geoai-py 0.2.2__py2.py3-none-any.whl → 0.3.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- geoai/__init__.py +1 -1
- geoai/extract.py +1000 -67
- geoai/geoai.py +2 -1
- geoai/preprocess.py +420 -114
- geoai/utils.py +1041 -0
- {geoai_py-0.2.2.dist-info → geoai_py-0.3.0.dist-info}/METADATA +3 -1
- geoai_py-0.3.0.dist-info/RECORD +13 -0
- geoai/common.py +0 -438
- geoai_py-0.2.2.dist-info/RECORD +0 -13
- {geoai_py-0.2.2.dist-info → geoai_py-0.3.0.dist-info}/LICENSE +0 -0
- {geoai_py-0.2.2.dist-info → geoai_py-0.3.0.dist-info}/WHEEL +0 -0
- {geoai_py-0.2.2.dist-info → geoai_py-0.3.0.dist-info}/entry_points.txt +0 -0
- {geoai_py-0.2.2.dist-info → geoai_py-0.3.0.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: geoai-py
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.3.0
|
|
4
4
|
Summary: A Python package for using Artificial Intelligence (AI) with geospatial data
|
|
5
5
|
Author-email: Qiusheng Wu <giswqs@gmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -18,11 +18,13 @@ Requires-Python: >=3.9
|
|
|
18
18
|
Description-Content-Type: text/markdown
|
|
19
19
|
License-File: LICENSE
|
|
20
20
|
Requires-Dist: albumentations
|
|
21
|
+
Requires-Dist: contextily
|
|
21
22
|
Requires-Dist: geopandas
|
|
22
23
|
Requires-Dist: huggingface_hub
|
|
23
24
|
Requires-Dist: jupyter-server-proxy
|
|
24
25
|
Requires-Dist: leafmap
|
|
25
26
|
Requires-Dist: localtileserver
|
|
27
|
+
Requires-Dist: mapclassify
|
|
26
28
|
Requires-Dist: overturemaps
|
|
27
29
|
Requires-Dist: planetary-computer
|
|
28
30
|
Requires-Dist: pystac-client
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
geoai/__init__.py,sha256=rJod2PDa1AiRHE8ugVp0Bfiky7ZWBhqbh2kZ45WiggA,923
|
|
2
|
+
geoai/download.py,sha256=4GiDmLrp2wKslgfm507WeZrwOdYcMekgQXxWGbl5cBw,13094
|
|
3
|
+
geoai/extract.py,sha256=9oLbrSg_aHcimpYxfk0jLOIHQWVULRsdiAGUsPLC-qk,71708
|
|
4
|
+
geoai/geoai.py,sha256=wNwKIqwOT10tU4uiWTcNp5Gd598rRFMANIfJsGdOWKM,90
|
|
5
|
+
geoai/preprocess.py,sha256=teV-W7ykXnoru0Y_d0V9ANdO6jMyETeGbqr1_8H-Yh0,118523
|
|
6
|
+
geoai/segmentation.py,sha256=Vcymnhwl_xikt4v9x8CYJq_vId9R1gB7-YzLfwg-F9M,11372
|
|
7
|
+
geoai/utils.py,sha256=3vXFDdFqZeg4kgeNt6-Hp28RfNoQcDOH7BjrlJ6L0UE,37521
|
|
8
|
+
geoai_py-0.3.0.dist-info/LICENSE,sha256=vN2L5U7cZ6ZkOHFmc8WiGlsogWsZc5dllMeNxnKVOZg,1070
|
|
9
|
+
geoai_py-0.3.0.dist-info/METADATA,sha256=L62RHKj0Yqno8LDYVrL50YyMfO1ybRYs2NI15WHiJMQ,5754
|
|
10
|
+
geoai_py-0.3.0.dist-info/WHEEL,sha256=rF4EZyR2XVS6irmOHQIJx2SUqXLZKRMUrjsg8UwN-XQ,109
|
|
11
|
+
geoai_py-0.3.0.dist-info/entry_points.txt,sha256=uGp3Az3HURIsRHP9v-ys0hIbUuBBNUfXv6VbYHIXeg4,41
|
|
12
|
+
geoai_py-0.3.0.dist-info/top_level.txt,sha256=1YkCUWu-ii-0qIex7kbwAvfei-gos9ycyDyUCJPNWHY,6
|
|
13
|
+
geoai_py-0.3.0.dist-info/RECORD,,
|
geoai/common.py
DELETED
|
@@ -1,438 +0,0 @@
|
|
|
1
|
-
"""The common module contains common functions and classes used by the other modules."""
