|
|
6155
6155
|
container:
|
|
6156
6156
|
args:
|
|
@@ -6179,7 +6179,7 @@ deploymentSpec:
|
|
|
6179
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6180
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6181
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6182
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6183
6183
|
exec-get-prediction-image-uri:
|
|
6184
6184
|
container:
|
|
6185
6185
|
args:
|
|
@@ -6202,14 +6202,14 @@ deploymentSpec:
|
|
|
6202
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6203
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6204
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6205
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6206
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6207
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6208
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
|
|
6206
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
|
|
6207
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
|
|
6208
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
|
|
6209
6209
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6210
6210
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6211
6211
|
\ )\n return images[model_type]\n\n"
|
|
6212
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6213
6213
|
exec-get-prediction-image-uri-2:
|
|
6214
6214
|
container:
|
|
6215
6215
|
args:
|
|
@@ -6232,14 +6232,14 @@ deploymentSpec:
|
|
|
6232
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6233
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6234
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6235
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6236
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6237
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6238
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
|
|
6236
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
|
|
6237
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
|
|
6238
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
|
|
6239
6239
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6240
6240
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6241
6241
|
\ )\n return images[model_type]\n\n"
|
|
6242
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6243
6243
|
exec-get-predictions-column:
|
|
6244
6244
|
container:
|
|
6245
6245
|
args:
|
|
@@ -6262,7 +6262,7 @@ deploymentSpec:
|
|
|
6262
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6263
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6264
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6265
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6266
6266
|
exec-get-predictions-column-2:
|
|
6267
6267
|
container:
|
|
6268
6268
|
args:
|
|
@@ -6285,7 +6285,7 @@ deploymentSpec:
|
|
|
6285
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6286
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6287
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6288
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6289
6289
|
exec-importer:
|
|
6290
6290
|
importer:
|
|
6291
6291
|
artifactUri:
|
|
@@ -6817,7 +6817,7 @@ deploymentSpec:
|
|
|
6817
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6818
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6819
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6820
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6821
6821
|
exec-split-materialized-data:
|
|
6822
6822
|
container:
|
|
6823
6823
|
args:
|
|
@@ -6863,7 +6863,7 @@ deploymentSpec:
|
|
|
6863
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6864
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6865
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6866
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
|
|
6867
6867
|
exec-string-not-empty:
|
|
6868
6868
|
container:
|
|
6869
6869
|
args:
|
|
@@ -6887,7 +6887,7 @@ deploymentSpec:
|
|
|
6887
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6888
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6889
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6890
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6891
6891
|
exec-table-to-uri:
|
|
6892
6892
|
container:
|
|
6893
6893
|
args:
|
|
@@ -6917,7 +6917,7 @@ deploymentSpec:
|
|
|
6917
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6918
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6919
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6920
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6921
6921
|
exec-table-to-uri-2:
|
|
6922
6922
|
container:
|
|
6923
6923
|
args:
|
|
@@ -6947,7 +6947,7 @@ deploymentSpec:
|
|
|
6947
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6948
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6949
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6950
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6951
6951
|
exec-training-configurator-and-validator:
|
|
6952
6952
|
container:
|
|
6953
6953
|
args:
|
|
@@ -6992,7 +6992,7 @@ deploymentSpec:
|
|
|
6992
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6993
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6994
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6995
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
6996
6996
|
pipelineInfo:
|
|
6997
6997
|
description: The AutoML Forecasting pipeline.
|
|
6998
6998
|
name: learn-to-learn-forecasting
|
|
@@ -5559,7 +5559,7 @@ deploymentSpec:
|
|
|
5559
5559
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5560
5560
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5561
5561
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5562
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5562
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5563
5563
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5564
5564
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5565
5565
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5593,7 +5593,7 @@ deploymentSpec:
|
|
|
5593
5593
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5594
5594
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5595
5595
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5596
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5596
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5597
5597
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5598
5598
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5599
5599
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5628,11 +5628,11 @@ deploymentSpec:
|
|
|
5628
5628
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5629
5629
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5630
5630
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5631
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5631
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5632
5632
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5633
5633
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5634
5634
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5635
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5635
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5636
5636
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5637
5637
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5638
5638
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5671,11 +5671,11 @@ deploymentSpec:
|
|
|
5671
5671
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5672
5672
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5673
5673
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5674
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5674
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5675
5675
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5676
5676
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5677
5677
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5678
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5678
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20250129_0625",
|
|
5679
5679
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5680
5680
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5681
5681
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5714,7 +5714,7 @@ deploymentSpec:
|
|
|
5714
5714
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5715
5715
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5716
5716
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5717
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5717
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20250129_0625", "\",
|
|
5718
5718
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5719
5719
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5720
5720
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5779,7 +5779,7 @@ deploymentSpec:
|
|
|
5779
5779
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5780
5780
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5781
5781
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5782
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5782
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
5783
5783
|
exec-calculate-training-parameters-2:
|
|
5784
5784
|
container:
|
|
5785
5785
|
args:
|
|
@@ -5835,7 +5835,7 @@ deploymentSpec:
