genesis-flow 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (645) hide show
  1. genesis_flow-1.0.0.dist-info/METADATA +822 -0
  2. genesis_flow-1.0.0.dist-info/RECORD +645 -0
  3. genesis_flow-1.0.0.dist-info/WHEEL +5 -0
  4. genesis_flow-1.0.0.dist-info/entry_points.txt +19 -0
  5. genesis_flow-1.0.0.dist-info/licenses/LICENSE.txt +202 -0
  6. genesis_flow-1.0.0.dist-info/top_level.txt +1 -0
  7. mlflow/__init__.py +367 -0
  8. mlflow/__main__.py +3 -0
  9. mlflow/ag2/__init__.py +56 -0
  10. mlflow/ag2/ag2_logger.py +294 -0
  11. mlflow/anthropic/__init__.py +40 -0
  12. mlflow/anthropic/autolog.py +129 -0
  13. mlflow/anthropic/chat.py +144 -0
  14. mlflow/artifacts/__init__.py +268 -0
  15. mlflow/autogen/__init__.py +144 -0
  16. mlflow/autogen/chat.py +142 -0
  17. mlflow/azure/__init__.py +26 -0
  18. mlflow/azure/auth_handler.py +257 -0
  19. mlflow/azure/client.py +319 -0
  20. mlflow/azure/config.py +120 -0
  21. mlflow/azure/connection_factory.py +340 -0
  22. mlflow/azure/exceptions.py +27 -0
  23. mlflow/azure/stores.py +327 -0
  24. mlflow/azure/utils.py +183 -0
  25. mlflow/bedrock/__init__.py +45 -0
  26. mlflow/bedrock/_autolog.py +202 -0
  27. mlflow/bedrock/chat.py +122 -0
  28. mlflow/bedrock/stream.py +160 -0
  29. mlflow/bedrock/utils.py +43 -0
  30. mlflow/cli.py +707 -0
  31. mlflow/client.py +12 -0
  32. mlflow/config/__init__.py +56 -0
  33. mlflow/crewai/__init__.py +79 -0
  34. mlflow/crewai/autolog.py +253 -0
  35. mlflow/crewai/chat.py +29 -0
  36. mlflow/data/__init__.py +75 -0
  37. mlflow/data/artifact_dataset_sources.py +170 -0
  38. mlflow/data/code_dataset_source.py +40 -0
  39. mlflow/data/dataset.py +123 -0
  40. mlflow/data/dataset_registry.py +168 -0
  41. mlflow/data/dataset_source.py +110 -0
  42. mlflow/data/dataset_source_registry.py +219 -0
  43. mlflow/data/delta_dataset_source.py +167 -0
  44. mlflow/data/digest_utils.py +108 -0
  45. mlflow/data/evaluation_dataset.py +562 -0
  46. mlflow/data/filesystem_dataset_source.py +81 -0
  47. mlflow/data/http_dataset_source.py +145 -0
  48. mlflow/data/huggingface_dataset.py +258 -0
  49. mlflow/data/huggingface_dataset_source.py +118 -0
  50. mlflow/data/meta_dataset.py +104 -0
  51. mlflow/data/numpy_dataset.py +223 -0
  52. mlflow/data/pandas_dataset.py +231 -0
  53. mlflow/data/polars_dataset.py +352 -0
  54. mlflow/data/pyfunc_dataset_mixin.py +31 -0
  55. mlflow/data/schema.py +76 -0
  56. mlflow/data/sources.py +1 -0
  57. mlflow/data/spark_dataset.py +406 -0
  58. mlflow/data/spark_dataset_source.py +74 -0
  59. mlflow/data/spark_delta_utils.py +118 -0
  60. mlflow/data/tensorflow_dataset.py +350 -0
  61. mlflow/data/uc_volume_dataset_source.py +81 -0
  62. mlflow/db.py +27 -0
  63. mlflow/dspy/__init__.py +17 -0
  64. mlflow/dspy/autolog.py +197 -0
  65. mlflow/dspy/callback.py +398 -0
  66. mlflow/dspy/constant.py +1 -0
  67. mlflow/dspy/load.py +93 -0
  68. mlflow/dspy/save.py +393 -0
  69. mlflow/dspy/util.py +109 -0
  70. mlflow/dspy/wrapper.py +226 -0
  71. mlflow/entities/__init__.py +104 -0
  72. mlflow/entities/_mlflow_object.py +52 -0
  73. mlflow/entities/assessment.py +545 -0
  74. mlflow/entities/assessment_error.py +80 -0
  75. mlflow/entities/assessment_source.py +141 -0
  76. mlflow/entities/dataset.py +92 -0
  77. mlflow/entities/dataset_input.py +51 -0
  78. mlflow/entities/dataset_summary.py +62 -0
  79. mlflow/entities/document.py +48 -0
  80. mlflow/entities/experiment.py +109 -0
  81. mlflow/entities/experiment_tag.py +35 -0
  82. mlflow/entities/file_info.py +45 -0
  83. mlflow/entities/input_tag.py +35 -0
  84. mlflow/entities/lifecycle_stage.py +35 -0
  85. mlflow/entities/logged_model.py +228 -0
  86. mlflow/entities/logged_model_input.py +26 -0
  87. mlflow/entities/logged_model_output.py +32 -0
  88. mlflow/entities/logged_model_parameter.py +46 -0
  89. mlflow/entities/logged_model_status.py +74 -0
  90. mlflow/entities/logged_model_tag.py +33 -0
  91. mlflow/entities/metric.py +200 -0
  92. mlflow/entities/model_registry/__init__.py +29 -0
  93. mlflow/entities/model_registry/_model_registry_entity.py +13 -0
  94. mlflow/entities/model_registry/model_version.py +243 -0
  95. mlflow/entities/model_registry/model_version_deployment_job_run_state.py +44 -0
  96. mlflow/entities/model_registry/model_version_deployment_job_state.py +70 -0
  97. mlflow/entities/model_registry/model_version_search.py +25 -0
  98. mlflow/entities/model_registry/model_version_stages.py +25 -0
  99. mlflow/entities/model_registry/model_version_status.py +35 -0
  100. mlflow/entities/model_registry/model_version_tag.py +35 -0
  101. mlflow/entities/model_registry/prompt.py +73 -0
  102. mlflow/entities/model_registry/prompt_version.py +244 -0
  103. mlflow/entities/model_registry/registered_model.py +175 -0
  104. mlflow/entities/model_registry/registered_model_alias.py +35 -0
  105. mlflow/entities/model_registry/registered_model_deployment_job_state.py +39 -0
  106. mlflow/entities/model_registry/registered_model_search.py +25 -0
  107. mlflow/entities/model_registry/registered_model_tag.py +35 -0
  108. mlflow/entities/multipart_upload.py +74 -0
  109. mlflow/entities/param.py +49 -0
  110. mlflow/entities/run.py +97 -0
  111. mlflow/entities/run_data.py +84 -0
  112. mlflow/entities/run_info.py +188 -0
  113. mlflow/entities/run_inputs.py +59 -0
  114. mlflow/entities/run_outputs.py +43 -0
  115. mlflow/entities/run_status.py +41 -0
  116. mlflow/entities/run_tag.py +36 -0
  117. mlflow/entities/source_type.py +31 -0
  118. mlflow/entities/span.py +774 -0
  119. mlflow/entities/span_event.py +96 -0
  120. mlflow/entities/span_status.py +102 -0
  121. mlflow/entities/trace.py +317 -0
  122. mlflow/entities/trace_data.py +71 -0
  123. mlflow/entities/trace_info.py +220 -0
  124. mlflow/entities/trace_info_v2.py +162 -0
  125. mlflow/entities/trace_location.py +173 -0
  126. mlflow/entities/trace_state.py +39 -0
  127. mlflow/entities/trace_status.py +68 -0
  128. mlflow/entities/view_type.py +51 -0
  129. mlflow/environment_variables.py +866 -0
  130. mlflow/evaluation/__init__.py +16 -0
  131. mlflow/evaluation/assessment.py +369 -0
  132. mlflow/evaluation/evaluation.py +411 -0
  133. mlflow/evaluation/evaluation_tag.py +61 -0
  134. mlflow/evaluation/fluent.py +48 -0
  135. mlflow/evaluation/utils.py +201 -0
  136. mlflow/exceptions.py +213 -0
  137. mlflow/experiments.py +140 -0
  138. mlflow/gemini/__init__.py +81 -0
  139. mlflow/gemini/autolog.py +186 -0
  140. mlflow/gemini/chat.py +261 -0
  141. mlflow/genai/__init__.py +71 -0
  142. mlflow/genai/datasets/__init__.py +67 -0
  143. mlflow/genai/datasets/evaluation_dataset.py +131 -0
  144. mlflow/genai/evaluation/__init__.py +3 -0
  145. mlflow/genai/evaluation/base.py +411 -0
  146. mlflow/genai/evaluation/constant.py +23 -0
  147. mlflow/genai/evaluation/utils.py +244 -0
  148. mlflow/genai/judges/__init__.py +21 -0
