glitchlings 0.4.5__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of glitchlings might be problematic. Click here for more details.

Files changed (53) hide show
  1. glitchlings/__init__.py +71 -0
  2. glitchlings/__main__.py +8 -0
  3. glitchlings/_zoo_rust.cp311-win_amd64.pyd +0 -0
  4. glitchlings/compat.py +282 -0
  5. glitchlings/config.py +386 -0
  6. glitchlings/config.toml +3 -0
  7. glitchlings/data/__init__.py +1 -0
  8. glitchlings/data/hokey_assets.json +193 -0
  9. glitchlings/dlc/__init__.py +7 -0
  10. glitchlings/dlc/_shared.py +153 -0
  11. glitchlings/dlc/huggingface.py +81 -0
  12. glitchlings/dlc/prime.py +254 -0
  13. glitchlings/dlc/pytorch.py +166 -0
  14. glitchlings/dlc/pytorch_lightning.py +209 -0
  15. glitchlings/lexicon/__init__.py +192 -0
  16. glitchlings/lexicon/_cache.py +108 -0
  17. glitchlings/lexicon/data/default_vector_cache.json +82 -0
  18. glitchlings/lexicon/metrics.py +162 -0
  19. glitchlings/lexicon/vector.py +652 -0
  20. glitchlings/lexicon/wordnet.py +228 -0
  21. glitchlings/main.py +364 -0
  22. glitchlings/util/__init__.py +195 -0
  23. glitchlings/util/adapters.py +27 -0
  24. glitchlings/util/hokey_generator.py +144 -0
  25. glitchlings/util/stretch_locator.py +140 -0
  26. glitchlings/util/stretchability.py +375 -0
  27. glitchlings/zoo/__init__.py +172 -0
  28. glitchlings/zoo/_ocr_confusions.py +32 -0
  29. glitchlings/zoo/_rate.py +131 -0
  30. glitchlings/zoo/_rust_extensions.py +143 -0
  31. glitchlings/zoo/_sampling.py +54 -0
  32. glitchlings/zoo/_text_utils.py +100 -0
  33. glitchlings/zoo/adjax.py +128 -0
  34. glitchlings/zoo/apostrofae.py +127 -0
  35. glitchlings/zoo/assets/__init__.py +0 -0
  36. glitchlings/zoo/assets/apostrofae_pairs.json +32 -0
  37. glitchlings/zoo/core.py +582 -0
  38. glitchlings/zoo/hokey.py +173 -0
  39. glitchlings/zoo/jargoyle.py +335 -0
  40. glitchlings/zoo/mim1c.py +109 -0
  41. glitchlings/zoo/ocr_confusions.tsv +30 -0
  42. glitchlings/zoo/redactyl.py +193 -0
  43. glitchlings/zoo/reduple.py +148 -0
  44. glitchlings/zoo/rushmore.py +153 -0
  45. glitchlings/zoo/scannequin.py +171 -0
  46. glitchlings/zoo/typogre.py +231 -0
  47. glitchlings/zoo/zeedub.py +185 -0
  48. glitchlings-0.4.5.dist-info/METADATA +648 -0
  49. glitchlings-0.4.5.dist-info/RECORD +53 -0
  50. glitchlings-0.4.5.dist-info/WHEEL +5 -0
  51. glitchlings-0.4.5.dist-info/entry_points.txt +2 -0
  52. glitchlings-0.4.5.dist-info/licenses/LICENSE +201 -0
  53. glitchlings-0.4.5.dist-info/top_level.txt +1 -0
@@ -0,0 +1,209 @@
1
+ """Integration helpers for PyTorch Lightning data modules."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from collections.abc import Iterable, Mapping, Sequence
6
+ from typing import Any, cast
7
+
8
+ from ..compat import get_pytorch_lightning_datamodule, require_pytorch_lightning
9
+ from ..util.adapters import coerce_gaggle
10
+ from ..zoo import Gaggle, Glitchling
11
+ from ._shared import corrupt_text_value, normalize_column_spec
12
+
13
+
14
+ def _glitch_batch(batch: Any, columns: list[str], gaggle: Gaggle) -> Any:
15
+ """Apply glitchlings to the configured batch columns."""
