geney 1.2.20__py2.py3-none-any.whl → 1.2.22__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of geney might be problematic. Click here for more details.
- geney/oncosplice.py +1 -1
- {geney-1.2.20.dist-info → geney-1.2.22.dist-info}/METADATA +1 -1
- geney-1.2.22.dist-info/RECORD +19 -0
- geney/Gene.py +0 -258
- geney/analyzers/__init__.py +0 -0
- geney/analyzers/benchmark_clinvar.py +0 -158
- geney/analyzers/characterize_epistasis.py +0 -15
- geney/analyzers/compare_sets.py +0 -91
- geney/analyzers/group_comparison.py +0 -81
- geney/analyzers/survival.py +0 -144
- geney/analyzers/tcga_annotations.py +0 -194
- geney/analyzers/visualize_protein_conservation.py +0 -398
- geney/benchmark_clinvar.py +0 -158
- geney/compare_sets.py +0 -91
- geney/data_parsers/__init__.py +0 -0
- geney/data_parsers/gtex.py +0 -68
- geney/gtex.py +0 -68
- geney/immunotherapy/__init__.py +0 -0
- geney/immunotherapy/netchop.py +0 -78
- geney/mutations/__init__.py +0 -0
- geney/mutations/variant_utils.py +0 -125
- geney/netchop.py +0 -79
- geney/oncosplice/__init__.py +0 -0
- geney/oncosplice_mouse.py +0 -277
- geney/oncosplice_pipeline.py +0 -1588
- geney/performance_utils.py +0 -138
- geney/pipelines/__init__.py +0 -0
- geney/pipelines/dask_utils.py +0 -153
- geney/splicing/__init__.py +0 -2
- geney/splicing/spliceai_utils.py +0 -253
- geney/splicing/splicing_isoform_utils.py +0 -0
- geney/splicing/splicing_utils.py +0 -366
- geney/survival.py +0 -124
- geney/tcga_annotations.py +0 -352
- geney/translation_termination/__init__.py +0 -0
- geney/translation_termination/tts_utils.py +0 -0
- geney-1.2.20.dist-info/RECORD +0 -52
- {geney-1.2.20.dist-info → geney-1.2.22.dist-info}/WHEEL +0 -0
- {geney-1.2.20.dist-info → geney-1.2.22.dist-info}/top_level.txt +0 -0
geney/splicing/splicing_utils.py
DELETED
|
@@ -1,366 +0,0 @@
|
|
|
1
|
-
from geney.utils import reverse_complement, find_files_by_gene_name, unload_json, dump_json, unload_pickle
|
|
2
|
-
from geney.Fasta_segment import Fasta_segment
|
|
3
|
-
from geney.mutations.variant_utils import generate_mut_variant
|
|
4
|
-
from geney import config_setup
|
|
5
|
-
import networkx as nx
|
|
6
|
-
import random
|
|
7
|
-
from dataclasses import dataclass
|
|
8
|
-
|
|
9
|
-
'''
|
|
10
|
-
SpliceAI util functions.
|
|
11
|
-
'''
|
|
12
|
-
import numpy as np
|
|
13
|
-
import tensorflow as tf
|
|
14
|
-
from keras.models import load_model
|
|
15
|
-
from pkg_resources import resource_filename
|
|
16
|
-
from spliceai.utils import one_hot_encode
|
|
17
|
-
|
|
18
|
-
tf.config.threading.set_intra_op_parallelism_threads(1)
|
|
19
|
-
tf.config.threading.set_inter_op_parallelism_threads(1)
|
|
20
|
-
|
|
21
|
-
sai_paths = ('models/spliceai{}.h5'.format(x) for x in range(1, 6))
|
|
22
|
-
sai_models = [load_model(resource_filename('spliceai', x)) for x in sai_paths]
|
|
23
|
-
|
|
24
|
-
def sai_predict_probs(seq: str, models: list) -> list:
|
|
25
|
-
'''
|
|
26
|
-
Predicts the donor and acceptor junction probability of each
|
|
27
|
-
NT in seq using SpliceAI.
|
|
28
|
-
|
|
29
|
-
Let m:=2*sai_mrg_context + L be the input seq length. It is assumed
|
|
30
|
-
that the input seq has the following structure:
|
|
31
|
-
|
|
32
|
-
seq = |<sai_mrg_context NTs><L NTs><sai_mrg_context NTs>|
|
|
33
|
-
|
|
34
|
-
The returned probability matrix is of size 2XL, where
|
|
35
|
-
the first row is the acceptor probability and the second row
|
|
36
|
-
is the donor probability. These probabilities corresponds to the
|
|
37
|
-
middel <L NTs> NTs of the input seq.