  149. mlflow/genai/judges/databricks.py +404 -0
  150. mlflow/genai/label_schemas/__init__.py +153 -0
  151. mlflow/genai/label_schemas/label_schemas.py +209 -0
  152. mlflow/genai/labeling/__init__.py +159 -0
  153. mlflow/genai/labeling/labeling.py +250 -0
  154. mlflow/genai/optimize/__init__.py +13 -0
  155. mlflow/genai/optimize/base.py +198 -0
  156. mlflow/genai/optimize/optimizers/__init__.py +4 -0
  157. mlflow/genai/optimize/optimizers/base_optimizer.py +38 -0
  158. mlflow/genai/optimize/optimizers/dspy_mipro_optimizer.py +221 -0
  159. mlflow/genai/optimize/optimizers/dspy_optimizer.py +91 -0
  160. mlflow/genai/optimize/optimizers/utils/dspy_mipro_callback.py +76 -0
  161. mlflow/genai/optimize/optimizers/utils/dspy_mipro_utils.py +18 -0
  162. mlflow/genai/optimize/types.py +75 -0
  163. mlflow/genai/optimize/util.py +30 -0
  164. mlflow/genai/prompts/__init__.py +206 -0
  165. mlflow/genai/scheduled_scorers.py +431 -0
  166. mlflow/genai/scorers/__init__.py +26 -0
  167. mlflow/genai/scorers/base.py +492 -0
  168. mlflow/genai/scorers/builtin_scorers.py +765 -0
  169. mlflow/genai/scorers/scorer_utils.py +138 -0
  170. mlflow/genai/scorers/validation.py +165 -0
  171. mlflow/genai/utils/data_validation.py +146 -0
  172. mlflow/genai/utils/enum_utils.py +23 -0
  173. mlflow/genai/utils/trace_utils.py +211 -0
  174. mlflow/groq/__init__.py +42 -0
  175. mlflow/groq/_groq_autolog.py +74 -0
  176. mlflow/johnsnowlabs/__init__.py +888 -0
  177. mlflow/langchain/__init__.py +24 -0
  178. mlflow/langchain/api_request_parallel_processor.py +330 -0
  179. mlflow/langchain/autolog.py +147 -0
  180. mlflow/langchain/chat_agent_langgraph.py +340 -0
  181. mlflow/langchain/constant.py +1 -0
  182. mlflow/langchain/constants.py +1 -0
  183. mlflow/langchain/databricks_dependencies.py +444 -0
  184. mlflow/langchain/langchain_tracer.py +597 -0
  185. mlflow/langchain/model.py +919 -0
  186. mlflow/langchain/output_parsers.py +142 -0
  187. mlflow/langchain/retriever_chain.py +153 -0
  188. mlflow/langchain/runnables.py +527 -0
  189. mlflow/langchain/utils/chat.py +402 -0
  190. mlflow/langchain/utils/logging.py +671 -0
  191. mlflow/langchain/utils/serialization.py +36 -0
  192. mlflow/legacy_databricks_cli/__init__.py +0 -0
  193. mlflow/legacy_databricks_cli/configure/__init__.py +0 -0
  194. mlflow/legacy_databricks_cli/configure/provider.py +482 -0
  195. mlflow/litellm/__init__.py +175 -0
  196. mlflow/llama_index/__init__.py +22 -0
  197. mlflow/llama_index/autolog.py +55 -0
  198. mlflow/llama_index/chat.py +43 -0
  199. mlflow/llama_index/constant.py +1 -0
  200. mlflow/llama_index/model.py +577 -0
  201. mlflow/llama_index/pyfunc_wrapper.py +332 -0
  202. mlflow/llama_index/serialize_objects.py +188 -0
  203. mlflow/llama_index/tracer.py +561 -0
  204. mlflow/metrics/__init__.py +479 -0
  205. mlflow/metrics/base.py +39 -0
  206. mlflow/metrics/genai/__init__.py +25 -0
  207. mlflow/metrics/genai/base.py +101 -0
  208. mlflow/metrics/genai/genai_metric.py +771 -0
  209. mlflow/metrics/genai/metric_definitions.py +450 -0
  210. mlflow/metrics/genai/model_utils.py +371 -0
  211. mlflow/metrics/genai/prompt_template.py +68 -0
  212. mlflow/metrics/genai/prompts/__init__.py +0 -0
  213. mlflow/metrics/genai/prompts/v1.py +422 -0
  214. mlflow/metrics/genai/utils.py +6 -0
  215. mlflow/metrics/metric_definitions.py +619 -0
  216. mlflow/mismatch.py +34 -0
  217. mlflow/mistral/__init__.py +34 -0
  218. mlflow/mistral/autolog.py +71 -0
  219. mlflow/mistral/chat.py +135 -0
  220. mlflow/ml_package_versions.py +452 -0
  221. mlflow/models/__init__.py +97 -0
  222. mlflow/models/auth_policy.py +83 -0
  223. mlflow/models/cli.py +354 -0
  224. mlflow/models/container/__init__.py +294 -0
  225. mlflow/models/container/scoring_server/__init__.py +0 -0
  226. mlflow/models/container/scoring_server/nginx.conf +39 -0
  227. mlflow/models/dependencies_schemas.py +287 -0
  228. mlflow/models/display_utils.py +158 -0
  229. mlflow/models/docker_utils.py +211 -0
  230. mlflow/models/evaluation/__init__.py +23 -0
  231. mlflow/models/evaluation/_shap_patch.py +64 -0
  232. mlflow/models/evaluation/artifacts.py +194 -0
  233. mlflow/models/evaluation/base.py +1811 -0
  234. mlflow/models/evaluation/calibration_curve.py +109 -0
  235. mlflow/models/evaluation/default_evaluator.py +996 -0
  236. mlflow/models/evaluation/deprecated.py +23 -0
  237. mlflow/models/evaluation/evaluator_registry.py +80 -0
  238. mlflow/models/evaluation/evaluators/classifier.py +704 -0
  239. mlflow/models/evaluation/evaluators/default.py +233 -0
  240. mlflow/models/evaluation/evaluators/regressor.py +96 -0
  241. mlflow/models/evaluation/evaluators/shap.py +296 -0
  242. mlflow/models/evaluation/lift_curve.py +178 -0
  243. mlflow/models/evaluation/utils/metric.py +123 -0
  244. mlflow/models/evaluation/utils/trace.py +179 -0
  245. mlflow/models/evaluation/validation.py +434 -0
  246. mlflow/models/flavor_backend.py +93 -0
  247. mlflow/models/flavor_backend_registry.py +53 -0
  248. mlflow/models/model.py +1639 -0
  249. mlflow/models/model_config.py +150 -0
  250. mlflow/models/notebook_resources/agent_evaluation_template.html +235 -0
  251. mlflow/models/notebook_resources/eval_with_dataset_example.py +22 -0
  252. mlflow/models/notebook_resources/eval_with_synthetic_example.py +22 -0
  253. mlflow/models/python_api.py +369 -0
  254. mlflow/models/rag_signatures.py +128 -0
  255. mlflow/models/resources.py +321 -0
  256. mlflow/models/signature.py +662 -0
  257. mlflow/models/utils.py +2054 -0
  258. mlflow/models/wheeled_model.py +280 -0
  259. mlflow/openai/__init__.py +57 -0
  260. mlflow/openai/_agent_tracer.py +364 -0
  261. mlflow/openai/api_request_parallel_processor.py +131 -0
  262. mlflow/openai/autolog.py +509 -0
  263. mlflow/openai/constant.py +1 -0
  264. mlflow/openai/model.py +824 -0
  265. mlflow/openai/utils/chat_schema.py +367 -0
  266. mlflow/optuna/__init__.py +3 -0
  267. mlflow/optuna/storage.py +646 -0
  268. mlflow/plugins/__init__.py +72 -0
  269. mlflow/plugins/base.py +358 -0
  270. mlflow/plugins/builtin/__init__.py +24 -0
  271. mlflow/plugins/builtin/pytorch_plugin.py +150 -0
  272. mlflow/plugins/builtin/sklearn_plugin.py +158 -0
  273. mlflow/plugins/builtin/transformers_plugin.py +187 -0
  274. mlflow/plugins/cli.py +321 -0
  275. mlflow/plugins/discovery.py +340 -0
  276. mlflow/plugins/manager.py +465 -0
  277. mlflow/plugins/registry.py +316 -0
  278. mlflow/plugins/templates/framework_plugin_template.py +329 -0
  279. mlflow/prompt/constants.py +20 -0
  280. mlflow/prompt/promptlab_model.py +197 -0
  281. mlflow/prompt/registry_utils.py +248 -0
  282. mlflow/promptflow/__init__.py +495 -0
  283. mlflow/protos/__init__.py +0 -0
  284. mlflow/protos/assessments_pb2.py +174 -0
  285. mlflow/protos/databricks_artifacts_pb2.py +489 -0
  286. mlflow/protos/databricks_filesystem_service_pb2.py +196 -0
