google-cloud-pipeline-components 2.16.0__py3-none-any.whl → 2.17.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  2. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/__init__.py +14 -0
  3. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +208 -0
  4. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation/component.py +3 -0
  5. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +2 -4
  6. google_cloud_pipeline_components/_implementation/model_evaluation/version.py +1 -1
  7. google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +24 -15
  8. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  9. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  10. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  11. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -38
  12. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -38
  13. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -38
  14. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -38
  15. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  16. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +45 -45
  17. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +47 -47
  18. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  19. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  20. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  21. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  22. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  23. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  24. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  26. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  27. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  28. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  30. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  31. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  32. google_cloud_pipeline_components/preview/custom_job/utils.py +24 -14
  33. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_classification_pipeline.py +180 -0
  34. google_cloud_pipeline_components/preview/model_evaluation/evaluation_llm_text_generation_pipeline.py +178 -0
  35. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/__init__.py +20 -0
  36. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +13 -0
  37. google_cloud_pipeline_components/preview/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +109 -0
  38. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +58 -0
  39. google_cloud_pipeline_components/proto/template_metadata_pb2.py +21 -17
  40. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  41. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  42. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  43. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  44. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  45. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +43 -43
  46. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  50. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  51. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  52. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  53. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  54. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  55. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +2 -18
  56. google_cloud_pipeline_components/version.py +1 -1
  57. {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/METADATA +20 -17
  58. {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/RECORD +61 -53
  59. {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/WHEEL +1 -1
  60. {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/LICENSE +0 -0
  61. {google_cloud_pipeline_components-2.16.0.dist-info → google_cloud_pipeline_components-2.17.0.dist-info}/top_level.txt +0 -0
@@ -5577,7 +5577,7 @@ deploymentSpec:
5577
5577
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5578
5578
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5579
5579
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5580
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5580
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5581
5581
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5582
5582
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5583
5583
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5611,7 +5611,7 @@ deploymentSpec:
5611
5611
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5612
5612
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5613
5613
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5614
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5614
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5615
5615
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5616
5616
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5617
5617
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5646,11 +5646,11 @@ deploymentSpec:
5646
5646
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5647
5647
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5648
5648
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5650
5650
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5651
5651
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5652
5652
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5653
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5653
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5654
5654
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5655
5655
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5656
5656
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5689,11 +5689,11 @@ deploymentSpec:
5689
5689
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5690
5690
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5691
5691
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5693
5693
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5694
5694
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5695
5695
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5696
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5696
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5697
5697
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5698
5698
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5699
5699
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5732,7 +5732,7 @@ deploymentSpec:
5732
5732
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5733
5733
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5734
5734
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5735
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5735
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
5736
5736
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5737
5737
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5738
5738
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5797,7 +5797,7 @@ deploymentSpec:
5797
5797
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5798
5798
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5799
5799
  \ stage_2_single_run_max_secs,\n )\n\n"
5800
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5800
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5801
5801
  exec-calculate-training-parameters-2:
5802
5802
  container:
5803
5803
  args:
@@ -5853,7 +5853,7 @@ deploymentSpec:
5853
5853
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5854
5854
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5855
5855
  \ stage_2_single_run_max_secs,\n )\n\n"
5856
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5856
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5857
5857
  exec-feature-attribution:
5858
5858
  container:
5859
5859
  args:
@@ -6044,8 +6044,8 @@ deploymentSpec:
6044
6044
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6045
6045
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6046
6046
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6047
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6048
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6047
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6048
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6049
6049
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6050
6050
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6051
6051
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6062,7 +6062,7 @@ deploymentSpec:
6062
6062
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6063
6063
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6064
6064
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6065
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6065
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6066
6066
  resources:
6067
6067
  cpuLimit: 8.0
6068
6068
  memoryLimit: 30.0
@@ -6093,7 +6093,7 @@ deploymentSpec:
6093
6093
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6094
6094
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6095
6095
  \ ),\n )(forecasting_type, quantiles)\n\n"
6096
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6096
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6097
6097
  exec-finalize-eval-quantile-parameters-2:
6098
6098
  container:
6099
6099
  args:
@@ -6121,7 +6121,7 @@ deploymentSpec:
6121
6121
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6122
6122
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6123
6123
  \ ),\n )(forecasting_type, quantiles)\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6125
6125
  exec-get-or-create-model-description:
6126
6126
  container:
6127
6127
  args:
@@ -6150,7 +6150,7 @@ deploymentSpec:
6150
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6154
6154
  exec-get-or-create-model-description-2:
6155
6155
  container:
6156
6156
  args:
@@ -6179,7 +6179,7 @@ deploymentSpec:
6179
6179
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6180
6180
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6181
6181
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6182
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6183
6183
  exec-get-prediction-image-uri:
6184
6184
  container:
6185
6185
  args:
@@ -6202,14 +6202,14 @@ deploymentSpec:
6202
6202
  Returns the prediction image corresponding to the given model type.\"\"\"\
6203
6203
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6204
6204
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6205
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6206
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6207
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6208
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6205
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6206
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6207
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6208
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6209
6209
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6210
6210
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6211
6211
  \ )\n return images[model_type]\n\n"
6212
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6212
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6213
6213
  exec-get-prediction-image-uri-2:
6214
6214
  container:
6215
6215
  args:
@@ -6232,14 +6232,14 @@ deploymentSpec:
6232
6232
  Returns the prediction image corresponding to the given model type.\"\"\"\
6233
6233
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6234
6234
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6235
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6236
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6237
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6238
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6235
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6236
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6237
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6238
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6239
6239
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6240
6240
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6241
6241
  \ )\n return images[model_type]\n\n"
6242
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6242
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6243
6243
  exec-get-predictions-column:
6244
6244
  container:
6245
6245
  args:
@@ -6262,7 +6262,7 @@ deploymentSpec:
6262
6262
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6263
6263
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6264
6264
  \ return f'predicted_{target_column}.value'\n\n"
6265
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6265
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6266
6266
  exec-get-predictions-column-2:
6267
6267
  container:
6268
6268
  args:
@@ -6285,7 +6285,7 @@ deploymentSpec:
6285
6285
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6286
6286
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6287
6287
  \ return f'predicted_{target_column}.value'\n\n"
6288
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6288
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6289
6289
  exec-importer:
6290
6290
  importer:
6291
6291
  artifactUri:
@@ -6334,7 +6334,7 @@ deploymentSpec:
6334
6334
  - -u
6335
6335
  - -m
6336
6336
  - launcher
6337
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
6337
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6338
6338
  exec-model-batch-explanation-2:
6339
6339
  container:
6340
6340
  args:
@@ -6376,7 +6376,7 @@ deploymentSpec:
6376
6376
  - -u
6377
6377
  - -m
6378
6378
  - launcher
6379
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
6379
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6380
6380
  exec-model-batch-predict:
6381
6381
  container:
6382
6382
  args:
@@ -6731,7 +6731,7 @@ deploymentSpec:
6731
6731
  - -u
6732
6732
  - -m
6733
6733
  - launcher
6734
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
6734
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6735
6735
  exec-model-upload-2:
6736
6736
  container:
6737
6737
  args:
@@ -6760,7 +6760,7 @@ deploymentSpec:
6760
6760
  - -u
6761
6761
  - -m
6762
6762
  - launcher
6763
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
6763
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6764
6764
  exec-set-optional-inputs:
6765
6765
  container:
6766
6766
  args:
@@ -6817,7 +6817,7 @@ deploymentSpec:
6817
6817
  \ 'model_display_name',\n 'transformations',\n ],\n\
6818
6818
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6819
6819
  \ model_display_name,\n transformations,\n )\n\n"
6820
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6821
6821
  exec-split-materialized-data:
6822
6822
  container:
6823
6823
  args:
@@ -6863,7 +6863,7 @@ deploymentSpec:
6863
6863
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6864
6864
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6865
6865
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6866
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6866
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6867
6867
  exec-string-not-empty:
6868
6868
  container:
6869
6869
  args:
@@ -6887,7 +6887,7 @@ deploymentSpec:
6887
6887
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6888
6888
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6889
6889
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6890
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6891
6891
  exec-table-to-uri:
6892
6892
  container:
6893
6893
  args:
@@ -6917,7 +6917,7 @@ deploymentSpec:
6917
6917
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6918
6918
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6919
6919
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6920
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6920
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6921
6921
  exec-table-to-uri-2:
6922
6922
  container:
6923
6923
  args:
@@ -6947,7 +6947,7 @@ deploymentSpec:
6947
6947
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6948
6948
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6949
6949
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6950
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6950
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6951
6951
  exec-training-configurator-and-validator:
6952
6952
  container:
6953
6953
  args:
@@ -6992,7 +6992,7 @@ deploymentSpec:
6992
6992
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6993
6993
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6994
6994
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6995
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6995
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6996
6996
  pipelineInfo:
6997
6997
  description: The AutoML Forecasting pipeline.