|
|
38
|
-
'''
|
|
39
|
-
x = one_hot_encode(seq)[None, :]
|
|
40
|
-
y = np.mean([models[m].predict(x, verbose=0) for m in range(5)], axis=0)
|
|
41
|
-
return y[0,:,1:].T
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def get_actual_sai_seq(seq: str, sai_mrg_context: int=5000) -> str:
|
|
45
|
-
'''
|
|
46
|
-
This dfunction assumes that the input seq has the following structure:
|
|
47
|
-
|
|
48
|
-
seq = |<sai_mrg_context NTs><L NTs><sai_mrg_context NTs>|.
|
|
49
|
-
|
|
50
|
-
Then, the function returns the sequence: |<L NTs>|
|
|
51
|
-
'''
|
|
52
|
-
return seq[sai_mrg_context:-sai_mrg_context]
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
############################################################################################
|
|
56
|
-
############################################################################################
|
|
57
|
-
############# BEGIN CUSTOM SAI USE CASES ###################################################
|
|
58
|
-
############################################################################################
|
|
59
|
-
############################################################################################
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
def find_ss_changes(ref_dct, mut_dct, known_splice_sites, threshold=0.5):
|
|
63
|
-
'''
|
|
64
|
-
:param ref_dct: the spliceai probabilities for each nucleotide (by genomic position) as a dictionary for the reference sequence
|
|
65
|
-
:param mut_dct: the spliceai probabilities for each nucleotide (by genomic position) as a dictionary for the mutated sequence
|
|
66
|
-
:param known_splice_sites: the indices (by genomic position) that serve as known splice sites
|
|
67
|
-
:param threshold: the threshold for detection (difference between reference and mutated probabilities)
|
|
68
|
-
:return: two dictionaries; discovered_pos is a dictionary containing all the positions that meat the threshold for discovery
|
|
69
|
-
and deleted_pos containing all the positions that meet the threshold for missing and the condition for missing
|
|
70
|
-
'''
|
|
71
|
-
|
|
72
|
-
new_dict = {v: mut_dct.get(v, 0) - ref_dct.get(v, 0) for v in
|
|
73
|
-
list(set(list(ref_dct.keys()) + list(mut_dct.keys())))}
|
|
74
|
-
|
|
75
|
-
discovered_pos = {k: {'delta': round(float(v), 3), 'absolute': round(float(mut_dct[k]), 3)} for k, v in
|
|
76
|
-
new_dict.items() if (k not in known_splice_sites and v >= threshold) or (v > 0.45)}
|
|
77
|
-
|
|
78
|
-
deleted_pos = {k: {'delta': round(float(v), 3), 'absolute': round(float(mut_dct.get(k, 0)), 3)} for k, v in
|
|
79
|
-
new_dict.items() if k in known_splice_sites and v <= -threshold}
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
return discovered_pos, deleted_pos
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
def run_spliceai(mutations, gene_data, sai_mrg_context=5000, min_coverage=2500, sai_threshold=0.5):
|
|
86
|
-
positions = mutations.positions #[m.start for m in mutations]
|
|
87
|
-
seq_start_pos = min(positions) - sai_mrg_context - min_coverage
|
|
88
|
-
seq_end_pos = max(positions) + sai_mrg_context + min_coverage # + 1
|
|
89
|
-
|
|
90
|
-
# ref_seq, ref_indices = pull_fasta_seq_endpoints(mutations.chrom, seq_start_pos, seq_end_pos)
|
|
91
|
-
fasta_obj = Fasta_segment()