16
+ if not isinstance(batch, Mapping):
17
+ return batch
18
+
19
+ if hasattr(batch, "copy"):
20
+ mutated = batch.copy()
21
+ else:
22
+ mutated = dict(batch)
23
+
24
+ missing = [column for column in columns if column not in mutated]
25
+ if missing:
26
+ missing_str = ", ".join(sorted(missing))
27
+ raise ValueError(f"Columns not found in batch: {missing_str}")
28
+
29
+ for column in columns:
30
+ mutated[column] = corrupt_text_value(mutated[column], gaggle)
31
+
32
+ return mutated
33
+
34
+
35
+ def _wrap_dataloader(dataloader: Any, columns: list[str], gaggle: Gaggle) -> Any:
36
+ """Wrap a dataloader so yielded batches are corrupted lazily."""
37
+ if dataloader is None:
38
+ return None
39
+
40
+ if isinstance(dataloader, Mapping):
41
+ mapping_type = cast(type[Any], dataloader.__class__)
42
+ return mapping_type(
43
+ {key: _wrap_dataloader(value, columns, gaggle) for key, value in dataloader.items()}
44
+ )
45
+
46
+ if isinstance(dataloader, list):
47
+ return [_wrap_dataloader(value, columns, gaggle) for value in dataloader]
48
+
49
+ if isinstance(dataloader, tuple):
50
+ return tuple(_wrap_dataloader(value, columns, gaggle) for value in dataloader)
51
+
52
+ if isinstance(dataloader, Sequence) and not isinstance(dataloader, (str, bytes, bytearray)):
53
+ sequence_type = cast(type[Any], dataloader.__class__)
54
+ return sequence_type(_wrap_dataloader(value, columns, gaggle) for value in dataloader)
55
+
56
+ return _GlitchedDataLoader(dataloader, columns, gaggle)
57
+
58
+
59
+ class _GlitchedDataLoader:
60
+ """Proxy dataloader that glitches batches produced by the wrapped loader."""
61
+
62
+ def __init__(self, dataloader: Any, columns: list[str], gaggle: Gaggle) -> None:
63
+ self._dataloader = dataloader
64
+ self._columns = columns
65
+ self._gaggle = gaggle
66
+
67
+ def __iter__(self) -> Any:
68
+ for batch in self._dataloader:
69
+ yield _glitch_batch(batch, self._columns, self._gaggle)
70
+
71
+ def __len__(self) -> int:
72
+ return len(self._dataloader)
73
+
74
+ def __getattr__(self, attribute: str) -> Any:
75
+ return getattr(self._dataloader, attribute)
76
+
77
+
78
+ def _glitch_datamodule(
79
+ datamodule: Any,
80
+ glitchlings: Glitchling | Gaggle | str | Iterable[str | Glitchling],
81
+ column: str | Sequence[str],
82
+ *,
83
+ seed: int = 151,
84
+ ) -> Any:
85
+ """Return a proxy that applies glitchlings to batches from the datamodule."""
86
+
87
+ columns = normalize_column_spec(column)
88
+ if columns is None: # pragma: no cover - defensive
89
+ raise ValueError("At least one column must be specified")
90
+ # Lightning datamodules only support string column names (mapping keys)
91
+ columns_str = cast(list[str], columns)
92
+ gaggle = coerce_gaggle(glitchlings, seed=seed)
93
+ return _GlitchedLightningDataModule(datamodule, columns_str, gaggle)
94
+
95
+
96
+ class _GlitchedLightningDataModule:
97
+ """Proxy wrapper around a LightningDataModule applying glitchlings to batches."""
