google-cloud-pipeline-components 2.16.0__py3-none-any.whl → 2.17.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/__init__.py +14 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +208 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py +3 -0
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +2 -4
- google_cloud_pipeline_components/_implementation/model_evaluation/version.py +1 -1
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +24 -15
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -38
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -38
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -38
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -38
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +45 -45
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +47 -47
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +24 -14
- google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py +180 -0
- google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py +178 -0
- google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py +20 -0
- google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +13 -0
- google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +109 -0
- google_cloud_pipeline_components/proto/preflight_validations_pb2.py +58 -0
- google_cloud_pipeline_components/proto/template_metadata_pb2.py +21 -17
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +43 -43
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +2 -18
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/METADATA +20 -17
- {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/RECORD +61 -53
- {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/top_level.txt +0 -0
|
@@ -5552,7 +5552,7 @@ deploymentSpec:
|
|
|
5552
5552
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5553
5553
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5554
5554
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5555
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5555
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5556
5556
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5557
5557
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5558
5558
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5586,7 +5586,7 @@ deploymentSpec:
|
|
|
5586
5586
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5587
5587
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5588
5588
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5589
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5589
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5590
5590
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5591
5591
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5592
5592
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5621,11 +5621,11 @@ deploymentSpec:
|
|
|
5621
5621
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5622
5622
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5623
5623
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5624
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5624
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5625
5625
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5626
5626
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5627
5627
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5628
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5628
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5629
5629
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5630
5630
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5631
5631
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5664,11 +5664,11 @@ deploymentSpec:
|
|
|
5664
5664
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5665
5665
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5666
5666
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5667
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5667
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5668
5668
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5669
5669
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5670
5670
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5671
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5671
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5672
5672
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5673
5673
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5674
5674
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5707,7 +5707,7 @@ deploymentSpec:
|
|
|
5707
5707
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5708
5708
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5709
5709
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5710
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5710
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
|
|
5711
5711
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5712
5712
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5713
5713
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5772,7 +5772,7 @@ deploymentSpec:
|
|
|
5772
5772
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5773
5773
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5774
5774
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5775
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5775
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
5776
5776
|
exec-calculate-training-parameters-2:
|
|
5777
5777
|
container:
|
|
5778
5778
|
args:
|
|
@@ -5828,7 +5828,7 @@ deploymentSpec:
|
|
|
5828
5828
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5829
5829
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5830
5830
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5831
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5831
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
5832
5832
|
exec-feature-attribution:
|
|
5833
5833
|
container:
|
|
5834
5834
|
args:
|
|
@@ -6019,8 +6019,8 @@ deploymentSpec:
|
|
|
6019
6019
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6020
6020
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6021
6021
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6022
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6023
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6022
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
|
|
6023
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6024
6024
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6025
6025
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6026
6026
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6037,7 +6037,7 @@ deploymentSpec:
|
|
|
6037
6037
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6038
6038
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6039
6039
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6040
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6040
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6041
6041
|
resources:
|
|
6042
6042
|
cpuLimit: 8.0
|
|
6043
6043
|
memoryLimit: 30.0
|
|
@@ -6068,7 +6068,7 @@ deploymentSpec:
|
|
|
6068
6068