|
|
92
|
-
ref_seq, ref_indices = fasta_obj.read_segment_endpoints(config_setup['CHROM_SOURCE'] / f'chr{mutations.chrom}.fasta',
|
|
93
|
-
seq_start_pos,
|
|
94
|
-
seq_end_pos)
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
# gene_data = unload_pickle(
|
|
98
|
-
# find_files_by_gene_name(gene_name=mutations.gene))
|
|
99
|
-
gene_start, gene_end, rev = gene_data.gene_start, gene_data.gene_end, gene_data.rev
|
|
100
|
-
|
|
101
|
-
mrna_acceptors = sorted(list(set([lst for lsts in
|
|
102
|
-
[mrna.get('acceptors', []) for mrna in gene_data.transcripts.values() if
|
|
103
|
-
mrna['transcript_biotype'] == 'protein_coding'] for lst in lsts])))
|
|
104
|
-
mrna_donors = sorted(list(set([lst for lsts in
|
|
105
|
-
[mrna.get('donors', []) for mrna in gene_data.transcripts.values() if
|
|
106
|
-
mrna['transcript_biotype'] == 'protein_coding'] for lst in lsts])))
|
|
107
|
-
|
|
108
|
-
visible_donors = np.intersect1d(mrna_donors, ref_indices)
|
|
109
|
-
visible_acceptors = np.intersect1d(mrna_acceptors, ref_indices)
|
|
110
|
-
|
|
111
|
-
start_pad = ref_indices.index(gene_start) if gene_start in ref_indices else 0
|
|
112
|
-
end_cutoff = ref_indices.index(gene_end) if gene_end in ref_indices else len(ref_indices) # - 1
|
|
113
|
-
end_pad = len(ref_indices) - end_cutoff
|
|
114
|
-
ref_seq = 'N' * start_pad + ref_seq[start_pad:end_cutoff] + 'N' * end_pad
|
|
115
|
-
ref_indices = [-1] * start_pad + ref_indices[start_pad:end_cutoff] + [-1] * end_pad
|
|
116
|
-
mut_seq, mut_indices = ref_seq, ref_indices
|
|
117
|
-
|
|
118
|
-
for mut in mutations:
|
|
119
|
-
mut_seq, mut_indices, _, _ = generate_mut_variant(seq=mut_seq, indices=mut_indices, mut=mut)
|
|
120
|
-
|
|
121
|
-
ref_indices = ref_indices[sai_mrg_context:-sai_mrg_context]
|
|
122
|
-
mut_indices = mut_indices[sai_mrg_context:-sai_mrg_context]
|
|
123
|
-
|
|
124
|
-
if rev:
|
|
125
|
-
ref_seq = reverse_complement(ref_seq)
|
|
126
|
-
mut_seq = reverse_complement(mut_seq)
|
|
127
|
-
ref_indices = ref_indices[::-1]
|
|
128
|
-
mut_indices = mut_indices[::-1]
|
|
129
|
-
|
|
130
|
-
ref_seq_probs_temp = sai_predict_probs(ref_seq, sai_models)
|
|
131
|
-
mut_seq_probs_temp = sai_predict_probs(mut_seq, sai_models)
|
|
132
|
-
|
|
133
|
-
ref_seq_acceptor_probs, ref_seq_donor_probs = ref_seq_probs_temp[0, :], ref_seq_probs_temp[1, :]
|
|
134
|
-
mut_seq_acceptor_probs, mut_seq_donor_probs = mut_seq_probs_temp[0, :], mut_seq_probs_temp[1, :]
|
|
135
|
-
|
|
136
|
-
assert len(ref_indices) == len(ref_seq_acceptor_probs), 'Reference pos not the same'
|
|
137
|
-
assert len(mut_indices) == len(mut_seq_acceptor_probs), 'Mut pos not the same'
|
|
138
|
-
|
|
139
|
-
iap, dap = find_ss_changes({p: v for p, v in list(zip(ref_indices, ref_seq_acceptor_probs))},
|
|
140
|
-
{p: v for p, v in list(zip(mut_indices, mut_seq_acceptor_probs))},
|
|
141
|
-
visible_acceptors,
|
|
142
|
-
threshold=sai_threshold)
|
|
143
|
-
|
|
144
|
-
assert len(ref_indices) == len(ref_seq_donor_probs), 'Reference pos not the same'
|
|
145
|
-
assert len(mut_indices) == len(mut_seq_donor_probs), 'Mut pos not the same'
|
|
146
|
-
|
|
147
|
-
idp, ddp = find_ss_changes({p: v for p, v in list(zip(ref_indices, ref_seq_donor_probs))},
|
|
148
|
-
{p: v for p, v in list(zip(mut_indices, mut_seq_donor_probs))},