  287. mlflow/protos/databricks_managed_catalog_messages_pb2.py +95 -0
  288. mlflow/protos/databricks_managed_catalog_service_pb2.py +86 -0
  289. mlflow/protos/databricks_pb2.py +267 -0
  290. mlflow/protos/databricks_trace_server_pb2.py +374 -0
  291. mlflow/protos/databricks_uc_registry_messages_pb2.py +1249 -0
  292. mlflow/protos/databricks_uc_registry_service_pb2.py +170 -0
  293. mlflow/protos/facet_feature_statistics_pb2.py +296 -0
  294. mlflow/protos/internal_pb2.py +77 -0
  295. mlflow/protos/mlflow_artifacts_pb2.py +336 -0
  296. mlflow/protos/model_registry_pb2.py +1073 -0
  297. mlflow/protos/scalapb/__init__.py +0 -0
  298. mlflow/protos/scalapb/scalapb_pb2.py +104 -0
  299. mlflow/protos/service_pb2.py +2600 -0
  300. mlflow/protos/unity_catalog_oss_messages_pb2.py +457 -0
  301. mlflow/protos/unity_catalog_oss_service_pb2.py +130 -0
  302. mlflow/protos/unity_catalog_prompt_messages_pb2.py +447 -0
  303. mlflow/protos/unity_catalog_prompt_messages_pb2_grpc.py +24 -0
  304. mlflow/protos/unity_catalog_prompt_service_pb2.py +164 -0
  305. mlflow/protos/unity_catalog_prompt_service_pb2_grpc.py +785 -0
  306. mlflow/py.typed +0 -0
  307. mlflow/pydantic_ai/__init__.py +57 -0
  308. mlflow/pydantic_ai/autolog.py +173 -0
  309. mlflow/pyfunc/__init__.py +3844 -0
  310. mlflow/pyfunc/_mlflow_pyfunc_backend_predict.py +61 -0
  311. mlflow/pyfunc/backend.py +523 -0
  312. mlflow/pyfunc/context.py +78 -0
  313. mlflow/pyfunc/dbconnect_artifact_cache.py +144 -0
  314. mlflow/pyfunc/loaders/__init__.py +7 -0
  315. mlflow/pyfunc/loaders/chat_agent.py +117 -0
  316. mlflow/pyfunc/loaders/chat_model.py +125 -0
  317. mlflow/pyfunc/loaders/code_model.py +31 -0
  318. mlflow/pyfunc/loaders/responses_agent.py +112 -0
  319. mlflow/pyfunc/mlserver.py +46 -0
  320. mlflow/pyfunc/model.py +1473 -0
  321. mlflow/pyfunc/scoring_server/__init__.py +604 -0
  322. mlflow/pyfunc/scoring_server/app.py +7 -0
  323. mlflow/pyfunc/scoring_server/client.py +146 -0
  324. mlflow/pyfunc/spark_model_cache.py +48 -0
  325. mlflow/pyfunc/stdin_server.py +44 -0
  326. mlflow/pyfunc/utils/__init__.py +3 -0
  327. mlflow/pyfunc/utils/data_validation.py +224 -0
  328. mlflow/pyfunc/utils/environment.py +22 -0
  329. mlflow/pyfunc/utils/input_converter.py +47 -0
  330. mlflow/pyfunc/utils/serving_data_parser.py +11 -0
  331. mlflow/pytorch/__init__.py +1171 -0
  332. mlflow/pytorch/_lightning_autolog.py +580 -0
  333. mlflow/pytorch/_pytorch_autolog.py +50 -0
  334. mlflow/pytorch/pickle_module.py +35 -0
  335. mlflow/rfunc/__init__.py +42 -0
  336. mlflow/rfunc/backend.py +134 -0
  337. mlflow/runs.py +89 -0
  338. mlflow/server/__init__.py +302 -0
  339. mlflow/server/auth/__init__.py +1224 -0
  340. mlflow/server/auth/__main__.py +4 -0
  341. mlflow/server/auth/basic_auth.ini +6 -0
  342. mlflow/server/auth/cli.py +11 -0
  343. mlflow/server/auth/client.py +537 -0
  344. mlflow/server/auth/config.py +34 -0
  345. mlflow/server/auth/db/__init__.py +0 -0
  346. mlflow/server/auth/db/cli.py +18 -0
  347. mlflow/server/auth/db/migrations/__init__.py +0 -0
  348. mlflow/server/auth/db/migrations/alembic.ini +110 -0
  349. mlflow/server/auth/db/migrations/env.py +76 -0
  350. mlflow/server/auth/db/migrations/versions/8606fa83a998_initial_migration.py +51 -0
  351. mlflow/server/auth/db/migrations/versions/__init__.py +0 -0
  352. mlflow/server/auth/db/models.py +67 -0
  353. mlflow/server/auth/db/utils.py +37 -0
  354. mlflow/server/auth/entities.py +165 -0
  355. mlflow/server/auth/logo.py +14 -0
  356. mlflow/server/auth/permissions.py +65 -0
  357. mlflow/server/auth/routes.py +18 -0
  358. mlflow/server/auth/sqlalchemy_store.py +263 -0
  359. mlflow/server/graphql/__init__.py +0 -0
  360. mlflow/server/graphql/autogenerated_graphql_schema.py +353 -0
  361. mlflow/server/graphql/graphql_custom_scalars.py +24 -0
  362. mlflow/server/graphql/graphql_errors.py +15 -0
  363. mlflow/server/graphql/graphql_no_batching.py +89 -0
  364. mlflow/server/graphql/graphql_schema_extensions.py +74 -0
  365. mlflow/server/handlers.py +3217 -0
  366. mlflow/server/prometheus_exporter.py +17 -0
  367. mlflow/server/validation.py +30 -0
  368. mlflow/shap/__init__.py +691 -0
  369. mlflow/sklearn/__init__.py +1994 -0
  370. mlflow/sklearn/utils.py +1041 -0
  371. mlflow/smolagents/__init__.py +66 -0
  372. mlflow/smolagents/autolog.py +139 -0
  373. mlflow/smolagents/chat.py +29 -0
  374. mlflow/store/__init__.py +10 -0
  375. mlflow/store/_unity_catalog/__init__.py +1 -0
  376. mlflow/store/_unity_catalog/lineage/__init__.py +1 -0
  377. mlflow/store/_unity_catalog/lineage/constants.py +2 -0
  378. mlflow/store/_unity_catalog/registry/__init__.py +6 -0
  379. mlflow/store/_unity_catalog/registry/prompt_info.py +75 -0
  380. mlflow/store/_unity_catalog/registry/rest_store.py +1740 -0
  381. mlflow/store/_unity_catalog/registry/uc_oss_rest_store.py +507 -0
  382. mlflow/store/_unity_catalog/registry/utils.py +121 -0
  383. mlflow/store/artifact/__init__.py +0 -0
  384. mlflow/store/artifact/artifact_repo.py +472 -0
  385. mlflow/store/artifact/artifact_repository_registry.py +154 -0
  386. mlflow/store/artifact/azure_blob_artifact_repo.py +275 -0
  387. mlflow/store/artifact/azure_data_lake_artifact_repo.py +295 -0
  388. mlflow/store/artifact/cli.py +141 -0
  389. mlflow/store/artifact/cloud_artifact_repo.py +332 -0
  390. mlflow/store/artifact/databricks_artifact_repo.py +729 -0
  391. mlflow/store/artifact/databricks_artifact_repo_resources.py +301 -0
  392. mlflow/store/artifact/databricks_logged_model_artifact_repo.py +93 -0
  393. mlflow/store/artifact/databricks_models_artifact_repo.py +216 -0
  394. mlflow/store/artifact/databricks_sdk_artifact_repo.py +134 -0
  395. mlflow/store/artifact/databricks_sdk_models_artifact_repo.py +97 -0
  396. mlflow/store/artifact/dbfs_artifact_repo.py +240 -0
  397. mlflow/store/artifact/ftp_artifact_repo.py +132 -0
  398. mlflow/store/artifact/gcs_artifact_repo.py +296 -0
  399. mlflow/store/artifact/hdfs_artifact_repo.py +209 -0
  400. mlflow/store/artifact/http_artifact_repo.py +218 -0
  401. mlflow/store/artifact/local_artifact_repo.py +142 -0
  402. mlflow/store/artifact/mlflow_artifacts_repo.py +94 -0
  403. mlflow/store/artifact/models_artifact_repo.py +259 -0
  404. mlflow/store/artifact/optimized_s3_artifact_repo.py +356 -0
  405. mlflow/store/artifact/presigned_url_artifact_repo.py +173 -0
  406. mlflow/store/artifact/r2_artifact_repo.py +70 -0
  407. mlflow/store/artifact/runs_artifact_repo.py +265 -0
  408. mlflow/store/artifact/s3_artifact_repo.py +330 -0
  409. mlflow/store/artifact/sftp_artifact_repo.py +141 -0
  410. mlflow/store/artifact/uc_volume_artifact_repo.py +76 -0
  411. mlflow/store/artifact/unity_catalog_models_artifact_repo.py +168 -0
  412. mlflow/store/artifact/unity_catalog_oss_models_artifact_repo.py +168 -0