|
|
2
|
-
|
|
3
|
-
import os
|
|
4
|
-
from collections.abc import Iterable
|
|
5
|
-
from typing import Any, Dict, List, Optional, Tuple, Type, Union, Callable
|
|
6
|
-
import matplotlib.pyplot as plt
|
|
7
|
-
|
|
8
|
-
import leafmap
|
|
9
|
-
import torch
|
|
10
|
-
import numpy as np
|
|
11
|
-
import xarray as xr
|
|
12
|
-
import rioxarray
|
|
13
|
-
import rasterio as rio
|
|
14
|
-
from torch.utils.data import DataLoader
|
|
15
|
-
from torchgeo.datasets import RasterDataset, stack_samples, unbind_samples, utils
|
|
16
|
-
from torchgeo.samplers import RandomGeoSampler, Units
|
|
17
|
-
from torchgeo.transforms import indices
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def viz_raster(
|
|
21
|
-
source: str,
|
|
22
|
-
indexes: Optional[int] = None,
|
|
23
|
-
colormap: Optional[str] = None,
|
|
24
|
-
vmin: Optional[float] = None,
|
|
25
|
-
vmax: Optional[float] = None,
|
|
26
|
-
nodata: Optional[float] = None,
|
|
27
|
-
attribution: Optional[str] = None,
|
|
28
|
-
layer_name: Optional[str] = "Raster",
|
|
29
|
-
layer_index: Optional[int] = None,
|
|
30
|
-
zoom_to_layer: Optional[bool] = True,
|
|
31
|
-
visible: Optional[bool] = True,
|
|
32
|
-
opacity: Optional[float] = 1.0,
|
|
33
|
-
array_args: Optional[Dict] = {},
|
|
34
|
-
client_args: Optional[Dict] = {"cors_all": False},
|
|
35
|
-
basemap: Optional[str] = "OpenStreetMap",
|
|
36
|
-
**kwargs,
|
|
37
|
-
):
|
|
38
|
-
"""
|
|
39
|
-
Visualize a raster using leafmap.
|
|
40
|
-
|
|
41
|
-
Args:
|
|
42
|
-
source (str): The source of the raster.
|
|
43
|
-
indexes (Optional[int], optional): The band indexes to visualize. Defaults to None.
|
|
44
|
-
colormap (Optional[str], optional): The colormap to apply. Defaults to None.
|
|
45
|
-
vmin (Optional[float], optional): The minimum value for colormap scaling. Defaults to None.
|
|
46
|
-
vmax (Optional[float], optional): The maximum value for colormap scaling. Defaults to None.
|
|
47
|
-
nodata (Optional[float], optional): The nodata value. Defaults to None.
|
|
48
|
-
attribution (Optional[str], optional): The attribution for the raster. Defaults to None.
|
|
49
|
-
layer_name (Optional[str], optional): The name of the layer. Defaults to "Raster".
|
|
50
|
-
layer_index (Optional[int], optional): The index of the layer. Defaults to None.
|
|
51
|
-
zoom_to_layer (Optional[bool], optional): Whether to zoom to the layer. Defaults to True.
|
|
52
|
-
visible (Optional[bool], optional): Whether the layer is visible. Defaults to True.