|
|
149
|
-
visible_donors,
|
|
150
|
-
threshold=sai_threshold)
|
|
151
|
-
|
|
152
|
-
missplicing = {'missed_acceptors': dap, 'missed_donors': ddp, 'discovered_acceptors': iap, 'discovered_donors': idp}
|
|
153
|
-
missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
154
|
-
return {outk: {int(k) if k.is_integer() else k: v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
class PredictSpliceAI:
|
|
159
|
-
def __init__(self, mutation, gene_data, threshold=0.5, force=False, sai_mrg_context=5000, min_coverage=2500):
|
|
160
|
-
self.modification = mutation
|
|
161
|
-
self.threshold = threshold
|
|
162
|
-
|
|
163
|
-
# if '|' in mutation.mut_id:
|
|
164
|
-
self.spliceai_db = config_setup['MISSPLICING_PATH'] / f'spliceai_epistatic'
|
|
165
|
-
# else:
|
|
166
|
-
# self.spliceai_db = config_setup['MISSPLICING_PATH'] / f'spliceai_individual'
|
|
167
|
-
|
|
168
|
-
self.missplicing = {}
|
|
169
|
-
|
|
170
|
-
if self.prediction_file_exists() and not force:
|
|
171
|
-
self.missplicing = self.load_sai_predictions()
|
|
172
|
-
|
|
173
|
-
else:
|
|
174
|
-
self.missplicing = run_spliceai(self.modification, gene_data=gene_data, sai_mrg_context=sai_mrg_context, min_coverage=min_coverage, sai_threshold=0.1)
|
|
175
|
-
self.save_sai_predictions()
|
|
176
|
-
|
|
177
|
-
def __repr__(self):
|
|
178
|
-
return f'Missplicing({self.modification.mut_id}) --> {self.missplicing}'
|
|
179
|
-
|
|
180
|
-
def __str__(self):
|
|
181
|
-
return self.aberrant_splicing
|
|
182
|
-
def __bool__(self):
|
|
183
|
-
for event, details in self.aberrant_splicing.items():
|
|
184
|
-
if details:
|
|
185
|
-
return True
|
|
186
|
-
return False
|
|
187
|
-
|
|
188
|
-
def __eq__(self, alt_splicing):
|
|
189
|
-
flag, _ = check_splicing_difference(self.missplicing, alt_splicing, self.threshold)
|
|
190
|
-
return not flag
|
|
191
|
-
|
|
192
|
-
@property
|
|
193
|
-
def aberrant_splicing(self):
|
|
194
|
-
return self.apply_sai_threshold(self.missplicing, self.threshold)
|
|
195
|
-
|
|
196
|
-
@property
|
|
197
|
-
def prediction_file(self):
|
|
198
|
-
return self.spliceai_db / self.modification.gene / self.modification.file_identifier_json
|
|
199
|
-
|
|
200
|
-
def prediction_file_exists(self):
|
|
201
|
-
return self.prediction_file.exists()
|
|
202
|
-
|
|
203
|
-
def load_sai_predictions(self):
|
|
204
|
-
missplicing = unload_json(self.prediction_file)
|
|
205
|
-
missplicing = {outk: {float(k): v for k, v in outv.items()} for outk, outv in missplicing.items()}
|
|
206
|
-
missplicing = {outk: {int(k) if k.is_integer() or 'missed' in outk else k: v for k, v in outv.items()} for
|
|
207
|
-
outk, outv in
|
|
208
|
-
missplicing.items()}
|
|
209
|
-
return missplicing
|
|
210
|
-
|
|
211
|
-
def save_sai_predictions(self):
|
|
212
|
-
self.prediction_file.parent.mkdir(parents=True, exist_ok=True)
|
|
213
|
-
dump_json(self.prediction_file, self.missplicing)
|
|
214
|
-
def apply_sai_threshold(self, splicing_dict=None, threshold=None):
|
|
215
|
-
splicing_dict = self.missplicing if not splicing_dict else splicing_dict
|
|
216
|
-
threshold = self.threshold if not threshold else threshold
|
|
217
|
-
new_dict = {}
|
|
218
|
-
for event, details in splicing_dict.items():
|
|
219
|
-
for e, d in details.items():
|
|
220
|
-
