glitchlings 0.4.5__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of glitchlings might be problematic. Click here for more details.

Files changed (53) hide show
  1. glitchlings/__init__.py +71 -0
  2. glitchlings/__main__.py +8 -0
  3. glitchlings/_zoo_rust.cp311-win_amd64.pyd +0 -0
  4. glitchlings/compat.py +282 -0
  5. glitchlings/config.py +386 -0
  6. glitchlings/config.toml +3 -0
  7. glitchlings/data/__init__.py +1 -0
  8. glitchlings/data/hokey_assets.json +193 -0
  9. glitchlings/dlc/__init__.py +7 -0
  10. glitchlings/dlc/_shared.py +153 -0
  11. glitchlings/dlc/huggingface.py +81 -0
  12. glitchlings/dlc/prime.py +254 -0
  13. glitchlings/dlc/pytorch.py +166 -0
  14. glitchlings/dlc/pytorch_lightning.py +209 -0
  15. glitchlings/lexicon/__init__.py +192 -0
  16. glitchlings/lexicon/_cache.py +108 -0
  17. glitchlings/lexicon/data/default_vector_cache.json +82 -0
  18. glitchlings/lexicon/metrics.py +162 -0
  19. glitchlings/lexicon/vector.py +652 -0
  20. glitchlings/lexicon/wordnet.py +228 -0
  21. glitchlings/main.py +364 -0
  22. glitchlings/util/__init__.py +195 -0
  23. glitchlings/util/adapters.py +27 -0
  24. glitchlings/util/hokey_generator.py +144 -0
  25. glitchlings/util/stretch_locator.py +140 -0
  26. glitchlings/util/stretchability.py +375 -0
  27. glitchlings/zoo/__init__.py +172 -0
  28. glitchlings/zoo/_ocr_confusions.py +32 -0
  29. glitchlings/zoo/_rate.py +131 -0
  30. glitchlings/zoo/_rust_extensions.py +143 -0
  31. glitchlings/zoo/_sampling.py +54 -0
  32. glitchlings/zoo/_text_utils.py +100 -0
  33. glitchlings/zoo/adjax.py +128 -0
  34. glitchlings/zoo/apostrofae.py +127 -0
  35. glitchlings/zoo/assets/__init__.py +0 -0
  36. glitchlings/zoo/assets/apostrofae_pairs.json +32 -0
  37. glitchlings/zoo/core.py +582 -0
  38. glitchlings/zoo/hokey.py +173 -0
  39. glitchlings/zoo/jargoyle.py +335 -0
  40. glitchlings/zoo/mim1c.py +109 -0
  41. glitchlings/zoo/ocr_confusions.tsv +30 -0
  42. glitchlings/zoo/redactyl.py +193 -0
  43. glitchlings/zoo/reduple.py +148 -0
  44. glitchlings/zoo/rushmore.py +153 -0
  45. glitchlings/zoo/scannequin.py +171 -0
  46. glitchlings/zoo/typogre.py +231 -0
  47. glitchlings/zoo/zeedub.py +185 -0
  48. glitchlings-0.4.5.dist-info/METADATA +648 -0
  49. glitchlings-0.4.5.dist-info/RECORD +53 -0
  50. glitchlings-0.4.5.dist-info/WHEEL +5 -0
  51. glitchlings-0.4.5.dist-info/entry_points.txt +2 -0
  52. glitchlings-0.4.5.dist-info/licenses/LICENSE +201 -0
  53. glitchlings-0.4.5.dist-info/top_level.txt +1 -0
@@ -0,0 +1,193 @@
1
+ import random
2
+ import re
3
+ from typing import Any, cast
4
+
5
+ from ._rate import resolve_rate
6
+ from ._rust_extensions import get_rust_operation
7
+ from ._sampling import weighted_sample_without_replacement
8
+ from ._text_utils import (
9
+ WordToken,
10
+ collect_word_tokens,
11
+ split_preserving_whitespace,
12
+ )
13
+ from .core import AttackWave, Glitchling
14
+
15
+ FULL_BLOCK = "█"
16
+
17
+ # Load Rust-accelerated operation if available
18
+ _redact_words_rust = get_rust_operation("redact_words")
19
+
20
+
21
+ def _python_redact_words(
22
+ text: str,
23
+ *,
24
+ replacement_char: str,
25
+ rate: float,
26
+ merge_adjacent: bool,
27
+ rng: random.Random,
28
+ unweighted: bool = False,
29
+ ) -> str:
30
+ """Redact random words by replacing their characters.