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6069
6069
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6070
6070
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6071
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6071
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6072
6072
|
exec-finalize-eval-quantile-parameters-2:
|
|
6073
6073
|
container:
|
|
6074
6074
|
args:
|
|
@@ -6096,7 +6096,7 @@ deploymentSpec:
|
|
|
6096
6096
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6097
6097
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6098
6098
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6099
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6099
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6100
6100
|
exec-get-or-create-model-description:
|
|
6101
6101
|
container:
|
|
6102
6102
|
args:
|
|
@@ -6125,7 +6125,7 @@ deploymentSpec:
|
|
|
6125
6125
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6126
6126
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6127
6127
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6128
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6128
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6129
6129
|
exec-get-or-create-model-description-2:
|
|
6130
6130
|
container:
|
|
6131
6131
|
args:
|
|
@@ -6154,7 +6154,7 @@ deploymentSpec:
|
|
|
6154
6154
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6155
6155
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6156
6156
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6157
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6157
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6158
6158
|
exec-get-prediction-image-uri:
|
|
6159
6159
|
container:
|
|
6160
6160
|
args:
|
|
@@ -6177,14 +6177,14 @@ deploymentSpec:
|
|
|
6177
6177
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6178
6178
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6179
6179
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6180
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6181
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6182
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6183
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6180
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
|
|
6181
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
|
|
6182
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
|
|
6183
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
|
|
6184
6184
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6185
6185
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6186
6186
|
\ )\n return images[model_type]\n\n"
|
|
6187
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6187
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6188
6188
|
exec-get-prediction-image-uri-2:
|
|
6189
6189
|
container:
|
|
6190
6190
|
args:
|
|
@@ -6207,14 +6207,14 @@ deploymentSpec:
|
|
|
6207
6207
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6208
6208
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6209
6209
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6210
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6211
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6212
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6213
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6210
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
|
|
6211
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
|
|
6212
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
|
|
6213
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
|
|
6214
6214
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6215
6215
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6216
6216
|
\ )\n return images[model_type]\n\n"
|
|
6217
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6217
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6218
6218
|
exec-get-predictions-column:
|
|
6219
6219
|
container:
|
|
6220
6220
|
args:
|
|
@@ -6237,7 +6237,7 @@ deploymentSpec:
|
|
|
6237
6237
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6238
6238
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6239
6239
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6240
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6240
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6241
6241
|
exec-get-predictions-column-2:
|
|
6242
6242
|
container:
|
|
6243
6243
|
args:
|
|
@@ -6260,7 +6260,7 @@ deploymentSpec:
|
|
|
6260
6260
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6261
6261
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6262
6262
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6263
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6263
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6264
6264
|
exec-importer:
|
|
6265
6265
|
importer:
|
|
6266
6266
|
artifactUri:
|
|
@@ -6309,7 +6309,7 @@ deploymentSpec:
|
|
|
6309
6309
|
- -u
|
|
6310
6310
|
- -m
|
|
6311
6311
|
- launcher
|
|
6312
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6312
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6313
6313
|
exec-model-batch-explanation-2:
|
|
6314
6314
|
container:
|
|
6315
6315
|
args:
|
|
@@ -6351,7 +6351,7 @@ deploymentSpec:
|
|
|
6351
6351
|
- -u
|
|
6352
6352
|
- -m
|
|
6353
6353
|
- launcher
|
|
6354
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6354
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6355
6355
|
exec-model-batch-predict:
|
|
6356
6356
|
container:
|
|
6357
6357
|
args:
|
|
@@ -6706,7 +6706,7 @@ deploymentSpec:
|
|
|
6706
6706
|
- -u
|
|
6707
6707
|
- -m
|
|
6708
6708
|
- launcher
|
|
6709
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6709
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6710
6710
|
exec-model-upload-2:
|
|
6711
6711
|
container:
|
|
6712
6712
|
args:
|
|
@@ -6735,7 +6735,7 @@ deploymentSpec:
|
|
|
6735
6735
|
- -u
|
|
6736
6736
|
- -m
|
|
6737
6737
|
- launcher
|
|
6738
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6738
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6739
6739
|
exec-set-optional-inputs:
|
|
6740
6740
|
container:
|
|
6741
6741
|
args:
|
|
@@ -6792,7 +6792,7 @@ deploymentSpec:
|
|
|
6792
6792
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6793
6793
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6794
6794
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6795
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6795
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6796
6796
|
exec-split-materialized-data:
|
|
6797
6797
|
container:
|
|
6798
6798
|
args:
|
|
@@ -6838,7 +6838,7 @@ deploymentSpec:
|
|
|
6838
6838
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6839
6839
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6840
6840
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6841
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6841
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
|
|
6842
6842
|
exec-string-not-empty:
|
|
6843
6843
|
container:
|
|
6844
6844
|
args:
|
|
@@ -6862,7 +6862,7 @@ deploymentSpec:
|
|
|
6862
6862
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6863
6863
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6864
6864
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6865
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6865
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6866
6866
|
exec-table-to-uri:
|
|
6867
6867
|
container:
|
|
6868
6868
|
args:
|
|
@@ -6892,7 +6892,7 @@ deploymentSpec:
|
|
|
6892
6892
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6893
6893
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6894
6894
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6895
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6895
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6896
6896
|
exec-table-to-uri-2:
|
|
6897
6897
|
container:
|
|
6898
6898
|
args:
|
|
@@ -6922,7 +6922,7 @@ deploymentSpec:
|
|
|
6922
6922
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6923
6923
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6924
6924
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6925
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6925
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6926
6926
|
exec-training-configurator-and-validator:
|
|
6927
6927
|
container:
|
|
6928
6928
|
args:
|
|
@@ -6967,7 +6967,7 @@ deploymentSpec:
|
|
|
6967
6967
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6968
6968
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6969
6969
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6970
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6970
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6971
6971
|
pipelineInfo:
|
|
6972
6972
|
description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
|
|
6973
6973
|
name: temporal-fusion-transformer-forecasting
|
|
@@ -5577,7 +5577,7 @@ deploymentSpec:
|
|
|
5577
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5578
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5579
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5580
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5581
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5582
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5583
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5611,7 +5611,7 @@ deploymentSpec:
|
|
|
5611
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5612
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5613
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5614
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5615
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5616
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5617
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5646,11 +5646,11 @@ deploymentSpec:
|
|
|
5646
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5647
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5648
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5650
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5651
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5652
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5653
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5654
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5655
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5656
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5689,11 +5689,11 @@ deploymentSpec:
|
|
|
5689
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5690
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5691
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5693
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5694
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5695
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5696
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
|
|
5697
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5698
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5699
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5732,7 +5732,7 @@ deploymentSpec:
|
|
|
5732
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5733
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5734
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5735
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
|
|
5736
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5737
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5738
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5797,7 +5797,7 @@ deploymentSpec:
|
|
|
5797
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5798
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5799
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5800
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
5801
5801
|
exec-calculate-training-parameters-2:
|
|
5802
5802
|
container:
|
|
5803
5803
|
args:
|
|
@@ -5853,7 +5853,7 @@ deploymentSpec:
|
|
|
5853
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5854
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5855
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5856
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
5857
5857
|
exec-feature-attribution:
|
|
5858
5858
|
container:
|
|
5859
5859
|
args:
|
|
@@ -6044,8 +6044,8 @@ deploymentSpec:
|
|
|
6044
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6045
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6046
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6047
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6048
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6049
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6050
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6051
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6062,7 +6062,7 @@ deploymentSpec:
|
|
|
6062
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6063
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6064
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6065
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6066
6066
|
resources:
|
|
6067
6067
|
cpuLimit: 8.0
|
|
6068
6068
|
memoryLimit: 30.0
|
|
@@ -6093,7 +6093,7 @@ deploymentSpec:
|
|
|
6093
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6094
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6095
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6096
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6097
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6098
6098
|
container:
|
|
6099
6099
|
args:
|
|
@@ -6121,7 +6121,7 @@ deploymentSpec:
|
|
|
6121
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6122
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6123
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6125
6125
|
exec-get-or-create-model-description:
|
|
6126
6126
|
container:
|
|
6127
6127
|
args:
|
|
@@ -6150,7 +6150,7 @@ deploymentSpec:
|
|
|
6150
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6154
6154
|
exec-get-or-create-model-description-2:
|
|
6155
6155
|
container:
|
|
6156
6156
|
args:
|
|
@@ -6179,7 +6179,7 @@ deploymentSpec:
|
|
|
6179
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6180