if abs(d['delta']) >= threshold:
|
|
221
|
-
return splicing_dict
|
|
222
|
-
new_dict[event] = {} #{k: v for k, v in details.items() if abs(v['delta']) >= threshold}
|
|
223
|
-
return new_dict
|
|
224
|
-
|
|
225
|
-
def get_max_missplicing_delta(self):
|
|
226
|
-
max_delta = 0
|
|
227
|
-
for event, details in self.missplicing.items():
|
|
228
|
-
for e, d in details.items():
|
|
229
|
-
if abs(d['delta']) > max_delta:
|
|
230
|
-
max_delta = abs(d['delta'])
|
|
231
|
-
return max_delta
|
|
232
|
-
|
|
233
|
-
def check_splicing_difference(missplicing1, missplicing2, threshold=None):
|
|
234
|
-
flag = False
|
|
235
|
-
true_differences = {}
|
|
236
|
-
for event in ['missed_acceptors', 'missed_donors']:
|
|
237
|
-
td = {}
|
|
238
|
-
dct1 = missplicing1[event]
|
|
239
|
-
dct2 = missplicing2[event]
|
|
240
|
-
for k in list(set(list(dct1.keys()) + list(dct2.keys()))):
|
|
241
|
-
diff = abs(dct1.get(k, {'delta': 0})['delta']) - abs(dct2.get(k, {'delta': 0})['delta'])
|
|
242
|
-
if abs(diff) >= threshold:
|
|
243
|
-
flag = True
|
|
244
|
-
td[k] = diff
|
|
245
|
-
true_differences[event] = td
|
|
246
|
-
for event in ['discovered_acceptors', 'discovered_donors']:
|
|
247
|
-
td = {}
|
|
248
|
-
dct1 = missplicing1[event]
|
|
249
|
-
dct2 = missplicing2[event]
|
|
250
|
-
for k in list(set(list(dct1.keys()) + list(dct2.keys()))):
|
|
251
|
-
diff = abs(dct1.get(k, {'delta': 0})['delta']) - abs(dct2.get(k, {'delta': 0})['delta'])
|
|
252
|
-
if abs(diff) >= threshold:
|
|
253
|
-
flag = True
|
|
254
|
-
td[k] = diff
|
|
255
|
-
true_differences[event] = td
|
|
256
|
-
return flag, true_differences
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
def develop_aberrant_splicing(transcript, aberrant_splicing):
|
|
262
|
-
boundaries = [lst for lsts in [[a, b] for a, b in transcript.exons] for lst in lsts]
|
|
263
|
-
exon_starts, exon_ends = list(zip(*transcript.exons))
|
|
264
|
-
transcript_start, transcript_end = exon_starts[0], exon_ends[-1]
|
|
265
|
-
next_exon_end = exon_ends[-2]
|
|
266
|
-
rev = transcript.rev
|
|
267
|
-
upper_range, lower_range = max(boundaries), min(boundaries)
|
|
268
|
-
exon_starts = {v: 1 for v in exon_starts}
|
|
269
|
-
exon_ends = {v: 1 for v in exon_ends}
|
|
270
|
-
for k, v in aberrant_splicing.get('missed_donors', {}).items():
|
|
271
|
-
if k in exon_ends.keys():
|
|
272
|
-
exon_ends[k] = max(v['absolute'], 0.001)
|
|
273
|
-
exon_ends.update(
|
|
274
|
-
{k: v['absolute'] for k, v in aberrant_splicing.get('discovered_donors', {}).items() if lower_range <= k <= upper_range})
|
|
275
|
-
for k, v in aberrant_splicing.get('missed_acceptors', {}).items():
|
|
276
|
-
if k in exon_starts.keys():
|
|
277
|
-
exon_starts[k] = max(v['absolute'], 0.001)
|
|
278
|
-
exon_starts.update(
|
|
279
|
-
{k: v['absolute'] for k, v in aberrant_splicing.get('discovered_acceptors', {}).items() if lower_range <= k <= upper_range})
|
|
280
|
-
nodes = [SpliceSite(pos=pos, ss_type=0, prob=prob) for pos, prob in exon_ends.items() if
|
|
281
|
-
lower_range <= pos <= upper_range] + \
|
|
282
|
-
[SpliceSite(pos=pos, ss_type=1, prob=prob) for pos, prob in exon_starts.items() if
|
|
283
|
-
lower_range <= pos <= upper_range]
|
|
284
|
-
nodes = [s for s in nodes if s.prob > 0]
|
|
285
|
-
nodes.sort(key=lambda x: x.pos, reverse=rev)