31
+
32
+ Parameters
33
+ ----------
34
+ - text: Input text.
35
+ - replacement_char: The character to use for redaction (default FULL_BLOCK).
36
+ - rate: Max proportion of words to redact (default 0.05).
37
+ - merge_adjacent: If True, merges adjacent redactions across intervening non-word chars.
38
+ - rng: RNG used for sampling decisions.
39
+ - unweighted: When True, sample words uniformly instead of by length.
40
+
41
+ """
42
+ tokens = split_preserving_whitespace(text)
43
+ word_tokens = collect_word_tokens(tokens)
44
+ if not word_tokens:
45
+ raise ValueError("Cannot redact words because the input text contains no redactable words.")
46
+
47
+ population = [token.index for token in word_tokens]
48
+ weights = [1.0 if unweighted else float(token.core_length) for token in word_tokens]
49
+
50
+ clamped_rate = max(0.0, min(rate, 1.0))
51
+ raw_quota = len(population) * clamped_rate
52
+ num_to_redact = int(raw_quota)
53
+ if clamped_rate > 0.0:
54
+ num_to_redact = max(1, num_to_redact)
55
+ num_to_redact = min(num_to_redact, len(population))
56
+ if num_to_redact <= 0:
57
+ return "".join(tokens)
58
+
59
+ indices_to_redact = weighted_sample_without_replacement(
60
+ population,
61
+ weights,
62
+ k=num_to_redact,
63
+ rng=rng,
64
+ )
65
+ indices_to_redact.sort()
66
+
67
+ token_by_index: dict[int, WordToken] = {token.index: token for token in word_tokens}
68
+
69
+ for i in indices_to_redact:
70
+ if i >= len(tokens):
71
+ break
72
+
73
+ token = token_by_index.get(i)
74
+ if token is None:
75
+ continue
76
+
77
+ prefix, core, suffix = token.prefix, token.core, token.suffix
78
+ tokens[i] = f"{prefix}{replacement_char * len(core)}{suffix}"
79
+
80
+ text = "".join(tokens)
81
+
82
+ if merge_adjacent:
83
+ text = re.sub(
84
+ rf"{replacement_char}\W+{replacement_char}",
85
+ lambda m: replacement_char * (len(m.group(0)) - 1),
86
+ text,
87
+ )
88
+
89
+ return text
90
+
91
+
92
+ def redact_words(
93
+ text: str,
94
+ replacement_char: str = FULL_BLOCK,
95
+ rate: float | None = None,
96
+ merge_adjacent: bool = False,
97
+ seed: int = 151,
98
+ rng: random.Random | None = None,
99
+ *,
100
+ redaction_rate: float | None = None,
101
+ unweighted: bool = False,
102
+ ) -> str:
103
+ """Redact random words by replacing their characters."""