98
+
99
+ def __init__(self, base: Any, columns: list[str], gaggle: Gaggle) -> None:
100
+ object.__setattr__(self, "_glitch_base", base)
101
+ object.__setattr__(self, "_glitch_columns", columns)
102
+ object.__setattr__(self, "_glitch_gaggle", gaggle)
103
+
104
+ def __getattr__(self, attribute: str) -> Any:
105
+ return getattr(self._glitch_base, attribute)
106
+
107
+ def __setattr__(self, attribute: str, value: Any) -> None:
108
+ if attribute.startswith("_glitch_"):
109
+ object.__setattr__(self, attribute, value)
110
+ else:
111
+ setattr(self._glitch_base, attribute, value)
112
+
113
+ def __delattr__(self, attribute: str) -> None:
114
+ if attribute.startswith("_glitch_"):
115
+ object.__delattr__(self, attribute)
116
+ else:
117
+ delattr(self._glitch_base, attribute)
118
+
119
+ def __dir__(self) -> list[str]:
120
+ return sorted(set(dir(self.__class__)) | set(dir(self._glitch_base)))
121
+
122
+ # LightningDataModule API -------------------------------------------------
123
+ def prepare_data(self, *args: Any, **kwargs: Any) -> Any:
124
+ return self._glitch_base.prepare_data(*args, **kwargs)
125
+
126
+ def setup(self, *args: Any, **kwargs: Any) -> Any:
127
+ return self._glitch_base.setup(*args, **kwargs)
128
+
129
+ def teardown(self, *args: Any, **kwargs: Any) -> Any:
130
+ return self._glitch_base.teardown(*args, **kwargs)
131
+
132
+ def state_dict(self) -> Mapping[str, Any]:
133
+ state = self._glitch_base.state_dict()
134
+ return cast(Mapping[str, Any], state)
135
+
136
+ def load_state_dict(self, state_dict: Mapping[str, Any]) -> None:
137
+ self._glitch_base.load_state_dict(state_dict)
138
+
139
+ def transfer_batch_to_device(self, batch: Any, device: Any, dataloader_idx: int) -> Any:
140
+ return self._glitch_base.transfer_batch_to_device(batch, device, dataloader_idx)
141
+
142
+ def on_before_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any:
143
+ return self._glitch_base.on_before_batch_transfer(batch, dataloader_idx)
144
+
145
+ def on_after_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any:
146
+ return self._glitch_base.on_after_batch_transfer(batch, dataloader_idx)
147
+
148
+ def train_dataloader(self, *args: Any, **kwargs: Any) -> Any:
149
+ loader = self._glitch_base.train_dataloader(*args, **kwargs)
150
+ return _wrap_dataloader(loader, self._glitch_columns, self._glitch_gaggle)
151
+
152
+ def val_dataloader(self, *args: Any, **kwargs: Any) -> Any:
153
+ loader = self._glitch_base.val_dataloader(*args, **kwargs)
154
+ return _wrap_dataloader(loader, self._glitch_columns, self._glitch_gaggle)
155
+
156
+ def test_dataloader(self, *args: Any, **kwargs: Any) -> Any:
157
+ loader = self._glitch_base.test_dataloader(*args, **kwargs)
158
+ return _wrap_dataloader(loader, self._glitch_columns, self._glitch_gaggle)
159
+
160
+ def predict_dataloader(self, *args: Any, **kwargs: Any) -> Any:
161
+ loader = self._glitch_base.predict_dataloader(*args, **kwargs)
162
+ return _wrap_dataloader(loader, self._glitch_columns, self._glitch_gaggle)
163
+
164
+
165
+ def _ensure_datamodule_class() -> Any:
166
+ """Return the Lightning ``LightningDataModule`` patched with ``.glitch``."""