|
|
53
|
-
opacity (Optional[float], optional): The opacity of the layer. Defaults to 1.0.
|
|
54
|
-
array_args (Optional[Dict], optional): Additional arguments for array processing. Defaults to {}.
|
|
55
|
-
client_args (Optional[Dict], optional): Additional arguments for the client. Defaults to {"cors_all": False}.
|
|
56
|
-
basemap (Optional[str], optional): The basemap to use. Defaults to "OpenStreetMap".
|
|
57
|
-
**kwargs (Any): Additional keyword arguments.
|
|
58
|
-
|
|
59
|
-
Returns:
|
|
60
|
-
leafmap.Map: The map object with the raster layer added.
|
|
61
|
-
"""
|
|
62
|
-
|
|
63
|
-
m = leafmap.Map(basemap=basemap)
|
|
64
|
-
|
|
65
|
-
if isinstance(source, dict):
|
|
66
|
-
source = dict_to_image(source)
|
|
67
|
-
|
|
68
|
-
m.add_raster(
|
|
69
|
-
source=source,
|
|
70
|
-
indexes=indexes,
|
|
71
|
-
colormap=colormap,
|
|
72
|
-
vmin=vmin,
|
|
73
|
-
vmax=vmax,
|
|
74
|
-
nodata=nodata,
|
|
75
|
-
attribution=attribution,
|
|
76
|
-
layer_name=layer_name,
|
|
77
|
-
layer_index=layer_index,
|
|
78
|
-
zoom_to_layer=zoom_to_layer,
|
|
79
|
-
visible=visible,
|
|
80
|
-
opacity=opacity,
|
|
81
|
-
array_args=array_args,
|
|
82
|
-
client_args=client_args,
|
|
83
|
-
**kwargs,
|
|
84
|
-
)
|
|
85
|
-
return m
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
def viz_image(
|
|
89
|
-
image: Union[np.ndarray, torch.Tensor],
|
|
90
|
-
transpose: bool = False,
|
|
91
|
-
bdx: Optional[int] = None,
|
|
92
|
-
scale_factor: float = 1.0,
|
|
93
|
-
figsize: Tuple[int, int] = (10, 5),
|
|
94
|
-
axis_off: bool = True,
|
|
95
|
-
title: Optional[str] = None,
|
|
96
|
-
**kwargs: Any,
|
|
97
|
-
) -> None:
|
|
98
|
-
"""
|
|
99
|
-
Visualize an image using matplotlib.
|
|
100
|
-
|
|
101
|
-
Args:
|
|
102
|
-
image (Union[np.ndarray, torch.Tensor]): The image to visualize.
|
|
103
|
-
transpose (bool, optional): Whether to transpose the image. Defaults to False.
|
|
104
|
-
bdx (Optional[int], optional): The band index to visualize. Defaults to None.
|
|
105
|
-
scale_factor (float, optional): The scale factor to apply to the image. Defaults to 1.0.
|
|
106
|
-
figsize (Tuple[int, int], optional): The size of the figure. Defaults to (10, 5).
|
|
107
|
-
axis_off (bool, optional): Whether to turn off the axis. Defaults to True.
|
|
108
|
-
title (Optional[str], optional): The title of the plot. Defaults to None.