  413. mlflow/store/artifact/utils/__init__.py +0 -0
  414. mlflow/store/artifact/utils/models.py +148 -0
  415. mlflow/store/db/__init__.py +0 -0
  416. mlflow/store/db/base_sql_model.py +3 -0
  417. mlflow/store/db/db_types.py +10 -0
  418. mlflow/store/db/utils.py +314 -0
  419. mlflow/store/db_migrations/__init__.py +0 -0
  420. mlflow/store/db_migrations/alembic.ini +74 -0
  421. mlflow/store/db_migrations/env.py +84 -0
  422. mlflow/store/db_migrations/versions/0584bdc529eb_add_cascading_deletion_to_datasets_from_experiments.py +88 -0
  423. mlflow/store/db_migrations/versions/0a8213491aaa_drop_duplicate_killed_constraint.py +49 -0
  424. mlflow/store/db_migrations/versions/0c779009ac13_add_deleted_time_field_to_runs_table.py +24 -0
  425. mlflow/store/db_migrations/versions/181f10493468_allow_nulls_for_metric_values.py +35 -0
  426. mlflow/store/db_migrations/versions/27a6a02d2cf1_add_model_version_tags_table.py +38 -0
  427. mlflow/store/db_migrations/versions/2b4d017a5e9b_add_model_registry_tables_to_db.py +77 -0
  428. mlflow/store/db_migrations/versions/2d6e25af4d3e_increase_max_param_val_length.py +33 -0
  429. mlflow/store/db_migrations/versions/3500859a5d39_add_model_aliases_table.py +50 -0
  430. mlflow/store/db_migrations/versions/39d1c3be5f05_add_is_nan_constraint_for_metrics_tables_if_necessary.py +41 -0
  431. mlflow/store/db_migrations/versions/400f98739977_add_logged_model_tables.py +123 -0
  432. mlflow/store/db_migrations/versions/4465047574b1_increase_max_dataset_schema_size.py +38 -0
  433. mlflow/store/db_migrations/versions/451aebb31d03_add_metric_step.py +35 -0
  434. mlflow/store/db_migrations/versions/5b0e9adcef9c_add_cascade_deletion_to_trace_tables_fk.py +40 -0
  435. mlflow/store/db_migrations/versions/6953534de441_add_step_to_inputs_table.py +25 -0
  436. mlflow/store/db_migrations/versions/728d730b5ebd_add_registered_model_tags_table.py +38 -0
  437. mlflow/store/db_migrations/versions/7ac759974ad8_update_run_tags_with_larger_limit.py +36 -0
  438. mlflow/store/db_migrations/versions/7f2a7d5fae7d_add_datasets_inputs_input_tags_tables.py +82 -0
  439. mlflow/store/db_migrations/versions/84291f40a231_add_run_link_to_model_version.py +26 -0
  440. mlflow/store/db_migrations/versions/867495a8f9d4_add_trace_tables.py +90 -0
  441. mlflow/store/db_migrations/versions/89d4b8295536_create_latest_metrics_table.py +169 -0
  442. mlflow/store/db_migrations/versions/90e64c465722_migrate_user_column_to_tags.py +64 -0
  443. mlflow/store/db_migrations/versions/97727af70f4d_creation_time_last_update_time_experiments.py +25 -0
  444. mlflow/store/db_migrations/versions/__init__.py +0 -0
  445. mlflow/store/db_migrations/versions/a8c4a736bde6_allow_nulls_for_run_id.py +27 -0
  446. mlflow/store/db_migrations/versions/acf3f17fdcc7_add_storage_location_field_to_model_.py +29 -0
  447. mlflow/store/db_migrations/versions/bd07f7e963c5_create_index_on_run_uuid.py +26 -0
  448. mlflow/store/db_migrations/versions/bda7b8c39065_increase_model_version_tag_value_limit.py +38 -0
  449. mlflow/store/db_migrations/versions/c48cb773bb87_reset_default_value_for_is_nan_in_metrics_table_for_mysql.py +41 -0
  450. mlflow/store/db_migrations/versions/cbc13b556ace_add_v3_trace_schema_columns.py +31 -0
  451. mlflow/store/db_migrations/versions/cc1f77228345_change_param_value_length_to_500.py +34 -0
  452. mlflow/store/db_migrations/versions/cfd24bdc0731_update_run_status_constraint_with_killed.py +78 -0
  453. mlflow/store/db_migrations/versions/df50e92ffc5e_add_experiment_tags_table.py +38 -0
  454. mlflow/store/db_migrations/versions/f5a4f2784254_increase_run_tag_value_limit.py +36 -0
  455. mlflow/store/entities/__init__.py +3 -0
  456. mlflow/store/entities/paged_list.py +18 -0
  457. mlflow/store/model_registry/__init__.py +10 -0
  458. mlflow/store/model_registry/abstract_store.py +1081 -0
  459. mlflow/store/model_registry/base_rest_store.py +44 -0
  460. mlflow/store/model_registry/databricks_workspace_model_registry_rest_store.py +37 -0
  461. mlflow/store/model_registry/dbmodels/__init__.py +0 -0
  462. mlflow/store/model_registry/dbmodels/models.py +206 -0
  463. mlflow/store/model_registry/file_store.py +1091 -0
  464. mlflow/store/model_registry/rest_store.py +481 -0
  465. mlflow/store/model_registry/sqlalchemy_store.py +1286 -0
  466. mlflow/store/tracking/__init__.py +23 -0
  467. mlflow/store/tracking/abstract_store.py +816 -0
  468. mlflow/store/tracking/dbmodels/__init__.py +0 -0
  469. mlflow/store/tracking/dbmodels/initial_models.py +243 -0
  470. mlflow/store/tracking/dbmodels/models.py +1073 -0
  471. mlflow/store/tracking/file_store.py +2438 -0
  472. mlflow/store/tracking/postgres_managed_identity.py +146 -0
  473. mlflow/store/tracking/rest_store.py +1131 -0
  474. mlflow/store/tracking/sqlalchemy_store.py +2785 -0
  475. mlflow/system_metrics/__init__.py +61 -0
  476. mlflow/system_metrics/metrics/__init__.py +0 -0
  477. mlflow/system_metrics/metrics/base_metrics_monitor.py +32 -0
  478. mlflow/system_metrics/metrics/cpu_monitor.py +23 -0
  479. mlflow/system_metrics/metrics/disk_monitor.py +21 -0
  480. mlflow/system_metrics/metrics/gpu_monitor.py +71 -0
  481. mlflow/system_metrics/metrics/network_monitor.py +34 -0
  482. mlflow/system_metrics/metrics/rocm_monitor.py +123 -0
  483. mlflow/system_metrics/system_metrics_monitor.py +198 -0
  484. mlflow/tracing/__init__.py +16 -0
  485. mlflow/tracing/assessment.py +356 -0
  486. mlflow/tracing/client.py +531 -0
  487. mlflow/tracing/config.py +125 -0
  488. mlflow/tracing/constant.py +105 -0
  489. mlflow/tracing/destination.py +81 -0
  490. mlflow/tracing/display/__init__.py +40 -0
  491. mlflow/tracing/display/display_handler.py +196 -0
  492. mlflow/tracing/export/async_export_queue.py +186 -0
  493. mlflow/tracing/export/inference_table.py +138 -0
  494. mlflow/tracing/export/mlflow_v3.py +137 -0
  495. mlflow/tracing/export/utils.py +70 -0
  496. mlflow/tracing/fluent.py +1417 -0
  497. mlflow/tracing/processor/base_mlflow.py +199 -0
  498. mlflow/tracing/processor/inference_table.py +175 -0
  499. mlflow/tracing/processor/mlflow_v3.py +47 -0
  500. mlflow/tracing/processor/otel.py +73 -0
  501. mlflow/tracing/provider.py +487 -0
  502. mlflow/tracing/trace_manager.py +200 -0
  503. mlflow/tracing/utils/__init__.py +616 -0
  504. mlflow/tracing/utils/artifact_utils.py +28 -0
  505. mlflow/tracing/utils/copy.py +55 -0
  506. mlflow/tracing/utils/environment.py +55 -0
  507. mlflow/tracing/utils/exception.py +21 -0
  508. mlflow/tracing/utils/once.py +35 -0
  509. mlflow/tracing/utils/otlp.py +63 -0
  510. mlflow/tracing/utils/processor.py +54 -0
  511. mlflow/tracing/utils/search.py +292 -0
  512. mlflow/tracing/utils/timeout.py +250 -0
  513. mlflow/tracing/utils/token.py +19 -0
  514. mlflow/tracing/utils/truncation.py +124 -0
  515. mlflow/tracing/utils/warning.py +76 -0
  516. mlflow/tracking/__init__.py +39 -0