167
+
168
+ datamodule_cls = get_pytorch_lightning_datamodule()
169
+ if datamodule_cls is None: # pragma: no cover - dependency is optional
170
+ module = require_pytorch_lightning("pytorch_lightning is not installed")
171
+ datamodule_cls = getattr(module, "LightningDataModule", None)
172
+ if datamodule_cls is None:
173
+ raise ModuleNotFoundError("pytorch_lightning is not installed")
174
+
175
+ if getattr(datamodule_cls, "glitch", None) is None:
176
+
177
+ def glitch(
178
+ self: Any,
179
+ glitchlings: Glitchling | Gaggle | str | Iterable[str | Glitchling],
180
+ *,
181
+ column: str | Sequence[str],
182
+ seed: int = 151,
183
+ **_: Any,
184
+ ) -> Any:
185
+ return _glitch_datamodule(self, glitchlings, column, seed=seed)
186
+
187
+ setattr(datamodule_cls, "glitch", glitch)
188
+
189
+ if not issubclass(_GlitchedLightningDataModule, datamodule_cls):
190
+ _GlitchedLightningDataModule.__bases__ = (datamodule_cls,)
191
+
192
+ return datamodule_cls
193
+
194
+
195
+ def install() -> None:
196
+ """Monkeypatch ``LightningDataModule`` with ``.glitch``."""
197
+
198
+ _ensure_datamodule_class()
199
+
200
+
201
+ LightningDataModule: type[Any] | None
202
+ _LightningDataModuleAlias = get_pytorch_lightning_datamodule()
203
+ if _LightningDataModuleAlias is not None:
204
+ LightningDataModule = _ensure_datamodule_class()
205
+ else: # pragma: no cover - optional dependency
206
+ LightningDataModule = None
207
+
208
+
209
+ __all__ = ["LightningDataModule", "install"]
@@ -0,0 +1,192 @@
1
+ """Lexicon abstractions and default backend resolution helpers."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import random
6
+ from abc import ABC, abstractmethod
7
+ from hashlib import blake2s
8
+ from pathlib import Path
9
+ from typing import Callable, Iterable
10
+
11
+ from glitchlings.config import get_config
12
+
13
+ from ._cache import CacheEntries, CacheSnapshot
14
+
15
+
16
+ class Lexicon(ABC):
17
+ """Abstract interface describing synonym lookup backends.
18
+
19
+ Parameters
20
+ ----------
21
+ seed:
22
+ Optional integer used to derive deterministic random number generators
23
+ for synonym sampling. Identical seeds guarantee reproducible results for
24
+ the same word/part-of-speech queries.
25
+
26
+ """
27
+
28
+ def __init__(self, *, seed: int | None = None) -> None:
29
+ self._seed = seed
30
+
31
+ @property
32
+ def seed(self) -> int | None:
33
+ """Return the current base seed used for deterministic sampling."""
34
+ return self._seed
35
+
36
+ def reseed(self, seed: int | None) -> None:
37
+ """Update the base seed driving deterministic synonym sampling."""
38
+ self._seed = seed
39
+
40
+ def _derive_rng(self, word: str, pos: str | None) -> random.Random:
41
+ """Return an RNG derived from the base seed, word, and POS tag."""
42
+ seed_material = blake2s(digest_size=8)
43
+ seed_material.update(word.lower().encode("utf8"))
44
+ if pos is not None:
45
+ seed_material.update(pos.lower().encode("utf8"))
46
+ seed_repr = "None" if self._seed is None else str(self._seed)
47
+ seed_material.update(seed_repr.encode("utf8"))
48
+ derived_seed = int.from_bytes(seed_material.digest(), "big", signed=False)
49
+ return random.Random(derived_seed)
50
+
51
+ def _deterministic_sample(
52
+ self, values: Iterable[str], *, limit: int, word: str, pos: str | None
53
+ ) -> list[str]:
54
+ """Return up to ``limit`` values sampled deterministically."""
55
+ if limit <= 0:
56
+ return []
57
+
58
+ items = list(values)
59
+ if len(items) <= limit:
60
+ return items
61
+
62
+ rng = self._derive_rng(word, pos)
63
+ indices = rng.sample(range(len(items)), k=limit)
64
+ indices.sort()
65
+ return [items[index] for index in indices]
66
+
67
+ @abstractmethod
68
+ def get_synonyms(self, word: str, pos: str | None = None, n: int = 5) -> list[str]:
69
+ """Return up to ``n`` synonyms for ``word`` constrained by ``pos``."""