|
|
109
|
-
**kwargs (Any): Additional keyword arguments for plt.imshow().
|
|
110
|
-
|
|
111
|
-
Returns:
|
|
112
|
-
None
|
|
113
|
-
"""
|
|
114
|
-
|
|
115
|
-
if isinstance(image, torch.Tensor):
|
|
116
|
-
image = image.cpu().numpy()
|
|
117
|
-
elif isinstance(image, str):
|
|
118
|
-
image = rio.open(image).read().transpose(1, 2, 0)
|
|
119
|
-
|
|
120
|
-
plt.figure(figsize=figsize)
|
|
121
|
-
|
|
122
|
-
if transpose:
|
|
123
|
-
image = image.transpose(1, 2, 0)
|
|
124
|
-
|
|
125
|
-
if bdx is not None:
|
|
126
|
-
image = image[:, :, bdx]
|
|
127
|
-
|
|
128
|
-
if len(image.shape) > 2 and image.shape[2] > 3:
|
|
129
|
-
image = image[:, :, 0:3]
|
|
130
|
-
|
|
131
|
-
if scale_factor != 1.0:
|
|
132
|
-
image = np.clip(image * scale_factor, 0, 1)
|
|
133
|
-
|
|
134
|
-
plt.imshow(image, **kwargs)
|
|
135
|
-
if axis_off:
|
|
136
|
-
plt.axis("off")
|
|
137
|
-
if title is not None:
|
|
138
|
-
plt.title(title)
|
|
139
|
-
plt.show()
|
|
140
|
-
plt.close()
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
def plot_images(
|
|
144
|
-
images: Iterable[torch.Tensor],
|
|
145
|
-
axs: Iterable[plt.Axes],
|
|
146
|
-
chnls: List[int] = [2, 1, 0],
|
|
147
|
-
bright: float = 1.0,
|
|
148
|
-
) -> None:
|
|
149
|
-
"""
|
|
150
|
-
Plot a list of images.
|
|
151
|
-
|
|
152
|
-
Args:
|
|
153
|
-
images (Iterable[torch.Tensor]): The images to plot.
|
|
154
|
-
axs (Iterable[plt.Axes]): The axes to plot the images on.
|
|
155
|
-
chnls (List[int], optional): The channels to use for RGB. Defaults to [2, 1, 0].
|
|
156
|
-
bright (float, optional): The brightness factor. Defaults to 1.0.
|
|
157
|
-
|
|
158
|
-
Returns:
|
|
159
|
-
None
|
|
160
|
-
"""
|
|
161
|
-
for img, ax in zip(images, axs):
|
|
162
|
-
arr = torch.clamp(bright * img, min=0, max=1).numpy()
|
|
163
|
-
rgb = arr.transpose(1, 2, 0)[:, :, chnls]
|
|
164
|
-
ax.imshow(rgb)
|
|
165
|
-
ax.axis("off")
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
def plot_masks(
|
|
169
|
-
masks: Iterable[torch.Tensor], axs: Iterable[plt.Axes], cmap: str = "Blues"
|
|
170
|
-
) -> None:
|
|
171
|
-
"""
|
|
172
|
-
Plot a list of masks.
|
|
173
|
-
|
|
174
|
-
Args:
|
|
175
|
-
masks (Iterable[torch.Tensor]): The masks to plot.
|
|
176
|
-
axs (Iterable[plt.Axes]): The axes to plot the masks on.
|
|
177
|
-
cmap (str, optional): The colormap to use. Defaults to "Blues".
|
|
178
|
-
|
|
179
|
-
Returns:
|
|
180
|
-
None
|
|
181
|
-
"""
|
|
182
|
-
for mask, ax in zip(masks, axs):
|
|
183
|
-
ax.imshow(mask.squeeze().numpy(), cmap=cmap)
|
|
184
|
-
ax.axis("off")
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
def plot_batch(
|
|
188
|
-
batch: Dict[str, Any],
|
|
189
|
-
bright: float = 1.0,
|
|
190
|
-
cols: int = 4,
|
|
191
|
-
width: int = 5,
|
|
192
|
-
chnls: List[int] = [2, 1, 0],
|
|
193
|
-
cmap: str = "Blues",
|
|
194
|
-
) -> None:
|
|
195
|
-
"""
|
|
196
|
-
Plot a batch of images and masks. This function is adapted from the plot_batch()
|
|
197
|
-
function in the torchgeo library at
|
|
198
|
-
https://torchgeo.readthedocs.io/en/stable/tutorials/earth_surface_water.html
|
|
199
|
-
Credit to the torchgeo developers for the original implementation.