|
|
|
5835
5835
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5836
5836
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5837
5837
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5838
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5838
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
5839
5839
|
exec-feature-attribution:
|
|
5840
5840
|
container:
|
|
5841
5841
|
args:
|
|
@@ -6026,8 +6026,8 @@ deploymentSpec:
|
|
|
6026
6026
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6027
6027
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6028
6028
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6029
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6030
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6029
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
|
|
6030
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
6031
6031
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6032
6032
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6033
6033
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6044,7 +6044,7 @@ deploymentSpec:
|
|
|
6044
6044
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6045
6045
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6046
6046
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6047
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
6048
6048
|
resources:
|
|
6049
6049
|
cpuLimit: 8.0
|
|
6050
6050
|
memoryLimit: 30.0
|
|
@@ -6075,7 +6075,7 @@ deploymentSpec:
|
|
|
6075
6075
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6076
6076
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6077
6077
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6078
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6078
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6079
6079
|
exec-finalize-eval-quantile-parameters-2:
|
|
6080
6080
|
container:
|
|
6081
6081
|
args:
|
|
@@ -6103,7 +6103,7 @@ deploymentSpec:
|
|
|
6103
6103
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6104
6104
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6105
6105
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6106
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6106
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6107
6107
|
exec-get-or-create-model-description:
|
|
6108
6108
|
container:
|
|
6109
6109
|
args:
|
|
@@ -6132,7 +6132,7 @@ deploymentSpec:
|
|
|
6132
6132
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6133
6133
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6134
6134
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6135
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6135
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6136
6136
|
exec-get-or-create-model-description-2:
|
|
6137
6137
|
container:
|
|
6138
6138
|
args:
|
|
@@ -6161,7 +6161,7 @@ deploymentSpec:
|
|
|
6161
6161
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6162
6162
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6163
6163
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6164
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6164
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6165
6165
|
exec-get-prediction-image-uri:
|
|
6166
6166
|
container:
|
|
6167
6167
|
args:
|
|
@@ -6184,14 +6184,14 @@ deploymentSpec:
|
|
|
6184
6184
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6185
6185
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6186
6186
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6187
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6188
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6189
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6190
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6187
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
|
|
6188
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
|
|
6189
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
|
|
6190
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
|
|
6191
6191
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6192
6192
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6193
6193
|
\ )\n return images[model_type]\n\n"
|
|
6194
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6194
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6195
6195
|
exec-get-prediction-image-uri-2:
|
|
6196
6196
|
container:
|
|
6197
6197
|
args:
|
|
@@ -6214,14 +6214,14 @@ deploymentSpec:
|
|
|
6214
6214
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6215
6215
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6216
6216
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6217
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6218
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6219
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6220
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6217
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20250129_0625',\n\
|
|
6218
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20250129_0625',\n\
|
|
6219
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20250129_0625',\n\
|
|
6220
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20250129_0625',\n\
|
|
6221
6221
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6222
6222
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6223
6223
|
\ )\n return images[model_type]\n\n"
|
|
6224
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6224
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6225
6225
|
exec-get-predictions-column:
|
|
6226
6226
|
container:
|
|
6227
6227
|
args:
|
|
@@ -6244,7 +6244,7 @@ deploymentSpec:
|
|
|
6244
6244
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6245
6245
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6246
6246
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6247
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6247
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6248
6248
|
exec-get-predictions-column-2:
|
|
6249
6249
|
container:
|
|
6250
6250
|
args:
|
|
@@ -6267,7 +6267,7 @@ deploymentSpec:
|
|
|
6267
6267
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6268
6268
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6269
6269
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6270
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6270
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6271
6271
|
exec-importer:
|
|
6272
6272
|
importer:
|
|
6273
6273
|
artifactUri:
|
|
@@ -6799,7 +6799,7 @@ deploymentSpec:
|
|
|
6799
6799
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6800
6800
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6801
6801
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6802
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6802
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6803
6803
|
exec-split-materialized-data:
|
|
6804
6804
|
container:
|
|
6805
6805
|
args:
|
|
@@ -6845,7 +6845,7 @@ deploymentSpec:
|
|
|
6845
6845
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6846
6846
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6847
6847
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6848
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6848
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20250129_0625
|
|
6849
6849
|
exec-string-not-empty:
|
|
6850
6850
|
container:
|
|
6851
6851
|
args:
|
|
@@ -6869,7 +6869,7 @@ deploymentSpec:
|
|
|
6869
6869
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6870
6870
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6871
6871
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6872
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6872
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6873
6873
|
exec-table-to-uri:
|
|
6874
6874
|
container:
|
|
6875
6875
|
args:
|
|
@@ -6899,7 +6899,7 @@ deploymentSpec:
|
|
|
6899
6899
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6900
6900
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6901
6901
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6902
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6902
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6903
6903
|
exec-table-to-uri-2:
|
|
6904
6904
|
container:
|
|
6905
6905
|
args:
|
|
@@ -6929,7 +6929,7 @@ deploymentSpec:
|
|
|
6929
6929
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6930
6930
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6931
6931
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6932
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6932
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20250129_0625
|
|
6933
6933
|
exec-training-configurator-and-validator:
|
|
6934
6934
|
container:
|
|
6935
6935
|
args:
|
|
@@ -6974,7 +6974,7 @@ deploymentSpec:
|
|
|
6974
6974
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6975
6975
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6976
6976
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6977
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6977
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20250129_0625
|
|
6978
6978
|
pipelineInfo:
|
|
6979
6979
|
description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
|
|
6980
6980
|
name: sequence-to-sequence-forecasting
|