70
+
71
+ def supports_pos(self, pos: str | None) -> bool:
72
+ """Return ``True`` when the backend can service ``pos`` queries."""
73
+ return True
74
+
75
+ def __repr__(self) -> str: # pragma: no cover - trivial representation
76
+ return f"{self.__class__.__name__}(seed={self._seed!r})"
77
+
78
+
79
+ class LexiconBackend(Lexicon):
80
+ """Extended lexicon interface that supports cache persistence."""
81
+
82
+ Cache = CacheEntries
83
+
84
+ @classmethod
85
+ @abstractmethod
86
+ def load_cache(cls, path: str | Path) -> CacheSnapshot:
87
+ """Return a validated cache snapshot loaded from ``path``."""
88
+
89
+ @abstractmethod
90
+ def save_cache(self, path: str | Path | None = None) -> Path | None:
91
+ """Persist the backend cache to ``path`` and return the destination."""
92
+
93
+
94
+ from .metrics import ( # noqa: E402
95
+ compare_lexicons,
96
+ coverage_ratio,
97
+ mean_cosine_similarity,
98
+ synonym_diversity,
99
+ )
100
+ from .vector import VectorLexicon, build_vector_cache # noqa: E402
101
+
102
+ _WordNetLexicon: type[LexiconBackend] | None
103
+ try: # pragma: no cover - optional dependency
104
+ from .wordnet import WordNetLexicon as _WordNetLexicon
105
+ except (
106
+ ImportError,
107
+ ModuleNotFoundError,
108
+ AttributeError,
109
+ ): # pragma: no cover - triggered when nltk unavailable
110
+ _WordNetLexicon = None
111
+
112
+ WordNetLexicon: type[LexiconBackend] | None = _WordNetLexicon
113
+
114
+
115
+ _BACKEND_FACTORIES: dict[str, Callable[[int | None], Lexicon | None]] = {}
116
+
117
+
118
+ def register_backend(name: str, factory: Callable[[int | None], Lexicon | None]) -> None:
119
+ """Register ``factory`` for ``name`` so it can be selected via config."""
120
+ normalized = name.lower()
121
+ _BACKEND_FACTORIES[normalized] = factory
122
+
123
+
124
+ def unregister_backend(name: str) -> None:
125
+ """Remove a previously registered backend."""
126
+ _BACKEND_FACTORIES.pop(name.lower(), None)
127
+
128
+
129
+ def available_backends() -> list[str]:
130
+ """Return the names of registered lexicon factories."""
131
+ return sorted(_BACKEND_FACTORIES)
132
+
133
+
134
+ def _vector_backend(seed: int | None) -> Lexicon | None:
135
+ config = get_config()
136
+ cache_path = config.lexicon.vector_cache
137
+ if cache_path is None:
138
+ return None
139
+ if not cache_path.exists():
140
+ return None
141
+ return VectorLexicon(cache_path=cache_path, seed=seed)
142
+
143
+
144
+ def _wordnet_backend(seed: int | None) -> Lexicon | None: # pragma: no cover - optional
145
+ if WordNetLexicon is None:
146
+ return None
147
+ try:
148
+ lexicon = WordNetLexicon(seed=seed)
149
+ except RuntimeError:
150
+ return None
151
+ return lexicon
152
+
153
+
154
+ register_backend("vector", _vector_backend)
155
+ register_backend("wordnet", _wordnet_backend)
156
+
157
+
158
+ def get_default_lexicon(seed: int | None = None) -> Lexicon:
159
+ """Return the first available lexicon according to configuration priority."""