|
|
200
|
-
|
|
201
|
-
Args:
|
|
202
|
-
batch (Dict[str, Any]): The batch containing images and masks.
|
|
203
|
-
bright (float, optional): The brightness factor. Defaults to 1.0.
|
|
204
|
-
cols (int, optional): The number of columns in the plot grid. Defaults to 4.
|
|
205
|
-
width (int, optional): The width of each plot. Defaults to 5.
|
|
206
|
-
chnls (List[int], optional): The channels to use for RGB. Defaults to [2, 1, 0].
|
|
207
|
-
cmap (str, optional): The colormap to use for masks. Defaults to "Blues".
|
|
208
|
-
|
|
209
|
-
Returns:
|
|
210
|
-
None
|
|
211
|
-
"""
|
|
212
|
-
# Get the samples and the number of items in the batch
|
|
213
|
-
samples = unbind_samples(batch.copy())
|
|
214
|
-
|
|
215
|
-
# if batch contains images and masks, the number of images will be doubled
|
|
216
|
-
n = 2 * len(samples) if ("image" in batch) and ("mask" in batch) else len(samples)
|
|
217
|
-
|
|
218
|
-
# calculate the number of rows in the grid
|
|
219
|
-
rows = n // cols + (1 if n % cols != 0 else 0)
|
|
220
|
-
|
|
221
|
-
# create a grid
|
|
222
|
-
_, axs = plt.subplots(rows, cols, figsize=(cols * width, rows * width))
|
|
223
|
-
|
|
224
|
-
if ("image" in batch) and ("mask" in batch):
|
|
225
|
-
# plot the images on the even axis
|
|
226
|
-
plot_images(
|
|
227
|
-
images=map(lambda x: x["image"], samples),
|
|
228
|
-
axs=axs.reshape(-1)[::2],
|
|
229
|
-
chnls=chnls,
|
|
230
|
-
bright=bright,
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
# plot the masks on the odd axis
|
|
234
|
-
plot_masks(masks=map(lambda x: x["mask"], samples), axs=axs.reshape(-1)[1::2])
|
|
235
|
-
|
|
236
|
-
else:
|
|
237
|
-
if "image" in batch:
|
|
238
|
-
plot_images(
|
|
239
|
-
images=map(lambda x: x["image"], samples),
|
|
240
|
-
axs=axs.reshape(-1),
|
|
241
|
-
chnls=chnls,
|
|
242
|
-
bright=bright,
|
|
243
|
-
)
|
|
244
|
-
|
|
245
|
-
elif "mask" in batch:
|
|
246
|
-
plot_masks(
|
|
247
|
-
masks=map(lambda x: x["mask"], samples), axs=axs.reshape(-1), cmap=cmap
|
|
248
|
-
)
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
def calc_stats(
|
|
252
|
-
dataset: RasterDataset, divide_by: float = 1.0
|
|
253
|
-
) -> Tuple[np.ndarray, np.ndarray]:
|
|
254
|
-
"""
|
|
255
|
-
Calculate the statistics (mean and std) for the entire dataset.
|
|
256
|
-
|
|
257
|
-
This function is adapted from the plot_batch() function in the torchgeo library at
|
|
258
|
-
https://torchgeo.readthedocs.io/en/stable/tutorials/earth_surface_water.html.
|
|
259
|
-
Credit to the torchgeo developers for the original implementation.
|
|
260
|
-
|
|
261
|
-
Warning: This is an approximation. The correct value should take into account the
|
|
262
|
-
mean for the whole dataset for computing individual stds.
|
|
263
|
-
|
|
264
|
-
Args:
|
|
265
|
-
dataset (RasterDataset): The dataset to calculate statistics for.
|
|
266
|
-
divide_by (float, optional): The value to divide the image data by. Defaults to 1.0.
|
|
267
|
-
|
|
268
|
-
Returns:
|
|
269
|
-
Tuple[np.ndarray, np.ndarray]: The mean and standard deviation for each band.