6998
6998
  name: learn-to-learn-forecasting
@@ -5559,7 +5559,7 @@ deploymentSpec:
5559
5559
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5560
5560
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5561
5561
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5562
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5562
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5563
5563
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5564
5564
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5565
5565
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5593,7 +5593,7 @@ deploymentSpec:
5593
5593
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5594
5594
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5595
5595
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5596
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5596
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5597
5597
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5598
5598
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5599
5599
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5628,11 +5628,11 @@ deploymentSpec:
5628
5628
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5629
5629
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5630
5630
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5631
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5631
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5632
5632
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5633
5633
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5634
5634
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5635
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5635
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5636
5636
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5637
5637
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5638
5638
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5671,11 +5671,11 @@ deploymentSpec:
5671
5671
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5672
5672
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5673
5673
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5674
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5674
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5675
5675
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5676
5676
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5677
5677
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5678
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5678
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240808_0625",
5679
5679
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5680
5680
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5681
5681
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5714,7 +5714,7 @@ deploymentSpec:
5714
5714
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5715
5715
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5716
5716
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5717
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5717
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240808_0625", "\",
5718
5718
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5719
5719
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5720
5720
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5779,7 +5779,7 @@ deploymentSpec:
5779
5779
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5780
5780
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5781
5781
  \ stage_2_single_run_max_secs,\n )\n\n"
5782
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5782
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5783
5783
  exec-calculate-training-parameters-2:
5784
5784
  container:
5785
5785
  args:
@@ -5835,7 +5835,7 @@ deploymentSpec:
5835
5835
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5836
5836
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5837
5837
  \ stage_2_single_run_max_secs,\n )\n\n"
5838
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5838
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
5839
5839
  exec-feature-attribution:
5840
5840
  container:
5841
5841
  args:
@@ -6026,8 +6026,8 @@ deploymentSpec:
6026
6026
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6027
6027
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6028
6028
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6029
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6030
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6029
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6030
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6031
6031
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6032
6032
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6033
6033
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6044,7 +6044,7 @@ deploymentSpec:
6044
6044
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6045
6045
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6046
6046
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6047
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6047
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6048
6048
  resources:
6049
6049
  cpuLimit: 8.0
6050
6050
  memoryLimit: 30.0
@@ -6075,7 +6075,7 @@ deploymentSpec:
6075
6075
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6076
6076
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6077
6077
  \ ),\n )(forecasting_type, quantiles)\n\n"
6078
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6078
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6079
6079
  exec-finalize-eval-quantile-parameters-2:
6080
6080
  container:
6081
6081
  args:
@@ -6103,7 +6103,7 @@ deploymentSpec:
6103
6103
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6104
6104
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6105
6105
  \ ),\n )(forecasting_type, quantiles)\n\n"
6106
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6106
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6107
6107
  exec-get-or-create-model-description:
6108
6108
  container:
6109
6109
  args:
@@ -6132,7 +6132,7 @@ deploymentSpec:
6132
6132
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6133
6133
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6134
6134
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6135
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6135
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6136
6136
  exec-get-or-create-model-description-2:
6137
6137
  container:
6138
6138
  args:
@@ -6161,7 +6161,7 @@ deploymentSpec:
6161
6161
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6162
6162
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6163
6163
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6164
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6164
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6165
6165
  exec-get-prediction-image-uri:
6166
6166
  container:
6167
6167
  args:
@@ -6184,14 +6184,14 @@ deploymentSpec:
6184
6184
  Returns the prediction image corresponding to the given model type.\"\"\"\
6185
6185
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6186
6186
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6187
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6188
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6189
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6190
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6187
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6188
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6189
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6190
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6191
6191
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6192
6192
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6193
6193
  \ )\n return images[model_type]\n\n"
6194
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6194
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6195
6195
  exec-get-prediction-image-uri-2:
6196
6196
  container:
6197
6197
  args:
@@ -6214,14 +6214,14 @@ deploymentSpec:
6214
6214
  Returns the prediction image corresponding to the given model type.\"\"\"\
6215
6215
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6216
6216
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6217
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6218
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6219
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6220
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6217
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240808_0625',\n\
6218
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240808_0625',\n\
6219
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240808_0625',\n\
6220
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240808_0625',\n\
6221
6221
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6222
6222
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6223
6223
  \ )\n return images[model_type]\n\n"
6224
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6224
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6225
6225
  exec-get-predictions-column:
6226
6226
  container:
6227
6227
  args:
@@ -6244,7 +6244,7 @@ deploymentSpec:
6244
6244
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6245
6245
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6246
6246
  \ return f'predicted_{target_column}.value'\n\n"
6247
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6247
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6248
6248
  exec-get-predictions-column-2:
6249
6249
  container:
6250
6250
  args:
@@ -6267,7 +6267,7 @@ deploymentSpec:
6267
6267
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6268
6268
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6269
6269
  \ return f'predicted_{target_column}.value'\n\n"
6270
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6270
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6271
6271
  exec-importer:
6272
6272
  importer:
6273
6273
  artifactUri:
@@ -6316,7 +6316,7 @@ deploymentSpec:
6316
6316
  - -u
6317
6317
  - -m
6318
6318
  - launcher
6319
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
6319
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6320
6320
  exec-model-batch-explanation-2:
6321
6321
  container:
6322
6322
  args:
@@ -6358,7 +6358,7 @@ deploymentSpec:
6358
6358
  - -u
6359
6359
  - -m
6360
6360
  - launcher
6361
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.13
6361
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6362
6362
  exec-model-batch-predict:
6363
6363
  container:
6364
6364
  args:
@@ -6713,7 +6713,7 @@ deploymentSpec:
6713
6713
  - -u
6714
6714
  - -m
6715
6715
  - launcher
6716
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
6716
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6717
6717
  exec-model-upload-2:
6718
6718
  container:
6719
6719
  args:
@@ -6742,7 +6742,7 @@ deploymentSpec:
6742
6742
  - -u
6743
6743
  - -m
6744
6744
  - launcher
6745
- image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
6745
+ image: gcr.io/ml-pipeline/automl-tables-private:1.0.18
6746
6746
  exec-set-optional-inputs:
6747
6747
  container:
6748
6748
  args:
@@ -6799,7 +6799,7 @@ deploymentSpec:
6799
6799
  \ 'model_display_name',\n 'transformations',\n ],\n\
6800
6800
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6801
6801
  \ model_display_name,\n transformations,\n )\n\n"
6802
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6802
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6803
6803
  exec-split-materialized-data:
6804
6804
  container:
6805
6805
  args:
@@ -6845,7 +6845,7 @@ deploymentSpec:
6845
6845
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6846
6846
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6847
6847
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6848
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6848
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240808_0625
6849
6849
  exec-string-not-empty:
6850
6850
  container:
6851
6851
  args:
@@ -6869,7 +6869,7 @@ deploymentSpec:
6869
6869
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6870
6870
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6871
6871
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6872
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6872
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6873
6873
  exec-table-to-uri:
6874
6874
  container:
6875
6875
  args:
@@ -6899,7 +6899,7 @@ deploymentSpec:
6899
6899
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6900
6900
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6901
6901
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6902
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6902
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6903
6903
  exec-table-to-uri-2:
6904
6904
  container:
6905
6905
  args:
@@ -6929,7 +6929,7 @@ deploymentSpec:
6929
6929
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6930
6930
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6931
6931
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6932
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6932
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240808_0625
6933
6933
  exec-training-configurator-and-validator:
6934
6934
  container:
6935
6935
  args:
@@ -6974,7 +6974,7 @@ deploymentSpec:
6974
6974
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6975
6975
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6976
6976
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6977
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6977
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240808_0625
6978
6978
  pipelineInfo:
6979
6979
  description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
6980
6980
  name: sequence-to-sequence-forecasting