160
+ config = get_config()
161
+ attempts: list[str] = []
162
+ for name in config.lexicon.priority:
163
+ factory = _BACKEND_FACTORIES.get(name.lower())
164
+ if factory is None:
165
+ attempts.append(f"{name} (unknown)")
166
+ continue
167
+ lexicon = factory(seed)
168
+ if lexicon is not None:
169
+ return lexicon
170
+ attempts.append(f"{name} (unavailable)")
171
+ attempted = ", ".join(attempts) or "<none>"
172
+ raise RuntimeError(
173
+ "No lexicon backends available; configure lexicon.priority with at least one "
174
+ f"working backend. Attempts: {attempted}."
175
+ )
176
+
177
+
178
+ __all__ = [
179
+ "Lexicon",
180
+ "LexiconBackend",
181
+ "VectorLexicon",
182
+ "WordNetLexicon",
183
+ "build_vector_cache",
184
+ "compare_lexicons",
185
+ "coverage_ratio",
186
+ "mean_cosine_similarity",
187
+ "synonym_diversity",
188
+ "get_default_lexicon",
189
+ "register_backend",
190
+ "unregister_backend",
191
+ "available_backends",
192
+ ]
@@ -0,0 +1,108 @@
1
+ """Shared cache helpers for lexicon backends."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ from dataclasses import dataclass
7
+ from hashlib import blake2s
8
+ from pathlib import Path
9
+ from typing import Mapping, Sequence, cast
10
+
11
+ CacheEntries = dict[str, list[str]]
12
+
13
+
14
+ @dataclass(frozen=True)
15
+ class CacheSnapshot:
16
+ """Materialised cache data and its integrity checksum."""
17
+
18
+ entries: CacheEntries
19
+ checksum: str | None = None
20
+
21
+
22
+ def _normalize_entries(payload: Mapping[str, object]) -> CacheEntries:
23
+ """Convert raw cache payloads into canonical mapping form."""
24
+ entries: CacheEntries = {}
25
+ for key, values in payload.items():
26
+ if not isinstance(key, str):
27
+ raise RuntimeError("Synonym cache keys must be strings.")
28
+ if not isinstance(values, Sequence):
29
+ raise RuntimeError("Synonym cache values must be sequences of strings.")
30
+ entries[key] = [str(value) for value in values]
31
+ return entries
32
+
33
+
34
+ def _canonical_json(entries: Mapping[str, Sequence[str]]) -> str:
35
+ """Return a deterministic JSON serialisation for ``entries``."""
36
+ serialisable = {key: list(values) for key, values in sorted(entries.items())}
37
+ return json.dumps(serialisable, ensure_ascii=False, sort_keys=True, separators=(",", ":"))
38
+
39
+
40
+ def compute_checksum(entries: Mapping[str, Sequence[str]]) -> str:
41
+ """Return a BLAKE2s checksum for ``entries``."""
42
+ digest = blake2s(_canonical_json(entries).encode("utf8"), digest_size=16)
43
+ return digest.hexdigest()
44
+
45
+
46
+ def load_cache(path: Path) -> CacheSnapshot:
47
+ """Load a cache from ``path`` and verify its checksum if present."""
48
+ if not path.exists():
49
+ return CacheSnapshot(entries={}, checksum=None)
50
+
51
+ with path.open("r", encoding="utf8") as handle:
52
+ payload_obj = json.load(handle)
53
+
54
+ checksum: str | None = None
55
+ entries_payload: Mapping[str, object]
56
+
57
+ if not isinstance(payload_obj, Mapping):
58
+ raise RuntimeError("Synonym cache payload must be a mapping of strings to lists.")
59
+
60
+ payload = cast(Mapping[str, object], payload_obj)
61
+
62
+ if "__meta__" in payload and "entries" in payload:
63
+ meta_obj = payload["__meta__"]
64
+ entries_obj = payload["entries"]
65
+ if not isinstance(entries_obj, Mapping):
66
+ raise RuntimeError("Synonym cache entries must be stored as a mapping.")