|
|
270
|
-
"""
|
|
271
|
-
import rasterio as rio
|
|
272
|
-
|
|
273
|
-
# To avoid loading the entire dataset in memory, we will loop through each img
|
|
274
|
-
# The filenames will be retrieved from the dataset's rtree index
|
|
275
|
-
files = [
|
|
276
|
-
item.object
|
|
277
|
-
for item in dataset.index.intersection(dataset.index.bounds, objects=True)
|
|
278
|
-
]
|
|
279
|
-
|
|
280
|
-
# Resetting statistics
|
|
281
|
-
accum_mean = 0
|
|
282
|
-
accum_std = 0
|
|
283
|
-
|
|
284
|
-
for file in files:
|
|
285
|
-
img = rio.open(file).read() / divide_by # type: ignore
|
|
286
|
-
accum_mean += img.reshape((img.shape[0], -1)).mean(axis=1)
|
|
287
|
-
accum_std += img.reshape((img.shape[0], -1)).std(axis=1)
|
|
288
|
-
|
|
289
|
-
# at the end, we shall have 2 vectors with length n=chnls
|
|
290
|
-
# we will average them considering the number of images
|
|
291
|
-
return accum_mean / len(files), accum_std / len(files)
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
def dict_to_rioxarray(data_dict: Dict) -> xr.DataArray:
|
|
295
|
-
"""Convert a dictionary to a xarray DataArray. The dictionary should contain the
|
|
296
|
-
following keys: "crs", "bounds", and "image". It can be generated from a TorchGeo
|
|
297
|
-
dataset sampler.
|
|
298
|
-
|
|
299
|
-
Args:
|
|
300
|
-
data_dict (Dict): The dictionary containing the data.
|
|
301
|
-
|
|
302
|
-
Returns:
|
|
303
|
-
xr.DataArray: The xarray DataArray.
|
|
304
|
-
"""
|
|
305
|
-
|
|
306
|
-
from affine import Affine
|
|
307
|
-
|
|
308
|
-
# Extract components from the dictionary
|
|
309
|
-
crs = data_dict["crs"]
|
|
310
|
-
bounds = data_dict["bounds"]
|
|
311
|
-
image_tensor = data_dict["image"]
|
|
312
|
-
|
|
313
|
-
# Convert tensor to numpy array if needed
|
|
314
|
-
if hasattr(image_tensor, "numpy"):
|
|
315
|
-
# For PyTorch tensors
|
|
316
|
-
image_array = image_tensor.numpy()
|
|
317
|
-
else:
|
|
318
|
-
# If it's already a numpy array or similar
|
|
319
|
-
image_array = np.array(image_tensor)
|
|
320
|
-
|
|
321
|
-
# Calculate pixel resolution
|
|
322
|
-
width = image_array.shape[2] # Width is the size of the last dimension
|
|
323
|
-
height = image_array.shape[1] # Height is the size of the middle dimension
|
|
324
|
-
|
|
325
|
-
res_x = (bounds.maxx - bounds.minx) / width
|
|
326
|
-
res_y = (bounds.maxy - bounds.miny) / height
|
|
327
|
-
|
|
328
|
-
# Create the transform matrix
|
|
329
|
-
transform = Affine(res_x, 0.0, bounds.minx, 0.0, -res_y, bounds.maxy)
|
|
330
|
-
|
|
331
|
-
# Create dimensions
|
|
332
|
-
x_coords = np.linspace(bounds.minx + res_x / 2, bounds.maxx - res_x / 2, width)
|
|
333
|
-
y_coords = np.linspace(bounds.maxy - res_y / 2, bounds.miny + res_y / 2, height)
|
|
334
|
-
|
|
335
|
-
# If time dimension exists in the bounds
|
|
336
|
-