104
+ effective_rate = resolve_rate(
105
+ rate=rate,
106
+ legacy_value=redaction_rate,
107
+ default=0.025,
108
+ legacy_name="redaction_rate",
109
+ )
110
+
111
+ if rng is None:
112
+ rng = random.Random(seed)
113
+
114
+ clamped_rate = max(0.0, min(effective_rate, 1.0))
115
+ unweighted_flag = bool(unweighted)
116
+
117
+ use_rust = _redact_words_rust is not None and isinstance(merge_adjacent, bool)
118
+
119
+ if use_rust:
120
+ assert _redact_words_rust is not None # Type narrowing for mypy
121
+ return cast(
122
+ str,
123
+ _redact_words_rust(
124
+ text,
125
+ replacement_char,
126
+ clamped_rate,
127
+ merge_adjacent,
128
+ unweighted_flag,
129
+ rng,
130
+ ),
131
+ )
132
+
133
+ return _python_redact_words(
134
+ text,
135
+ replacement_char=replacement_char,
136
+ rate=clamped_rate,
137
+ merge_adjacent=merge_adjacent,
138
+ rng=rng,
139
+ unweighted=unweighted_flag,
140
+ )
141
+
142
+
143
+ class Redactyl(Glitchling):
144
+ """Glitchling that redacts words with block characters."""
145
+
146
+ def __init__(
147
+ self,
148
+ *,
149
+ replacement_char: str = FULL_BLOCK,
150
+ rate: float | None = None,
151
+ redaction_rate: float | None = None,
152
+ merge_adjacent: bool = False,
153
+ seed: int = 151,
154
+ unweighted: bool = False,
155
+ ) -> None:
156
+ self._param_aliases = {"redaction_rate": "rate"}
157
+ effective_rate = resolve_rate(
158
+ rate=rate,
159
+ legacy_value=redaction_rate,
160
+ default=0.025,
161
+ legacy_name="redaction_rate",
162
+ )
163
+ super().__init__(
164
+ name="Redactyl",
165
+ corruption_function=redact_words,
166
+ scope=AttackWave.WORD,
167
+ seed=seed,
168
+ replacement_char=replacement_char,
169
+ rate=effective_rate,
170
+ merge_adjacent=merge_adjacent,
171
+ unweighted=unweighted,
172
+ )
173
+
174
+ def pipeline_operation(self) -> dict[str, Any] | None:
175
+ replacement_char = self.kwargs.get("replacement_char")
176
+ rate = self.kwargs.get("rate")
177
+ merge_adjacent = self.kwargs.get("merge_adjacent")
178
+ if replacement_char is None or rate is None or merge_adjacent is None:
179
+ return None
180
+ unweighted = bool(self.kwargs.get("unweighted", False))
181
+ return {
182
+ "type": "redact",
183
+ "replacement_char": str(replacement_char),
184
+ "redaction_rate": float(rate),
185
+ "merge_adjacent": bool(merge_adjacent),
186
+ "unweighted": unweighted,
187
+ }
188
+
189
+
190
+ redactyl = Redactyl()
191
+
192
+
193
+ __all__ = ["Redactyl", "redactyl"]
@@ -0,0 +1,148 @@
1
+ import random
2
+ from typing import Any, cast
3
+
4
+ from ._rate import resolve_rate
5
+ from ._rust_extensions import get_rust_operation
6
+ from ._text_utils import WordToken, collect_word_tokens, split_preserving_whitespace
7
+ from .core import AttackWave, Glitchling
8
+
9
+ # Load Rust-accelerated operation if available
10
+ _reduplicate_words_rust = get_rust_operation("reduplicate_words")
11
+
12
+
13
+ def _python_reduplicate_words(
14
+ text: str,
15
+ *,
16
+ rate: float,
17
+ rng: random.Random,
18
+ unweighted: bool = False,
19
+ ) -> str:
20
+ """Randomly reduplicate words in the text.
21
+
22
+ Parameters
23
+ ----------
24
+ - text: Input text.
25
+ - rate: Max proportion of words to reduplicate (default 0.05).
26
+ - rng: RNG used for sampling decisions.
27
+ - unweighted: When True, sample words uniformly instead of length-weighted.
28
+
29
+ Notes
30
+ -----
31
+ - Preserves spacing and punctuation by tokenizing with separators.
32
+ - Deterministic when run with a fixed seed or via Gaggle.