67
+ entries_payload = cast(Mapping[str, object], entries_obj)
68
+ if isinstance(meta_obj, Mapping):
69
+ raw_checksum = meta_obj.get("checksum")
70
+ if raw_checksum is not None and not isinstance(raw_checksum, str):
71
+ raise RuntimeError("Synonym cache checksum must be a string when provided.")
72
+ checksum = raw_checksum if isinstance(raw_checksum, str) else None
73
+ else:
74
+ raise RuntimeError("Synonym cache metadata must be a mapping.")
75
+ else:
76
+ entries_payload = payload # legacy format without metadata
77
+
78
+ entries = _normalize_entries(entries_payload)
79
+ if checksum is not None:
80
+ expected = compute_checksum(entries)
81
+ if checksum != expected:
82
+ raise RuntimeError(
83
+ "Synonym cache checksum mismatch; the cache file appears to be corrupted."
84
+ )
85
+
86
+ return CacheSnapshot(entries=entries, checksum=checksum)
87
+
88
+
89
+ def write_cache(path: Path, entries: Mapping[str, Sequence[str]]) -> CacheSnapshot:
90
+ """Persist ``entries`` to ``path`` with checksum metadata."""
91
+ serialisable: CacheEntries = {key: list(values) for key, values in sorted(entries.items())}
92
+ checksum = compute_checksum(serialisable)
93
+ payload = {
94
+ "__meta__": {
95
+ "checksum": checksum,
96
+ "entries": len(serialisable),
97
+ },
98
+ "entries": serialisable,
99
+ }
100
+ path.parent.mkdir(parents=True, exist_ok=True)
101
+
102
+ with path.open("w", encoding="utf8") as handle:
103
+ json.dump(payload, handle, ensure_ascii=False, indent=2, sort_keys=True)
104
+
105
+ return CacheSnapshot(entries=serialisable, checksum=checksum)
106
+
107
+
108
+ __all__ = ["CacheEntries", "CacheSnapshot", "compute_checksum", "load_cache", "write_cache"]
@@ -0,0 +1,82 @@
1
+ {
2
+ "alpha": [
3
+ "beta",
4
+ "gamma",
5
+ "delta"
6
+ ],
7
+ "beta": [
8
+ "alpha",
9
+ "gamma",
10
+ "delta"
11
+ ],
12
+ "delta": [
13
+ "alpha",
14
+ "beta",
15
+ "gamma"
16
+ ],
17
+ "fast": [
18
+ "rapid",
19
+ "swift",
20
+ "speedy",
21
+ "brisk"
22
+ ],
23
+ "gamma": [
24
+ "alpha",
25
+ "beta",
26
+ "delta"
27
+ ],
28
+ "happy": [
29
+ "glad",
30
+ "joyful",
31
+ "content",
32
+ "upbeat"
33
+ ],
34
+ "quick": [
35
+ "swift",
36
+ "rapid",
37
+ "speedy",
38
+ "nimble"
39
+ ],
40
+ "quickly": [
41
+ "swiftly",
42
+ "rapidly",
43
+ "promptly",
44
+ "speedily"
45
+ ],
46
+ "sing": [
47
+ "croon",
48
+ "serenade",
49
+ "vocalize",
50
+ "perform"
51
+ ],
52
+ "slow": [
53
+ "sluggish",
54
+ "leisurely",
55
+ "unhurried",
56
+ "gradual"
57
+ ],
58
+ "songs": [
59
+ "tracks",
60
+ "melodies",
61
+ "ballads",
62
+ "tunes"
63
+ ],
64
+ "text": [
65
+ "passage",
66
+ "copy",
67
+ "script",
68
+ "narrative"
69
+ ],
70
+ "they": [
71
+ "those people",
72
+ "those individuals",
73
+ "the group",
74
+ "those folks"
75
+ ],
76
+ "words": [
77
+ "terms",
78
+ "phrases",
79
+ "lexicon",
80
+ "vocabulary"
81
+ ]
82
+ }