|
|
286
|
-
G = nx.DiGraph()
|
|
287
|
-
G.add_nodes_from([n.pos for n in nodes])
|
|
288
|
-
for i in range(len(nodes)):
|
|
289
|
-
trailing_prob, in_between = 0, []
|
|
290
|
-
for j in range(i + 1, len(nodes)):
|
|
291
|
-
curr_node, next_node = nodes[i], nodes[j]
|
|
292
|
-
spread = curr_node.ss_type in in_between
|
|
293
|
-
in_between.append(next_node.ss_type)
|
|
294
|
-
if curr_node.ss_type != next_node.ss_type:
|
|
295
|
-
if spread:
|
|
296
|
-
new_prob = next_node.prob - trailing_prob
|
|
297
|
-
if new_prob <= 0:
|
|
298
|
-
break
|
|
299
|
-
G.add_edge(curr_node.pos, next_node.pos)
|
|
300
|
-
G.edges[curr_node.pos, next_node.pos]['weight'] = new_prob
|
|
301
|
-
trailing_prob += next_node.prob
|
|
302
|
-
else:
|
|
303
|
-
G.add_edge(curr_node.pos, next_node.pos)
|
|
304
|
-
G.edges[curr_node.pos, next_node.pos]['weight'] = next_node.prob
|
|
305
|
-
trailing_prob += next_node.prob
|
|
306
|
-
|
|
307
|
-
new_paths, prob_sum = {}, 0
|
|
308
|
-
for i, path in enumerate(nx.all_simple_paths(G, transcript_start, transcript_end)):
|
|
309
|
-
curr_prob = path_weight_mult(G, path, 'weight')
|
|
310
|
-
prob_sum += curr_prob
|
|
311
|
-
new_paths[i] = {'acceptors': sorted([p for p in path if p in exon_starts.keys() and p != transcript_start], reverse=rev),
|
|
312
|
-
'donors': sorted([p for p in path if p in exon_ends.keys() and p != transcript_end], reverse=rev),
|
|
313
|
-
'path_weight': curr_prob}
|
|
314
|
-
continuance = i + 1
|
|
315
|
-
|
|
316
|
-
if prob_sum < 0.1:
|
|
317
|
-
for j, path in enumerate(nx.all_simple_paths(G, transcript_start, next_exon_end)):
|
|
318
|
-
curr_prob = path_weight_mult(G, path, 'weight')
|
|
319
|
-
if curr_prob < 0.1:
|
|
320
|
-
continue
|
|
321
|
-
prob_sum += curr_prob
|
|
322
|
-
new_paths[continuance+j] = {'acceptors': sorted([p for p in path if p in exon_starts.keys() and p != transcript_start],
|
|
323
|
-
reverse=rev),
|
|
324
|
-
'donors': sorted([p for p in path if p in exon_ends.keys() and p != transcript_end],
|
|
325
|
-
reverse=rev),
|
|
326
|
-
'path_weight': curr_prob}
|
|
327
|
-
for i, d in new_paths.items():
|
|
328
|
-
d['path_weight'] = round(d['path_weight'] / prob_sum, 3)
|
|
329
|
-
new_paths = {k: v for k, v in new_paths.items() if v['path_weight'] > 0.01}
|
|
330
|
-
return list(new_paths.values())
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
def path_weight_mult(G, path, weight):
|
|
334
|
-
multigraph = G.is_multigraph()
|
|
335
|
-
cost = 1
|
|
336
|
-
if not nx.is_path(G, path):
|
|
337
|
-
raise nx.NetworkXNoPath("path does not exist")
|
|
338
|
-
for node, nbr in nx.utils.pairwise(path):
|
|
339
|
-
if multigraph:
|
|
340
|
-
cost *= min(v[weight] for v in G[node][nbr].values())
|
|
341
|
-
else:
|
|
342
|
-
cost *= G[node][nbr][weight]
|
|
343
|
-
return cost
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
@dataclass
|
|
347
|
-
class SpliceSite(object):
|
|
348
|
-
pos: int
|
|
349
|
-
ss_type: int
|
|
350
|
-
prob: float
|
|
351
|
-
def __post_init__(self):
|
|
352
|
-
pass
|
|
353
|
-
def __lt__(self, other):
|
|
354
|
-
return self.pos < other.pos
|
|
355
|
-
|
|
356
|
-
def generate_random_as(transcript):
|
|
357
|
-
ma = random.sample(transcript.acceptors, 1)[0]
|
|
358
|
-
md = random.sample(transcript.donors, 1)[0]