33
+
34
+ """
35
+ tokens = split_preserving_whitespace(text)
36
+ word_tokens = collect_word_tokens(tokens)
37
+
38
+ weighted_tokens: list[tuple[int, float, WordToken]] = []
39
+ for token in word_tokens:
40
+ weight = 1.0 if unweighted else 1.0 / float(token.core_length)
41
+ weighted_tokens.append((token.index, weight, token))
42
+
43
+ if not weighted_tokens:
44
+ return "".join(tokens)
45
+
46
+ effective_rate = max(rate, 0.0)
47
+ if effective_rate <= 0.0:
48
+ return "".join(tokens)
49
+
50
+ mean_weight = sum(weight for _, weight, _ in weighted_tokens) / len(weighted_tokens)
51
+
52
+ for index, weight, token in weighted_tokens:
53
+ if effective_rate >= 1.0:
54
+ probability = 1.0
55
+ else:
56
+ if mean_weight <= 0.0:
57
+ probability = effective_rate
58
+ else:
59
+ probability = min(1.0, effective_rate * (weight / mean_weight))
60
+ if rng.random() >= probability:
61
+ continue
62
+
63
+ prefix, core, suffix = token.prefix, token.core, token.suffix
64
+ tokens[index] = f"{prefix}{core} {core}{suffix}"
65
+ return "".join(tokens)
66
+
67
+
68
+ def reduplicate_words(
69
+ text: str,
70
+ rate: float | None = None,
71
+ seed: int | None = None,
72
+ rng: random.Random | None = None,
73
+ *,
74
+ reduplication_rate: float | None = None,
75
+ unweighted: bool = False,
76
+ ) -> str:
77
+ """Randomly reduplicate words in the text.
78
+
79
+ Falls back to the Python implementation when the optional Rust
80
+ extension is unavailable.
81
+ """
82
+ effective_rate = resolve_rate(
83
+ rate=rate,
84
+ legacy_value=reduplication_rate,
85
+ default=0.01,
86
+ legacy_name="reduplication_rate",
87
+ )
88
+
89
+ if rng is None:
90
+ rng = random.Random(seed)
91
+
92
+ clamped_rate = max(0.0, effective_rate)
93
+ unweighted_flag = bool(unweighted)
94
+
95
+ if _reduplicate_words_rust is not None:
96
+ return cast(str, _reduplicate_words_rust(text, clamped_rate, unweighted_flag, rng))
97
+
98
+ return _python_reduplicate_words(
99
+ text,
100
+ rate=clamped_rate,
101
+ rng=rng,
102
+ unweighted=unweighted_flag,
103
+ )
104
+
105
+
106
+ class Reduple(Glitchling):
107
+ """Glitchling that repeats words to simulate stuttering speech."""
108
+
109
+ def __init__(
110
+ self,
111
+ *,
112
+ rate: float | None = None,
113
+ reduplication_rate: float | None = None,
114
+ seed: int | None = None,
115
+ unweighted: bool = False,
116
+ ) -> None:
117
+ self._param_aliases = {"reduplication_rate": "rate"}
118
+ effective_rate = resolve_rate(
119
+ rate=rate,
120
+ legacy_value=reduplication_rate,
121
+ default=0.01,
122
+ legacy_name="reduplication_rate",
123
+ )
124
+ super().__init__(
125
+ name="Reduple",
126
+ corruption_function=reduplicate_words,
127
+ scope=AttackWave.WORD,
128
+ seed=seed,
129
+ rate=effective_rate,
130
+ unweighted=unweighted,
131
+ )
132
+
133
+ def pipeline_operation(self) -> dict[str, Any] | None:
134
+ rate = self.kwargs.get("rate")
135
+ if rate is None:
136
+ return None
137
+ unweighted = bool(self.kwargs.get("unweighted", False))
138
+ return {
139
+ "type": "reduplicate",
140
+ "reduplication_rate": float(rate),
141
+ "unweighted": unweighted,
142
+ }
143
+
144
+
145
+ reduple = Reduple()
146
+
147
+
148
+ __all__ = ["Reduple", "reduple"]
@@ -0,0 +1,153 @@
1
+ import math
2
+ import random
3
+ import re
4
+ from typing import Any, cast
5
+
6
+ from ._rate import resolve_rate
7
+ from ._rust_extensions import get_rust_operation
8
+ from ._text_utils import WordToken, collect_word_tokens, split_preserving_whitespace
9
+ from .core import AttackWave, Glitchling
10
+
11
+ # Load Rust-accelerated operation if available
12
+ _delete_random_words_rust = get_rust_operation("delete_random_words")
13
+
14
+
15
+ def _python_delete_random_words(
16
+ text: str,
17
+ *,
18
+ rate: float,
19
+ rng: random.Random,
20
+ unweighted: bool = False,
21
+ ) -> str:
22
+ """Delete random words from the input text while preserving whitespace."""