  517. mlflow/tracking/_model_registry/__init__.py +1 -0
  518. mlflow/tracking/_model_registry/client.py +764 -0
  519. mlflow/tracking/_model_registry/fluent.py +853 -0
  520. mlflow/tracking/_model_registry/registry.py +67 -0
  521. mlflow/tracking/_model_registry/utils.py +251 -0
  522. mlflow/tracking/_tracking_service/__init__.py +0 -0
  523. mlflow/tracking/_tracking_service/client.py +883 -0
  524. mlflow/tracking/_tracking_service/registry.py +56 -0
  525. mlflow/tracking/_tracking_service/utils.py +275 -0
  526. mlflow/tracking/artifact_utils.py +179 -0
  527. mlflow/tracking/client.py +5900 -0
  528. mlflow/tracking/context/__init__.py +0 -0
  529. mlflow/tracking/context/abstract_context.py +35 -0
  530. mlflow/tracking/context/databricks_cluster_context.py +15 -0
  531. mlflow/tracking/context/databricks_command_context.py +15 -0
  532. mlflow/tracking/context/databricks_job_context.py +49 -0
  533. mlflow/tracking/context/databricks_notebook_context.py +41 -0
  534. mlflow/tracking/context/databricks_repo_context.py +43 -0
  535. mlflow/tracking/context/default_context.py +51 -0
  536. mlflow/tracking/context/git_context.py +32 -0
  537. mlflow/tracking/context/registry.py +98 -0
  538. mlflow/tracking/context/system_environment_context.py +15 -0
  539. mlflow/tracking/default_experiment/__init__.py +1 -0
  540. mlflow/tracking/default_experiment/abstract_context.py +43 -0
  541. mlflow/tracking/default_experiment/databricks_notebook_experiment_provider.py +44 -0
  542. mlflow/tracking/default_experiment/registry.py +75 -0
  543. mlflow/tracking/fluent.py +3595 -0
  544. mlflow/tracking/metric_value_conversion_utils.py +93 -0
  545. mlflow/tracking/multimedia.py +206 -0
  546. mlflow/tracking/registry.py +86 -0
  547. mlflow/tracking/request_auth/__init__.py +0 -0
  548. mlflow/tracking/request_auth/abstract_request_auth_provider.py +34 -0
  549. mlflow/tracking/request_auth/registry.py +60 -0
  550. mlflow/tracking/request_header/__init__.py +0 -0
  551. mlflow/tracking/request_header/abstract_request_header_provider.py +36 -0
  552. mlflow/tracking/request_header/databricks_request_header_provider.py +38 -0
  553. mlflow/tracking/request_header/default_request_header_provider.py +17 -0
  554. mlflow/tracking/request_header/registry.py +79 -0
  555. mlflow/transformers/__init__.py +2982 -0
  556. mlflow/transformers/flavor_config.py +258 -0
  557. mlflow/transformers/hub_utils.py +83 -0
  558. mlflow/transformers/llm_inference_utils.py +468 -0
  559. mlflow/transformers/model_io.py +301 -0
  560. mlflow/transformers/peft.py +51 -0
  561. mlflow/transformers/signature.py +183 -0
  562. mlflow/transformers/torch_utils.py +55 -0
  563. mlflow/types/__init__.py +21 -0
  564. mlflow/types/agent.py +270 -0
  565. mlflow/types/chat.py +240 -0
  566. mlflow/types/llm.py +935 -0
  567. mlflow/types/responses.py +139 -0
  568. mlflow/types/responses_helpers.py +416 -0
  569. mlflow/types/schema.py +1505 -0
  570. mlflow/types/type_hints.py +647 -0
  571. mlflow/types/utils.py +753 -0
  572. mlflow/utils/__init__.py +283 -0
  573. mlflow/utils/_capture_modules.py +256 -0
  574. mlflow/utils/_capture_transformers_modules.py +75 -0
  575. mlflow/utils/_spark_utils.py +201 -0
  576. mlflow/utils/_unity_catalog_oss_utils.py +97 -0
  577. mlflow/utils/_unity_catalog_utils.py +479 -0
  578. mlflow/utils/annotations.py +218 -0
  579. mlflow/utils/arguments_utils.py +16 -0
  580. mlflow/utils/async_logging/__init__.py +1 -0
  581. mlflow/utils/async_logging/async_artifacts_logging_queue.py +258 -0
  582. mlflow/utils/async_logging/async_logging_queue.py +366 -0
  583. mlflow/utils/async_logging/run_artifact.py +38 -0
  584. mlflow/utils/async_logging/run_batch.py +58 -0
  585. mlflow/utils/async_logging/run_operations.py +49 -0
  586. mlflow/utils/autologging_utils/__init__.py +737 -0
  587. mlflow/utils/autologging_utils/client.py +432 -0
  588. mlflow/utils/autologging_utils/config.py +33 -0
  589. mlflow/utils/autologging_utils/events.py +294 -0
  590. mlflow/utils/autologging_utils/logging_and_warnings.py +328 -0
  591. mlflow/utils/autologging_utils/metrics_queue.py +71 -0
  592. mlflow/utils/autologging_utils/safety.py +1104 -0
  593. mlflow/utils/autologging_utils/versioning.py +95 -0
  594. mlflow/utils/checkpoint_utils.py +206 -0
  595. mlflow/utils/class_utils.py +6 -0
  596. mlflow/utils/cli_args.py +257 -0
  597. mlflow/utils/conda.py +354 -0
  598. mlflow/utils/credentials.py +231 -0
  599. mlflow/utils/data_utils.py +17 -0
  600. mlflow/utils/databricks_utils.py +1436 -0
  601. mlflow/utils/docstring_utils.py +477 -0
  602. mlflow/utils/doctor.py +133 -0
  603. mlflow/utils/download_cloud_file_chunk.py +43 -0
  604. mlflow/utils/env_manager.py +16 -0
  605. mlflow/utils/env_pack.py +131 -0
  606. mlflow/utils/environment.py +1009 -0
  607. mlflow/utils/exception_utils.py +14 -0
  608. mlflow/utils/file_utils.py +978 -0
  609. mlflow/utils/git_utils.py +77 -0
  610. mlflow/utils/gorilla.py +797 -0
  611. mlflow/utils/import_hooks/__init__.py +363 -0
  612. mlflow/utils/lazy_load.py +51 -0
  613. mlflow/utils/logging_utils.py +168 -0
  614. mlflow/utils/mime_type_utils.py +58 -0
  615. mlflow/utils/mlflow_tags.py +103 -0
  616. mlflow/utils/model_utils.py +486 -0
  617. mlflow/utils/name_utils.py +346 -0
  618. mlflow/utils/nfs_on_spark.py +62 -0
  619. mlflow/utils/openai_utils.py +164 -0
  620. mlflow/utils/os.py +12 -0
  621. mlflow/utils/oss_registry_utils.py +29 -0
  622. mlflow/utils/plugins.py +17 -0
  623. mlflow/utils/process.py +182 -0
  624. mlflow/utils/promptlab_utils.py +146 -0
  625. mlflow/utils/proto_json_utils.py +743 -0
  626. mlflow/utils/pydantic_utils.py +54 -0
  627. mlflow/utils/request_utils.py +279 -0
  628. mlflow/utils/requirements_utils.py +704 -0
  629. mlflow/utils/rest_utils.py +673 -0
  630. mlflow/utils/search_logged_model_utils.py +127 -0
  631. mlflow/utils/search_utils.py +2111 -0
  632. mlflow/utils/secure_loading.py +221 -0
  633. mlflow/utils/security_validation.py +384 -0
  634. mlflow/utils/server_cli_utils.py +61 -0
  635. mlflow/utils/spark_utils.py +15 -0
  636. mlflow/utils/string_utils.py +138 -0
  637. mlflow/utils/thread_utils.py +63 -0
  638. mlflow/utils/time.py +54 -0
  639. mlflow/utils/timeout.py +42 -0
  640. mlflow/utils/uri.py +572 -0
  641. mlflow/utils/validation.py +662 -0
  642. mlflow/utils/virtualenv.py +458 -0
  643. mlflow/utils/warnings_utils.py +25 -0
  644. mlflow/utils/yaml_utils.py +179 -0
  645. mlflow/version.py +24 -0
@@ -0,0 +1,1171 @@
1
+ """
2
+ The ``mlflow.pytorch`` module provides an API for logging and loading PyTorch models. This module
3
+ exports PyTorch models with the following flavors:
4
+
5
+ PyTorch (native) format
6
+ This is the main flavor that can be loaded back into PyTorch.
7
+ :py:mod:`mlflow.pyfunc`
8
+ Produced for use by generic pyfunc-based deployment tools and batch inference.