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6181
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6182
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6183
6183
|
exec-get-prediction-image-uri:
|
|
6184
6184
|
container:
|
|
6185
6185
|
args:
|
|
@@ -6202,14 +6202,14 @@ deploymentSpec:
|
|
|
6202
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6203
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6204
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6205
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6206
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6207
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6208
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
|
|
6206
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
|
|
6207
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
|
|
6208
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
|
|
6209
6209
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6210
6210
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6211
6211
|
\ )\n return images[model_type]\n\n"
|
|
6212
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6213
6213
|
exec-get-prediction-image-uri-2:
|
|
6214
6214
|
container:
|
|
6215
6215
|
args:
|
|
@@ -6232,14 +6232,14 @@ deploymentSpec:
|
|
|
6232
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6233
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6234
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6235
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6236
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6237
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6238
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
|
|
6236
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
|
|
6237
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
|
|
6238
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
|
|
6239
6239
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6240
6240
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6241
6241
|
\ )\n return images[model_type]\n\n"
|
|
6242
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6243
6243
|
exec-get-predictions-column:
|
|
6244
6244
|
container:
|
|
6245
6245
|
args:
|
|
@@ -6262,7 +6262,7 @@ deploymentSpec:
|
|
|
6262
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6263
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6264
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6265
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6266
6266
|
exec-get-predictions-column-2:
|
|
6267
6267
|
container:
|
|
6268
6268
|
args:
|
|
@@ -6285,7 +6285,7 @@ deploymentSpec:
|
|
|
6285
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6286
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6287
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6288
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6289
6289
|
exec-importer:
|
|
6290
6290
|
importer:
|
|
6291
6291
|
artifactUri:
|
|
@@ -6334,7 +6334,7 @@ deploymentSpec:
|
|
|
6334
6334
|
- -u
|
|
6335
6335
|
- -m
|
|
6336
6336
|
- launcher
|
|
6337
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6337
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6338
6338
|
exec-model-batch-explanation-2:
|
|
6339
6339
|
container:
|
|
6340
6340
|
args:
|
|
@@ -6376,7 +6376,7 @@ deploymentSpec:
|
|
|
6376
6376
|
- -u
|
|
6377
6377
|
- -m
|
|
6378
6378
|
- launcher
|
|
6379
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6379
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6380
6380
|
exec-model-batch-predict:
|
|
6381
6381
|
container:
|
|
6382
6382
|
args:
|
|
@@ -6731,7 +6731,7 @@ deploymentSpec:
|
|
|
6731
6731
|
- -u
|
|
6732
6732
|
- -m
|
|
6733
6733
|
- launcher
|
|
6734
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6734
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6735
6735
|
exec-model-upload-2:
|
|
6736
6736
|
container:
|
|
6737
6737
|
args:
|
|
@@ -6760,7 +6760,7 @@ deploymentSpec:
|
|
|
6760
6760
|
- -u
|
|
6761
6761
|
- -m
|
|
6762
6762
|
- launcher
|
|
6763
|
-
image: gcr.io/ml-pipeline/automl-tables-private:1.0.
|
|
6763
|
+
image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
|
|
6764
6764
|
exec-set-optional-inputs:
|
|
6765
6765
|
container:
|
|
6766
6766
|
args:
|
|
@@ -6817,7 +6817,7 @@ deploymentSpec:
|
|
|
6817
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6818
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6819
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6820
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6821
6821
|
exec-split-materialized-data:
|
|
6822
6822
|
container:
|
|
6823
6823
|
args:
|
|
@@ -6863,7 +6863,7 @@ deploymentSpec:
|
|
|
6863
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6864
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6865
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6866
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
|
|
6867
6867
|
exec-string-not-empty:
|
|
6868
6868
|
container:
|
|
6869
6869
|
args:
|
|
@@ -6887,7 +6887,7 @@ deploymentSpec:
|
|
|
6887
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6888
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6889
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6890
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6891
6891
|
exec-table-to-uri:
|
|
6892
6892
|
container:
|
|
6893
6893
|
args:
|
|
@@ -6917,7 +6917,7 @@ deploymentSpec:
|
|
|
6917
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6918
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6919
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6920
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6921
6921
|
exec-table-to-uri-2:
|
|
6922
6922
|
container:
|
|
6923
6923
|
args:
|
|
@@ -6947,7 +6947,7 @@ deploymentSpec:
|
|
|
6947
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6948
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6949
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6950
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
|
|
6951
6951
|
exec-training-configurator-and-validator:
|
|
6952
6952
|
container:
|
|
6953
6953
|
args:
|
|
@@ -6992,7 +6992,7 @@ deploymentSpec:
|
|
|
6992
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6993
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6994
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6995
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
|
|
6996
6996
|
pipelineInfo:
|
|
6997
6997
|
description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
|
|
6998
6998
|
name: time-series-dense-encoder-forecasting
|
|
@@ -65,7 +65,7 @@ def automated_feature_engineering(
|
|
|
65
65
|
' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
|
|
66
66
|
' "container_spec": {"image_uri":"'
|
|
67
67
|
),
|
|
68
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
68
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625',
|
|
69
69
|
'", "args": ["feature_engineering", "--project=', project,
|
|
70
70
|
'", "--location=', location, '", "--data_source_bigquery_table_path=',
|
|
71
71
|
data_source_bigquery_table_path,
|