23
+ effective_rate = max(rate, 0.0)
24
+ if effective_rate <= 0.0:
25
+ return text
26
+
27
+ tokens = split_preserving_whitespace(text)
28
+ word_tokens = collect_word_tokens(tokens, skip_first_word=True)
29
+
30
+ weighted_tokens: list[tuple[int, float, WordToken]] = []
31
+ for token in word_tokens:
32
+ weight = 1.0 if unweighted else 1.0 / float(token.core_length)
33
+ weighted_tokens.append((token.index, weight, token))
34
+
35
+ if not weighted_tokens:
36
+ return text
37
+
38
+ allowed_deletions = min(len(weighted_tokens), math.floor(len(weighted_tokens) * effective_rate))
39
+ if allowed_deletions <= 0:
40
+ return text
41
+
42
+ mean_weight = sum(weight for _, weight, _ in weighted_tokens) / len(weighted_tokens)
43
+
44
+ deletions = 0
45
+ for index, weight, token in weighted_tokens:
46
+ if deletions >= allowed_deletions:
47
+ break
48
+
49
+ if effective_rate >= 1.0:
50
+ probability = 1.0
51
+ else:
52
+ if mean_weight <= 0.0:
53
+ probability = effective_rate
54
+ else:
55
+ probability = min(1.0, effective_rate * (weight / mean_weight))
56
+ if rng.random() >= probability:
57
+ continue
58
+
59
+ prefix = token.prefix.strip()
60
+ suffix = token.suffix.strip()
61
+ tokens[index] = f"{prefix}{suffix}"
62
+
63
+ deletions += 1
64
+
65
+ text = "".join(tokens)
66
+ text = re.sub(r"\s+([.,;:])", r"\1", text)
67
+ text = re.sub(r"\s{2,}", " ", text).strip()
68
+
69
+ return text
70
+
71
+
72
+ def delete_random_words(
73
+ text: str,
74
+ rate: float | None = None,
75
+ seed: int | None = None,
76
+ rng: random.Random | None = None,
77
+ *,
78
+ max_deletion_rate: float | None = None,
79
+ unweighted: bool = False,
80
+ ) -> str:
81
+ """Delete random words from the input text.
82
+
83
+ Uses the optional Rust implementation when available.
84
+ """
85
+ effective_rate = resolve_rate(
86
+ rate=rate,
87
+ legacy_value=max_deletion_rate,
88
+ default=0.01,
89
+ legacy_name="max_deletion_rate",
90
+ )
91
+
92
+ if rng is None:
93
+ rng = random.Random(seed)
94
+
95
+ clamped_rate = max(0.0, effective_rate)
96
+ unweighted_flag = bool(unweighted)
97
+
98
+ if _delete_random_words_rust is not None:
99
+ return cast(str, _delete_random_words_rust(text, clamped_rate, unweighted_flag, rng))
100
+
101
+ return _python_delete_random_words(
102
+ text,
103
+ rate=clamped_rate,
104
+ rng=rng,
105
+ unweighted=unweighted_flag,
106
+ )
107
+
108
+
109
+ class Rushmore(Glitchling):
110
+ """Glitchling that deletes words to simulate missing information."""