|
|
359
|
-
da = random.sample(list(range(min(transcript.acceptors), max(transcript.acceptors))), 1)[0]
|
|
360
|
-
dd = random.sample(list(range(min(transcript.donors), max(transcript.donors))), 1)[0]
|
|
361
|
-
return {
|
|
362
|
-
'discovered_acceptors': {da: {'absolute': 0.9}},
|
|
363
|
-
'discovered_donors': {dd: {'absolute': 0.6}},
|
|
364
|
-
'missed_donors': {ma: {'absolute': 0.2}},
|
|
365
|
-
'missed_acceptors': {md: {'absolute': 0.1}},
|
|
366
|
-
}
|
geney/survival.py
DELETED
|
@@ -1,124 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
import numpy as np
|
|
3
|
-
import matplotlib.pyplot as plt
|
|
4
|
-
from pathlib import Path
|
|
5
|
-
from scipy.integrate import trapz
|
|
6
|
-
from geney.utils import unload_pickle, unload_json, contains
|
|
7
|
-
from lifelines.exceptions import ConvergenceError
|
|
8
|
-
from lifelines import KaplanMeierFitter
|
|
9
|
-
from lifelines.statistics import logrank_test
|
|
10
|
-
from lifelines import CoxPHFitter
|
|
11
|
-
|
|
12
|
-
pd.set_option('display.max_columns', None)
|
|
13
|
-
pd.options.mode.chained_assignment = None
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def prepare_clinical_data(df=None):
|
|
17
|
-
if df is None:
|
|
18
|
-
CLINICAL_DATA_FILE = Path('/tamir2/yoramzar/Projects/Cancer_mut/Explore_data/reports/df_p_all.pkl')
|
|
19
|
-
df = unload_pickle(CLINICAL_DATA_FILE)
|
|
20
|
-
|
|
21
|
-
df.rename(columns={'patient_uuid': 'case_id'}, inplace=True)
|
|
22
|
-
cols = list(df.columns)
|
|
23
|
-
cols_days_to_followup = [col for col in cols if 'days_to_followup' in col] + [col for col in cols if 'days_to_last_followup' in col]
|
|
24
|
-
cols_days_to_know_alive = [col for col in cols if 'days_to_know_alive' in col] + [col for col in cols if 'days_to_last_known_alive' in col]
|
|
25
|
-
cols_days_to_death = [col for col in cols if 'days_to_death' in col]
|
|
26
|
-
cols_duration = cols_days_to_followup + cols_days_to_know_alive + cols_days_to_death
|
|
27
|
-
col_vital_status = 'days_to_death'
|
|
28
|
-
event_col_label = 'event'
|
|
29
|
-
duration_col_label = 'duration'
|
|
30
|
-
df.insert(1, event_col_label, df.apply(lambda x: int(not np.isnan(x[col_vital_status])), axis=1))
|
|
31
|
-
df.insert(1, duration_col_label, df.apply(lambda x: max([x[col] for col in cols_duration if not np.isnan(x[col])], default=-1), axis=1))
|
|
32
|
-
df[duration_col_label] /= 365
|
|
33
|
-
df = df.query(f"{duration_col_label}>=0.0")[['duration', 'event', 'case_id', 'chemotherapy', 'hormone_therapy', 'immunotherapy', 'targeted_molecular_therapy', 'Proj_name']]
|
|
34
|
-
# df.to_csv('/tamir2/nicolaslynn/data/tcga_metadata/tcga_clinical_data.csv')
|
|
35
|
-
return df
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
class SurvivalAnalysis:
|
|
39
|
-
def __init__(self, clindf=None):
|
|
40
|
-
self.clindf = prepare_clinical_data(clindf)
|
|
41
|
-
self.treatment_features = ['chemotherapy', 'hormone_therapy', 'immunotherapy', 'targeted_molecular_therapy']
|
|
42
|
-
self.df = self.clindf.copy()
|
|
43
|
-
self.df['group'] = 0
|
|
44
|
-
self.df.fillna(0, inplace=True)
|
|
45
|
-
self.treatment_features = ['chemotherapy', 'hormone_therapy', 'immunotherapy', 'targeted_molecular_therapy']
|
|
46
|
-
|
|
47
|
-