9
+ """
10
+
11
+ import atexit
12
+ import importlib
13
+ import logging
14
+ import os
15
+ import posixpath
16
+ import shutil
17
+ from functools import partial
18
+ from typing import Any, Optional
19
+
20
+ import numpy as np
21
+ import pandas as pd
22
+ import yaml
23
+ from packaging.version import Version
24
+
25
+ import mlflow
26
+ from mlflow import pyfunc
27
+ from mlflow.environment_variables import MLFLOW_DEFAULT_PREDICTION_DEVICE
28
+ from mlflow.exceptions import MlflowException
29
+ from mlflow.ml_package_versions import _ML_PACKAGE_VERSIONS
30
+ from mlflow.models import Model, ModelSignature
31
+ from mlflow.models.model import MLMODEL_FILE_NAME
32
+ from mlflow.models.signature import _infer_signature_from_input_example
33
+ from mlflow.models.utils import ModelInputExample, _save_example
34
+ from mlflow.protos.databricks_pb2 import RESOURCE_DOES_NOT_EXIST
35
+ from mlflow.pytorch import pickle_module as mlflow_pytorch_pickle_module
36
+ from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
37
+ from mlflow.tracking.artifact_utils import _download_artifact_from_uri
38
+ from mlflow.utils.autologging_utils import autologging_integration, safe_patch
39
+ from mlflow.utils.checkpoint_utils import download_checkpoint_artifact
40
+ from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
41
+ from mlflow.utils.environment import (
42
+ _CONDA_ENV_FILE_NAME,
43
+ _CONSTRAINTS_FILE_NAME,
44
+ _PYTHON_ENV_FILE_NAME,
45
+ _REQUIREMENTS_FILE_NAME,
46
+ _mlflow_conda_env,
47
+ _process_conda_env,
48
+ _process_pip_requirements,
49
+ _PythonEnv,
50
+ _validate_env_arguments,
51
+ )
52
+ from mlflow.utils.file_utils import (
53
+ TempDir,
54
+ get_total_file_size,
55
+ write_to,
56
+ )
57
+ from mlflow.utils.model_utils import (
58
+ _add_code_from_conf_to_system_path,
59
+ _get_flavor_configuration,
60
+ _validate_and_copy_code_paths,
61
+ _validate_and_prepare_target_save_path,
62
+ )
63
+ from mlflow.utils.requirements_utils import _get_pinned_requirement
64
+
65
+ FLAVOR_NAME = "pytorch"
66
+
67
+ _SERIALIZED_TORCH_MODEL_FILE_NAME = "model.pth"
68
+ _TORCH_STATE_DICT_FILE_NAME = "state_dict.pth"
69
+ _PICKLE_MODULE_INFO_FILE_NAME = "pickle_module_info.txt"
70
+ _EXTRA_FILES_KEY = "extra_files"
71
+ _TORCH_CPU_DEVICE_NAME = "cpu"
72
+ _TORCH_DEFAULT_GPU_DEVICE_NAME = "cuda"
73
+
74
+ _logger = logging.getLogger(__name__)
75
+
76
+ MIN_REQ_VERSION = Version(_ML_PACKAGE_VERSIONS["pytorch-lightning"]["autologging"]["minimum"])
77
+ MAX_REQ_VERSION = Version(_ML_PACKAGE_VERSIONS["pytorch-lightning"]["autologging"]["maximum"])
78
+
79
+
80
+ _MODEL_DATA_SUBPATH = "data"
81
+
82
+
83
+ def get_default_pip_requirements():
84
+ """
85
+ Returns:
86
+ A list of default pip requirements for MLflow Models produced by this flavor. Calls to
87
+ :func:`save_model()` and :func:`log_model()` produce a pip environment that, at minimum,
88
+ contains these requirements.
89
+ """
90
+ return list(
91
+ map(
92
+ _get_pinned_requirement,
93
+ [
94
+ "torch",
95
+ # We include CloudPickle in the default environment because
96
+ # it's required by the default pickle module used by `save_model()`
97
+ # and `log_model()`: `mlflow.pytorch.pickle_module`.
98
+ "cloudpickle",
99
+ ],
100
+ )
101
+ )
102
+
103
+
104
+ def get_default_conda_env():
105
+ """
106
+ Returns:
107
+ The default Conda environment as a dictionary for MLflow Models produced by calls to
108
+ :func:`save_model()` and :func:`log_model()`.
109
+
110
+ .. code-block:: python
111
+ :caption: Example
112
+
113
+ import mlflow
114
+
115
+ # Log PyTorch model
116
+ with mlflow.start_run() as run:
117
+ mlflow.pytorch.log_model(model, name="model", signature=signature)
118
+
119
+ # Fetch the associated conda environment
120
+ env = mlflow.pytorch.get_default_conda_env()
121
+ print(f"conda env: {env}")
122
+
123
+ .. code-block:: text
124
+ :caption: Output
125
+
126
+ conda env {'name': 'mlflow-env',
127
+ 'channels': ['conda-forge'],
128
+ 'dependencies': ['python=3.8.15',
129
+ {'pip': ['torch==1.5.1',
130
+ 'mlflow',
131
+ 'cloudpickle==1.6.0']}]}
132
+ """
133
+ return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
134
+
135
+
136
+ @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name="torch"))
137
+ def log_model(
138
+ pytorch_model,
139
+ artifact_path: Optional[str] = None,
140
+ conda_env=None,
141
+ code_paths=None,
142
+ pickle_module=None,
143
+ registered_model_name=None,
144
+ signature: ModelSignature = None,
145
+ input_example: ModelInputExample = None,
146
+ await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
147
+ extra_files=None,
148
+ pip_requirements=None,
149
+ extra_pip_requirements=None,
150
+ metadata=None,
151
+ name: Optional[str] = None,
152
+ params: Optional[dict[str, Any]] = None,
153
+ tags: Optional[dict[str, Any]] = None,
154
+ model_type: Optional[str] = None,
155
+ step: int = 0,
156
+ model_id: Optional[str] = None,
157
+ **kwargs,
158
+ ):
159
+ """
160
+ Log a PyTorch model as an MLflow artifact for the current run.
161
+
162
+ .. warning:: Log the model with a signature to avoid inference errors.
163
+ If the model is logged without a signature, the MLflow Model Server relies on the
164
+ default inferred data type from NumPy. However, PyTorch often expects different
165
+ defaults, particularly when parsing floats. You must include the signature to ensure
166
+ that the model is logged with the correct data type so that the MLflow model server
167
+ can correctly provide valid input.
168
+
169
+ Args:
170
+ pytorch_model: PyTorch model to be saved. Can be either an eager model (subclass of
171
+ ``torch.nn.Module``) or scripted model prepared via ``torch.jit.script`` or
172
+ ``torch.jit.trace``.
173
+
174
+ The model accept a single ``torch.FloatTensor`` as input and produce a single output
175
+ tensor.
176
+
177
+ If saving an eager model, any code dependencies of the model's class, including the
178
+ class definition itself, should be included in one of the following locations:
179
+
180
+ - The package(s) listed in the model's Conda environment, specified by the
181
+ ``conda_env`` parameter.
182
+ - One or more of the files specified by the ``code_paths`` parameter.
183
+ artifact_path: Deprecated. Use `name` instead.
184
+ conda_env: {{ conda_env }}
185
+ code_paths: {{ code_paths }}
186
+ pickle_module: The module that PyTorch should use to serialize ("pickle") the specified
187
+ ``pytorch_model``. This is passed as the ``pickle_module`` parameter to
188
+ ``torch.save()``. By default, this module is also used to deserialize ("unpickle") the
189
+ PyTorch model at load time.
190
+ registered_model_name: If given, create a model version under ``registered_model_name``,
191
+ also create a registered model if one with the given name does not exist.
192
+ signature: {{ signature }}
193
+ input_example: {{ input_example }}
194
+ await_registration_for: Number of seconds to wait for the model version to finish
195
+ being created and is in ``READY`` status. By default, the function waits for five
196
+ minutes. Specify 0 or None to skip waiting.
197
+
198
+ extra_files: A list containing the paths to corresponding extra files, if ``None``, no
199
+ extra files are added to the model. Remote URIs are resolved to absolute filesystem
200
+ paths. For example, consider the following ``extra_files`` list:
201
+
202
+ .. code-block:: python
203
+
204
+ extra_files = ["s3://my-bucket/path/to/my_file1", "s3://my-bucket/path/to/my_file2"]
205
+
206
+ In this case, the ``"my_file1 & my_file2"`` extra file is downloaded from S3.
207
+
208
+ pip_requirements: {{ pip_requirements }}
209
+ extra_pip_requirements: {{ extra_pip_requirements }}
210
+ metadata: {{ metadata }}
211
+ name: {{ name }}
212
+ params: {{ params }}
213
+ tags: {{ tags }}
214
+ model_type: {{ model_type }}
215
+ step: {{ step }}
216
+ model_id: {{ model_id }}
217
+ kwargs: kwargs to pass to ``torch.save`` method.
218
+
219
+ Returns:
220
+ A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
221
+ metadata of the logged model.
222
+
223
+ .. code-block:: python
224
+ :caption: Example
225
+
226
+ import numpy as np
227
+ import torch
228
+ import mlflow
229
+ from mlflow import MlflowClient
230
+ from mlflow.models import infer_signature
231
+
232
+ # Define model, loss, and optimizer
233
+ model = nn.Linear(1, 1)
234
+ criterion = torch.nn.MSELoss()
235
+ optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
236
+
237
+ # Create training data with relationship y = 2X
238
+ X = torch.arange(1.0, 26.0).reshape(-1, 1)
239
+ y = X * 2
240
+
241
+ # Training loop
242
+ epochs = 250
243
+ for epoch in range(epochs):
244
+ # Forward pass: Compute predicted y by passing X to the model
245
+ y_pred = model(X)
246
+
247
+ # Compute the loss
248
+ loss = criterion(y_pred, y)
249
+
250
+ # Zero gradients, perform a backward pass, and update the weights.