if hasattr(bounds, "mint") and hasattr(bounds, "maxt"):
|
|
337
|
-
# Create a single time value or range if needed
|
|
338
|
-
t_coords = [
|
|
339
|
-
bounds.mint
|
|
340
|
-
] # Or np.linspace(bounds.mint, bounds.maxt, num_time_steps)
|
|
341
|
-
|
|
342
|
-
# Create DataArray with time dimension
|
|
343
|
-
dims = (
|
|
344
|
-
("band", "y", "x")
|
|
345
|
-
if image_array.shape[0] <= 10
|
|
346
|
-
else ("time", "band", "y", "x")
|
|
347
|
-
)
|
|
348
|
-
|
|
349
|
-
if dims[0] == "band":
|
|
350
|
-
# For multi-band single time
|
|
351
|
-
da = xr.DataArray(
|
|
352
|
-
image_array,
|
|
353
|
-
dims=dims,
|
|
354
|
-
coords={
|
|
355
|
-
"band": np.arange(1, image_array.shape[0] + 1),
|
|
356
|
-
"y": y_coords,
|
|
357
|
-
"x": x_coords,
|
|
358
|
-
},
|
|
359
|
-
)
|
|
360
|
-
else:
|
|
361
|
-
# For multi-time multi-band
|
|
362
|
-
da = xr.DataArray(
|
|
363
|
-
image_array,
|
|
364
|
-
dims=dims,
|
|
365
|
-
coords={
|
|
366
|
-
"time": t_coords,
|
|
367
|
-
"band": np.arange(1, image_array.shape[1] + 1),
|
|
368
|
-
"y": y_coords,
|
|
369
|
-
"x": x_coords,
|
|
370
|
-
},
|
|
371
|
-
)
|
|
372
|
-
else:
|
|
373
|
-
# Create DataArray without time dimension
|
|
374
|
-
da = xr.DataArray(
|
|
375
|
-
image_array,
|
|
376
|
-
dims=("band", "y", "x"),
|
|
377
|
-
coords={
|
|
378
|
-
"band": np.arange(1, image_array.shape[0] + 1),
|
|
379
|
-
"y": y_coords,
|
|
380
|
-
"x": x_coords,
|
|
381
|
-
},
|
|
382
|
-
)
|
|
383
|
-
|
|
384
|
-
# Set spatial attributes
|
|
385
|
-
da.rio.write_crs(crs, inplace=True)
|
|
386
|
-
da.rio.write_transform(transform, inplace=True)
|
|
387
|
-
|
|
388
|
-
return da
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
def dict_to_image(
|
|
392
|
-
data_dict: Dict[str, Any], output: Optional[str] = None, **kwargs
|
|
393
|
-
) -> rio.DatasetReader:
|
|
394
|
-
"""Convert a dictionary containing spatial data to a rasterio dataset or save it to
|
|
395
|
-
a file. The dictionary should contain the following keys: "crs", "bounds", and "image".
|
|
396
|
-
It can be generated from a TorchGeo dataset sampler.
|
|
397
|
-
|
|
398
|
-
This function transforms a dictionary with CRS, bounding box, and image data
|
|
399
|
-
into a rasterio DatasetReader using leafmap's array_to_image utility after
|
|
400
|
-
first converting to a rioxarray DataArray.
|
|
401
|
-
|
|
402
|
-
Args:
|
|
403
|
-
data_dict: A dictionary containing:
|
|
404
|
-
- 'crs': A pyproj CRS object
|
|
405
|
-
- 'bounds': A BoundingBox object with minx, maxx, miny, maxy attributes
|
|
406
|
-
and optionally mint, maxt for temporal bounds
|
|
407
|
-
- 'image': A tensor or array-like object with image data
|
|
408
|
-
output: Optional path to save the image to a file. If not provided, the image
|
|
409
|
-
will be returned as a rasterio DatasetReader object.