111
+
112
+ def __init__(
113
+ self,
114
+ *,
115
+ rate: float | None = None,
116
+ max_deletion_rate: float | None = None,
117
+ seed: int | None = None,
118
+ unweighted: bool = False,
119
+ ) -> None:
120
+ self._param_aliases = {"max_deletion_rate": "rate"}
121
+ effective_rate = resolve_rate(
122
+ rate=rate,
123
+ legacy_value=max_deletion_rate,
124
+ default=0.01,
125
+ legacy_name="max_deletion_rate",
126
+ )
127
+ super().__init__(
128
+ name="Rushmore",
129
+ corruption_function=delete_random_words,
130
+ scope=AttackWave.WORD,
131
+ seed=seed,
132
+ rate=effective_rate,
133
+ unweighted=unweighted,
134
+ )
135
+
136
+ def pipeline_operation(self) -> dict[str, Any] | None:
137
+ rate = self.kwargs.get("rate")
138
+ if rate is None:
139
+ rate = self.kwargs.get("max_deletion_rate")
140
+ if rate is None:
141
+ return None
142
+ unweighted = bool(self.kwargs.get("unweighted", False))
143
+ return {
144
+ "type": "delete",
145
+ "max_deletion_rate": float(rate),
146
+ "unweighted": unweighted,
147
+ }
148
+
149
+
150
+ rushmore = Rushmore()
151
+
152
+
153
+ __all__ = ["Rushmore", "rushmore"]
@@ -0,0 +1,171 @@
1
+ import random
2
+ import re
3
+ from typing import Any, cast
4
+
5
+ from ._ocr_confusions import load_confusion_table
6
+ from ._rate import resolve_rate
7
+ from ._rust_extensions import get_rust_operation
8
+ from .core import AttackOrder, AttackWave, Glitchling
9
+
10
+ # Load Rust-accelerated operation if available
11
+ _ocr_artifacts_rust = get_rust_operation("ocr_artifacts")
12
+
13
+
14
+ def _python_ocr_artifacts(
15
+ text: str,
16
+ *,
17
+ rate: float,
18
+ rng: random.Random,
19
+ ) -> str:
20
+ """Introduce OCR-like artifacts into text.
21
+
22
+ Parameters
23
+ ----------
24
+ - text: Input text to corrupt.
25
+ - rate: Max proportion of eligible confusion matches to replace (default 0.02).
26
+ - seed: Optional seed if `rng` not provided.
27
+ - rng: Optional RNG; overrides seed.
28
+
29
+ Notes
30
+ -----
31
+ - Uses a curated set of common OCR confusions (rn↔m, cl↔d, O↔0, l/I/1, etc.).
32
+ - Collects all non-overlapping candidate spans in reading order, then samples
33
+ a subset deterministically with the provided RNG.
34
+ - Replacements can change length (e.g., m→rn), so edits are applied from left
35
+ to right using precomputed spans to avoid index drift.
36
+
37
+ """
38
+ if not text:
39
+ return text
40
+
41
+ # Keep the confusion definitions in a shared data file so both the Python
42
+ # and Rust implementations stay in sync.
43
+ confusion_table = load_confusion_table()
44
+
45
+ # Build candidate matches as (start, end, choices)
46
+ candidates: list[tuple[int, int, list[str]]] = []
47
+
48
+ # To avoid double-counting overlapping patterns (like 'l' inside 'li'),
49
+ # we will scan longer patterns first by sorting by len(src) desc.