def generate_clinical_dataframe(self, target_cases, control_cases=None, inplace=False, features_of_interest=[]):
|
|
48
|
-
df = self.df.copy()
|
|
49
|
-
df.loc[df[df.case_id.isin(target_cases)].index, 'group'] = 2
|
|
50
|
-
if control_cases is not None:
|
|
51
|
-
df.loc[df[df.case_id.isin(control_cases)].index, 'group'] = 1
|
|
52
|
-
|
|
53
|
-
df = df[df.group > 0]
|
|
54
|
-
df.group -= 1
|
|
55
|
-
core_features = ['duration', 'event']
|
|
56
|
-
df = df[core_features + features_of_interest]
|
|
57
|
-
|
|
58
|
-
for col in self.treatment_features:
|
|
59
|
-
if col not in df:
|
|
60
|
-
continue
|
|
61
|
-
df.loc[df[col] > 0, col] = 1
|
|
62
|
-
|
|
63
|
-
df = df[core_features + [col for col in features_of_interest if
|
|
64
|
-
df[col].nunique() > 1]] # and df[col].value_counts(normalize=True).min() >= 0.01]]
|
|
65
|
-
return df
|
|
66
|
-
|
|
67
|
-
def kaplan_meier_analysis(self, df, control_label='CV', target_label='Epistasis', feature='group', plot=False, time_cap=False):
|
|
68
|
-
# Can only be performed on features with two unique values
|
|
69
|
-
cap_time = df.groupby(feature).duration.max().min()
|
|
70
|
-
# df['duration'] = df['duration'].clip(upper=cap_time)
|
|
71
|
-
auc_vals = []
|
|
72
|
-
results = pd.Series()
|
|
73
|
-
count = 0
|
|
74
|
-
for val in [0, 1]:
|
|
75
|
-
g = df[df[feature] == val]
|
|
76
|
-
kmf = KaplanMeierFitter()
|
|
77
|
-
label = f"{control_label} ({len(g)} cases)" if val == 0 else f"{target_label} ({len(g)} cases)"
|
|
78
|
-
if val == 0:
|
|
79
|
-
results[control_label] = len(g)
|
|
80
|
-
else:
|
|
81
|
-
results[target_label] = len(g)
|
|
82
|
-
|
|
83
|
-
kmf.fit(g['duration'], g['event'], label=label)
|
|
84
|
-
surv_func = kmf.survival_function_
|
|
85
|
-
auc = trapz(surv_func[label], surv_func.index)
|
|
86
|
-
auc_vals.append(auc)
|
|
87
|
-
if plot:
|
|
88
|
-
if count == 0:
|
|
89
|
-
ax = kmf.plot()
|
|
90
|
-
else:
|
|
91
|
-
kmf.plot(ax=ax)
|
|
92
|
-
count += 1
|
|
93
|
-
p_value = self.log_rank(df[df[feature] == 1], df[df[feature] == 0])
|
|
94
|
-
|
|
95
|
-
if plot:
|
|
96
|
-
ax.text(0.5, 0.85, f'p-value: {p_value:.4f}', transform=ax.transAxes, fontsize=12,
|
|
97
|
-
horizontalalignment='center')
|
|
98
|
-
plt.title('Kaplan-Meier Survival Curves')
|
|
99
|
-
plt.xlabel('Time')
|
|
100
|
-
plt.ylabel('Survival Probability')
|
|
101
|
-
if time_cap:
|
|
102
|
-
plt.xlim([0, cap_time])
|
|
103
|
-
plt.show()
|
|
104
|
-
|
|
105
|
-
results['p_value'] = p_value
|
|
106
|
-
results['auc_target'] = auc_vals[-1]
|
|
107
|
-
if len(auc_vals) > 1:
|
|
108
|
-
results['auc_delta'] = auc_vals[-1] - auc_vals[0]
|
|
109
|
-
results['auc_control'] = auc_vals[0]
|
|
110
|
-
|
|
111
|
-
return results
|
|
112
|
-
|
|
113
|
-
def log_rank(self, group1, group2):
|
|
114
|
-
return logrank_test(group1['duration'], group2['duration'],
|
|
115
|
-
event_observed_A=group1['event'],
|
|
116
|
-
event_observed_B=group2['event']).p_value
|
|
117
|
-
|
|
118
|
-
def perform_cox_analysis(self, df, features_of_interest):
|
|
119
|
-
# Very simple... will return a series with p values for each feature
|
|
120
|
-
try:
|
|
121
|
-
return CoxPHFitter().fit(df[features_of_interest + ['duration', 'event']], 'duration', 'event').summary.p
|
|
122
|
-
except ConvergenceError:
|
|
123
|
-
print("Convergence Error")
|
|
124
|
-
return pd.Series()
|