|
|
410
|
-
**kwargs: Additional keyword arguments to pass to leafmap.array_to_image.
|
|
411
|
-
Common options include:
|
|
412
|
-
- colormap: str, name of the colormap (e.g., 'viridis', 'terrain')
|
|
413
|
-
- vmin: float, minimum value for colormap scaling
|
|
414
|
-
- vmax: float, maximum value for colormap scaling
|
|
415
|
-
|
|
416
|
-
Returns:
|
|
417
|
-
A rasterio DatasetReader object that can be used for visualization or
|
|
418
|
-
further processing.
|
|
419
|
-
|
|
420
|
-
Examples:
|
|
421
|
-
>>> image = dict_to_image(
|
|
422
|
-
... {'crs': CRS.from_epsg(26911), 'bounds': bbox, 'image': tensor},
|
|
423
|
-
... colormap='terrain'
|
|
424
|
-
... )
|
|
425
|
-
>>> fig, ax = plt.subplots(figsize=(10, 10))
|
|
426
|
-
>>> show(image, ax=ax)
|
|
427
|
-
"""
|
|
428
|
-
da = dict_to_rioxarray(data_dict)
|
|
429
|
-
|
|
430
|
-
if output is not None:
|
|
431
|
-
out_dir = os.path.abspath(os.path.dirname(output))
|
|
432
|
-
if not os.path.exists(out_dir):
|
|
433
|
-
os.makedirs(out_dir, exist_ok=True)
|
|
434
|
-
da.rio.to_raster(output)
|
|
435
|
-
return output
|
|
436
|
-
else:
|
|
437
|
-
image = leafmap.array_to_image(da, **kwargs)
|
|
438
|
-
return image
|
geoai_py-0.2.2.dist-info/RECORD
DELETED
|
@@ -1,13 +0,0 @@
|
|
|
1
|
-
geoai/__init__.py,sha256=yEbFyHPNijxgK-75tatrRELZ9TUdZVYo2uPlxCeBFDA,923
|
|
2
|
-
geoai/common.py,sha256=NdfkQKMPHkwr0B5sDpH5Q_7Nt2AmYt9Gw-KE88NsQ5s,15222
|
|
3
|
-
geoai/download.py,sha256=4GiDmLrp2wKslgfm507WeZrwOdYcMekgQXxWGbl5cBw,13094
|
|
4
|
-
geoai/extract.py,sha256=Fh29d5Fj60YiqhMs62lzkd9T_ONTp2UZ4j98We769sg,31563
|
|
5
|
-
geoai/geoai.py,sha256=BCEtHil0P5cettJdMIhblg1pRaV-vHNQFaYmBrtYP3g,68
|
|
6
|
-
geoai/preprocess.py,sha256=pYtf3-eZY76SKd17MvEZ1qNUvblYW5kzQLvZ-ZM4Wwg,106833
|
|
7
|
-
geoai/segmentation.py,sha256=Vcymnhwl_xikt4v9x8CYJq_vId9R1gB7-YzLfwg-F9M,11372
|
|
8
|
-
geoai_py-0.2.2.dist-info/LICENSE,sha256=vN2L5U7cZ6ZkOHFmc8WiGlsogWsZc5dllMeNxnKVOZg,1070
|
|
9
|
-
geoai_py-0.2.2.dist-info/METADATA,sha256=baREpHpvCvfktqiMSWNI-FGOVme8NAj0UkaJhS6Bkm4,5701
|
|
10
|
-
geoai_py-0.2.2.dist-info/WHEEL,sha256=rF4EZyR2XVS6irmOHQIJx2SUqXLZKRMUrjsg8UwN-XQ,109
|
|
11
|
-
geoai_py-0.2.2.dist-info/entry_points.txt,sha256=uGp3Az3HURIsRHP9v-ys0hIbUuBBNUfXv6VbYHIXeg4,41
|
|
12
|
-
geoai_py-0.2.2.dist-info/top_level.txt,sha256=1YkCUWu-ii-0qIex7kbwAvfei-gos9ycyDyUCJPNWHY,6
|
|
13
|
-
geoai_py-0.2.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|