50
+ for src, choices in sorted(confusion_table, key=lambda p: -len(p[0])):
51
+ pattern = re.escape(src)
52
+ for m in re.finditer(pattern, text):
53
+ start, end = m.span()
54
+ candidates.append((start, end, choices))
55
+
56
+ if not candidates:
57
+ return text
58
+
59
+ # Decide how many to replace
60
+ k = int(len(candidates) * rate)
61
+ if k <= 0:
62
+ return text
63
+
64
+ # Shuffle deterministically and select non-overlapping k spans
65
+ rng.shuffle(candidates)
66
+ chosen: list[tuple[int, int, str]] = []
67
+ occupied: list[tuple[int, int]] = []
68
+
69
+ def overlaps(a: tuple[int, int], b: tuple[int, int]) -> bool:
70
+ return not (a[1] <= b[0] or b[1] <= a[0])
71
+
72
+ for start, end, choices in candidates:
73
+ if len(chosen) >= k:
74
+ break
75
+ span = (start, end)
76
+ if any(overlaps(span, occ) for occ in occupied):
77
+ continue
78
+ replacement = rng.choice(choices)
79
+ chosen.append((start, end, replacement))
80
+ occupied.append(span)
81
+
82
+ if not chosen:
83
+ return text
84
+
85
+ # Apply edits from left to right
86
+ chosen.sort(key=lambda t: t[0])
87
+ out_parts = []
88
+ cursor = 0
89
+ for start, end, rep in chosen:
90
+ if cursor < start:
91
+ out_parts.append(text[cursor:start])
92
+ out_parts.append(rep)
93
+ cursor = end
94
+ if cursor < len(text):
95
+ out_parts.append(text[cursor:])
96
+
97
+ return "".join(out_parts)
98
+
99
+
100
+ def ocr_artifacts(
101
+ text: str,
102
+ rate: float | None = None,
103
+ seed: int | None = None,
104
+ rng: random.Random | None = None,
105
+ *,
106
+ error_rate: float | None = None,
107
+ ) -> str:
108
+ """Introduce OCR-like artifacts into text.
109
+
110
+ Prefers the Rust implementation when available.
111
+ """
112
+ if not text:
113
+ return text
114
+
115
+ effective_rate = resolve_rate(
116
+ rate=rate,
117
+ legacy_value=error_rate,
118
+ default=0.02,
119
+ legacy_name="error_rate",
120
+ )
121
+
122
+ if rng is None:
123
+ rng = random.Random(seed)
124
+
125
+ clamped_rate = max(0.0, effective_rate)
126
+
127
+ if _ocr_artifacts_rust is not None:
128
+ return cast(str, _ocr_artifacts_rust(text, clamped_rate, rng))
129
+
130
+ return _python_ocr_artifacts(text, rate=clamped_rate, rng=rng)
131
+
132
+
133
+ class Scannequin(Glitchling):
134
+ """Glitchling that simulates OCR artifacts using common confusions."""
135
+
136
+ def __init__(
137
+ self,
138
+ *,
139
+ rate: float | None = None,
140
+ error_rate: float | None = None,
141
+ seed: int | None = None,
142
+ ) -> None:
143
+ self._param_aliases = {"error_rate": "rate"}
144
+ effective_rate = resolve_rate(
145
+ rate=rate,
146
+ legacy_value=error_rate,
147
+ default=0.02,
148
+ legacy_name="error_rate",
149
+ )
150
+ super().__init__(
151
+ name="Scannequin",
152
+ corruption_function=ocr_artifacts,
153
+ scope=AttackWave.CHARACTER,
154
+ order=AttackOrder.LATE,
155
+ seed=seed,
156
+ rate=effective_rate,
157
+ )
158
+
159
+ def pipeline_operation(self) -> dict[str, Any] | None:
160
+ rate = self.kwargs.get("rate")
161
+ if rate is None:
162
+ rate = self.kwargs.get("error_rate")
163
+ if rate is None:
164
+ return None
165
+ return {"type": "ocr", "error_rate": float(rate)}
166
+
167
+
168
+ scannequin = Scannequin()
169
+
170
+
171
+ __all__ = ["Scannequin", "scannequin"]