251
+ optimizer.zero_grad()
252
+ loss.backward()
253
+ optimizer.step()
254
+
255
+ # Create model signature
256
+ signature = infer_signature(X.numpy(), model(X).detach().numpy())
257
+
258
+ # Log the model
259
+ with mlflow.start_run() as run:
260
+ mlflow.pytorch.log_model(model, name="model")
261
+
262
+ # convert to scripted model and log the model
263
+ scripted_pytorch_model = torch.jit.script(model)
264
+ mlflow.pytorch.log_model(scripted_pytorch_model, name="scripted_model")
265
+
266
+ # Fetch the logged model artifacts
267
+ print(f"run_id: {run.info.run_id}")
268
+ for artifact_path in ["model/data", "scripted_model/data"]:
269
+ artifacts = [
270
+ f.path for f in MlflowClient().list_artifacts(run.info.run_id, artifact_path)
271
+ ]
272
+ print(f"artifacts: {artifacts}")
273
+
274
+ .. code-block:: text
275
+ :caption: Output
276
+
277
+ run_id: 1a1ec9e413ce48e9abf9aec20efd6f71
278
+ artifacts: ['model/data/model.pth',
279
+ 'model/data/pickle_module_info.txt']
280
+ artifacts: ['scripted_model/data/model.pth',
281
+ 'scripted_model/data/pickle_module_info.txt']
282
+
283
+ .. figure:: ../_static/images/pytorch_logged_models.png
284
+
285
+ PyTorch logged models
286
+ """
287
+ pickle_module = pickle_module or mlflow_pytorch_pickle_module
288
+ return Model.log(
289
+ artifact_path=artifact_path,
290
+ name=name,
291
+ flavor=mlflow.pytorch,
292
+ pytorch_model=pytorch_model,
293
+ conda_env=conda_env,
294
+ code_paths=code_paths,
295
+ pickle_module=pickle_module,
296
+ registered_model_name=registered_model_name,
297
+ signature=signature,
298
+ input_example=input_example,
299
+ await_registration_for=await_registration_for,
300
+ extra_files=extra_files,
301
+ pip_requirements=pip_requirements,
302
+ extra_pip_requirements=extra_pip_requirements,
303
+ metadata=metadata,
304
+ params=params,
305
+ tags=tags,
306
+ model_type=model_type,
307
+ step=step,
308
+ model_id=model_id,
309
+ **kwargs,
310
+ )
311
+
312
+
313
+ @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name="torch"))
314
+ def save_model(
315
+ pytorch_model,
316
+ path,
317
+ conda_env=None,
318
+ mlflow_model=None,
319
+ code_paths=None,
320
+ pickle_module=None,
321
+ signature: ModelSignature = None,
322
+ input_example: ModelInputExample = None,
323
+ extra_files=None,
324
+ pip_requirements=None,
325
+ extra_pip_requirements=None,
326
+ metadata=None,
327
+ **kwargs,
328
+ ):
329
+ """
330
+ Save a PyTorch model to a path on the local file system.
331
+
332
+ Args:
333
+ pytorch_model: PyTorch model to be saved. Can be either an eager model (subclass of
334
+ ``torch.nn.Module``) or a scripted model prepared via ``torch.jit.script`` or
335
+ ``torch.jit.trace``.
336
+
337
+ To save an eager model, any code dependencies of the model's class, including the class
338
+ definition itself, should be included in one of the following locations:
339
+
340
+ - The package(s) listed in the model's Conda environment, specified by the
341
+ ``conda_env`` parameter.
342
+ - One or more of the files specified by the ``code_paths`` parameter.
343
+
344
+ path: Local path where the model is to be saved.
345
+ conda_env: {{ conda_env }}
346
+ mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
347
+ code_paths: {{ code_paths }}
348
+ pickle_module: The module that PyTorch should use to serialize ("pickle") the specified
349
+ ``pytorch_model``. This is passed as the ``pickle_module`` parameter to
350
+ ``torch.save()``. By default, this module is also used to deserialize ("unpickle") the
351
+ model at loading time.
352
+ signature: {{ signature }}
353
+ input_example: {{ input_example }}
354
+
355
+ extra_files: A list containing the paths to corresponding extra files. Remote URIs
356
+ are resolved to absolute filesystem paths.
357
+ For example, consider the following ``extra_files`` list -
358
+
359
+ extra_files = ["s3://my-bucket/path/to/my_file1", "s3://my-bucket/path/to/my_file2"]
360
+
361
+ In this case, the ``"my_file1 & my_file2"`` extra file is downloaded from S3.
362
+
363
+ If ``None``, no extra files are added to the model.
364
+ pip_requirements: {{ pip_requirements }}
365
+ extra_pip_requirements: {{ extra_pip_requirements }}
366
+ metadata:{{ metadata }}
367
+ kwargs: kwargs to pass to ``torch.save`` method.
368
+
369
+ .. code-block:: python
370
+ :caption: Example
371
+
372
+ import os
373
+ import mlflow
374
+ import torch
375
+
376
+
377
+ model = nn.Linear(1, 1)
378
+
379
+ # Save PyTorch models to current working directory
380
+ with mlflow.start_run() as run:
381
+ mlflow.pytorch.save_model(model, "model")
382
+
383
+ # Convert to a scripted model and save it
384
+ scripted_pytorch_model = torch.jit.script(model)
385
+ mlflow.pytorch.save_model(scripted_pytorch_model, "scripted_model")
386
+
387
+ # Load each saved model for inference
388
+ for model_path in ["model", "scripted_model"]:
389
+ model_uri = f"{os.getcwd()}/{model_path}"
390
+ loaded_model = mlflow.pytorch.load_model(model_uri)
391
+ print(f"Loaded {model_path}:")
392
+ for x in [6.0, 8.0, 12.0, 30.0]:
393
+ X = torch.Tensor([[x]])
394
+ y_pred = loaded_model(X)
395
+ print(f"predict X: {x}, y_pred: {y_pred.data.item():.2f}")
396
+ print("--")
397
+
398
+ .. code-block:: text
399
+ :caption: Output
400
+
401
+ Loaded model:
402
+ predict X: 6.0, y_pred: 11.90
403
+ predict X: 8.0, y_pred: 15.92
404
+ predict X: 12.0, y_pred: 23.96
405
+ predict X: 30.0, y_pred: 60.13
406
+ --
407
+ Loaded scripted_model:
408
+ predict X: 6.0, y_pred: 11.90
409
+ predict X: 8.0, y_pred: 15.92
410
+ predict X: 12.0, y_pred: 23.96
411
+ predict X: 30.0, y_pred: 60.13
412
+
413
+ """
414
+ import torch
415
+
416
+ _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
417
+
418
+ pickle_module = pickle_module or mlflow_pytorch_pickle_module
419
+
420
+ if not isinstance(pytorch_model, torch.nn.Module):
421
+ raise TypeError("Argument 'pytorch_model' should be a torch.nn.Module")
422
+ path = os.path.abspath(path)
423
+ _validate_and_prepare_target_save_path(path)
424
+
425
+ if mlflow_model is None:
426
+ mlflow_model = Model()
427
+ saved_example = _save_example(mlflow_model, input_example, path)
428
+
429
+ if signature is None and saved_example is not None:
430
+ wrapped_model = _PyTorchWrapper(pytorch_model, device="cpu")
431
+ signature = _infer_signature_from_input_example(saved_example, wrapped_model)
432
+ elif signature is False:
433
+ signature = None
434
+
435
+ if signature is not None:
436
+ mlflow_model.signature = signature
437
+ if metadata is not None:
438
+ mlflow_model.metadata = metadata
439
+
440
+ code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
441
+
442
+ model_data_subpath = _MODEL_DATA_SUBPATH
443
+ model_data_path = os.path.join(path, model_data_subpath)
444
+ os.makedirs(model_data_path)
445
+
446
+ # Persist the pickle module name as a file in the model's `data` directory. This is necessary
447
+ # because the `data` directory is the only available parameter to `_load_pyfunc`, and it
448
+ # does not contain the MLmodel configuration; therefore, it is not sufficient to place
449
+ # the module name in the MLmodel
450
+ #
451
+ # TODO: Stop persisting this information to the filesystem once we have a mechanism for
452
+ # supplying the MLmodel configuration to `mlflow.pytorch._load_pyfunc`
453
+ pickle_module_path = os.path.join(model_data_path, _PICKLE_MODULE_INFO_FILE_NAME)
454
+ with open(pickle_module_path, "w") as f:
455
+ f.write(pickle_module.__name__)
456
+ # Save pytorch model
457
+ model_path = os.path.join(model_data_path, _SERIALIZED_TORCH_MODEL_FILE_NAME)
458
+ if isinstance(pytorch_model, torch.jit.ScriptModule):
459
+ torch.jit.ScriptModule.save(pytorch_model, model_path)
460
+ else:
461
+ torch.save(pytorch_model, model_path, pickle_module=pickle_module, **kwargs)
462
+
463
+ torchserve_artifacts_config = {}
464
+
465
+ if extra_files:
466
+ torchserve_artifacts_config[_EXTRA_FILES_KEY] = []
467
+ if not isinstance(extra_files, list):
468
+ raise TypeError("Extra files argument should be a list")
469
+
470
+ with TempDir() as tmp_extra_files_dir:
471
+ for extra_file in extra_files:
472
+ _download_artifact_from_uri(
473
+ artifact_uri=extra_file, output_path=tmp_extra_files_dir.path()
474
+ )
475
+ rel_path = posixpath.join(_EXTRA_FILES_KEY, os.path.basename(extra_file))
476
+ torchserve_artifacts_config[_EXTRA_FILES_KEY].append({"path": rel_path})
477
+ shutil.move(
478
+ tmp_extra_files_dir.path(),
479
+ posixpath.join(path, _EXTRA_FILES_KEY),
480
+ )
481
+
482
+ mlflow_model.add_flavor(
483
+ FLAVOR_NAME,
484
+ model_data=model_data_subpath,
485
+ pytorch_version=str(torch.__version__),
486
+ code=code_dir_subpath,
487
+ **torchserve_artifacts_config,
488
+ )
489
+ pyfunc.add_to_model(
490
+ mlflow_model,
491
+ loader_module="mlflow.pytorch",
492
+ data=model_data_subpath,
493
+ pickle_module_name=pickle_module.__name__,
494
+ code=code_dir_subpath,
495
+ conda_env=_CONDA_ENV_FILE_NAME,
496
+ python_env=_PYTHON_ENV_FILE_NAME,
497
+ model_config={"device": None},
498
+ )
499
+ if size := get_total_file_size(path):
500
+ mlflow_model.model_size_bytes = size
501
+ mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
502
+
503
+ if conda_env is None:
504
+ if pip_requirements is None:
505
+ default_reqs = get_default_pip_requirements()
506
+ # To ensure `_load_pyfunc` can successfully load the model during the dependency
507
+ # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
508
+ inferred_reqs = mlflow.models.infer_pip_requirements(
509
+ model_data_path,
510
+ FLAVOR_NAME,
511
+ fallback=default_reqs,
512
+ )
513
+ default_reqs = sorted(set(inferred_reqs).union(default_reqs))
514
+ else:
515
+ default_reqs = None
516
+ conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
517
+ default_reqs,
518
+ pip_requirements,
519
+ extra_pip_requirements,
520
+ )
521
+ else:
522
+ conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
523
+
524
+ with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
525
+ yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
526
+
527
+ # Save `constraints.txt` if necessary
528
+ if pip_constraints:
529
+ write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
530
+
531
+ # Save `requirements.txt`
532
+ write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
533
+
534
+ _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
535
+
536
+
537
+ def _load_model(path, device=None, **kwargs):
538
+ """
539
+ Args:
540
+ path: The path to a serialized PyTorch model.
541
+ device: If specified, load the model on the specified device.
542
+ kwargs: Additional kwargs to pass to the PyTorch ``torch.load`` function.
543
+ """
544
+ import torch
545
+
546
+ if os.path.isdir(path):
547
+ # `path` is a directory containing a serialized PyTorch model and a text file containing
548
+ # information about the pickle module that should be used by PyTorch to load it
549
+ model_path = os.path.join(path, "model.pth")
550
+ pickle_module_path = os.path.join(path, _PICKLE_MODULE_INFO_FILE_NAME)
551
+ with open(pickle_module_path) as f:
552
+ pickle_module_name = f.read()
553
+ if "pickle_module" in kwargs and kwargs["pickle_module"].__name__ != pickle_module_name:
554
+ _logger.warning(
555
+ "Attempting to load the PyTorch model with a pickle module, '%s', that does not"
556
+ " match the pickle module that was used to save the model: '%s'.",
557
+ kwargs["pickle_module"].__name__,
558
+ pickle_module_name,
559
+ )
560
+ else:
561
+ try:
562
+ kwargs["pickle_module"] = importlib.import_module(pickle_module_name)
563
+ except ImportError as exc:
564
+ raise MlflowException(
565
+ message=(
566
+ "Failed to import the pickle module that was used to save the PyTorch"
567
+ f" model. Pickle module name: `{pickle_module_name}`"
568
+ ),
569
+ error_code=RESOURCE_DOES_NOT_EXIST,
570
+ ) from exc
571
+
572
+ else:
573
+ model_path = path
574
+
575
+ if Version(torch.__version__) >= Version("1.5.0"):
576
+ pytorch_model = torch.load(model_path, **kwargs)
577
+ else:
578
+ try:
579
+ # load the model as an eager model.
580
+ pytorch_model = torch.load(model_path, **kwargs)
581
+ except Exception:
582
+ # If fails, assume the model as a scripted model
583
+ # `torch.jit.load` does not accept `pickle_module`.
584
+ kwargs.pop("pickle_module", None)
585
+ pytorch_model = torch.jit.load(model_path, **kwargs)
586
+
587
+ pytorch_model.eval()
588
+ if device:
589
+ pytorch_model.to(device=device)
590
+ return pytorch_model
591
+
592
+
593
+ def load_model(model_uri, dst_path=None, **kwargs):
594
+ """
595
+ Load a PyTorch model from a local file or a run.
596
+
597
+ Args:
598
+ model_uri: The location, in URI format, of the MLflow model, for example:
599
+
600
+ - ``/Users/me/path/to/local/model``
601
+ - ``relative/path/to/local/model``
602
+ - ``s3://my_bucket/path/to/model``
603
+ - ``runs:/<mlflow_run_id>/run-relative/path/to/model``
604
+ - ``models:/<model_name>/<model_version>``
605
+ - ``models:/<model_name>/<stage>``
606
+
607
+ For more information about supported URI schemes, see `Referencing Artifacts \
608
+ <https://www.mlflow.org/docs/latest/concepts.html#artifact-locations>`_.
609
+ dst_path: The local filesystem path to which to download the model artifact.
610
+ This directory must already exist. If unspecified, a local output path will be created.
611
+ kwargs: kwargs to pass to ``torch.load`` method.
612
+
613
+ Returns:
614
+ A PyTorch model.
615
+
616
+ .. code-block:: python
617
+ :caption: Example
618
+
619
+ import torch
620
+ import mlflow.pytorch
621
+
622
+
623
+ model = nn.Linear(1, 1)
624
+
625
+ # Log the model
626
+ with mlflow.start_run() as run:
627
+ mlflow.pytorch.log_model(model, name="model")
628
+
629
+ # Inference after loading the logged model
630
+ model_uri = f"runs:/{run.info.run_id}/model"
631
+ loaded_model = mlflow.pytorch.load_model(model_uri)
632
+ for x in [4.0, 6.0, 30.0]:
633
+ X = torch.Tensor([[x]])
634
+ y_pred = loaded_model(X)
635
+ print(f"predict X: {x}, y_pred: {y_pred.data.item():.2f}")
636
+
637
+ .. code-block:: text
638
+ :caption: Output
639
+
640
+ predict X: 4.0, y_pred: 7.57
641
+ predict X: 6.0, y_pred: 11.64
642
+ predict X: 30.0, y_pred: 60.48
643
+ """
644
+ import torch
645
+
646
+ local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
647
+ pytorch_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
648
+ _add_code_from_conf_to_system_path(local_model_path, pytorch_conf)
649
+
650
+ if torch.__version__ != pytorch_conf["pytorch_version"]:
651
+ _logger.warning(
652
+ "Stored model version '%s' does not match installed PyTorch version '%s'",
653
+ pytorch_conf["pytorch_version"],
654
+ torch.__version__,
655
+ )
656
+ torch_model_artifacts_path = os.path.join(local_model_path, pytorch_conf["model_data"])
657
+ return _load_model(path=torch_model_artifacts_path, **kwargs)
658
+
659
+
660
+ def _load_pyfunc(path, model_config=None, weights_only=False): # noqa: D417
661
+ """
662
+ Load PyFunc implementation. Called by ``pyfunc.load_model``.
663
+
664
+ Args:
665
+ path: Local filesystem path to the MLflow Model with the ``pytorch`` flavor.
666
+ """
667
+ import torch
668
+
669
+ device = model_config.get("device", None) if model_config else None
670
+ # if CUDA is available, we use the default CUDA device.
671
+ # To force inference to the CPU when the GPU is available, please set
672
+ # MLFLOW_DEFAULT_PREDICTION_DEVICE to "cpu"
673
+ # If a specific non-default device is passed in, we continue to respect that.
674
+ if device is None:
675
+ if MLFLOW_DEFAULT_PREDICTION_DEVICE.get():
676
+ device = MLFLOW_DEFAULT_PREDICTION_DEVICE.get()
677
+ elif torch.cuda.is_available():
678
+ device = _TORCH_DEFAULT_GPU_DEVICE_NAME
679
+ else:
680
+ device = _TORCH_CPU_DEVICE_NAME
681
+
682
+ # in pytorch >= 2.6.0, the `weights_only` kwarg default has been changed from
683
+ # `False` to `True`. this can cause pickle deserialization errors when loading
684
+ # models, unless the model classes have been explicitly marked as safe using
685
+ # `torch.serialization.add_safe_globals()`
686
+ if Version(torch.__version__) >= Version("2.6.0"):
687
+ return _PyTorchWrapper(
688
+ _load_model(path, device=device, weights_only=weights_only), device=device
689
+ )
690
+
691
+ return _PyTorchWrapper(_load_model(path, device=device), device=device)
692
+
693
+
694
+ class _PyTorchWrapper:
695
+ """
696
+ Wrapper class that creates a predict function such that
697
+ predict(data: pd.DataFrame) -> model's output as pd.DataFrame (pandas DataFrame)
698
+ """
699
+
700
+ def __init__(self, pytorch_model, device):
701
+ self.pytorch_model = pytorch_model
702
+ self.device = device
703
+
704
+ def get_raw_model(self):
705
+ """
706
+ Returns the underlying model.
707
+ """
708
+ return self.pytorch_model
709
+
710
+ def predict(self, data, params: Optional[dict[str, Any]] = None):
711
+ """
712
+ Args:
713
+ data: Model input data.
714
+ params: Additional parameters to pass to the model for inference.
715
+
716
+ Returns:
717
+ Model predictions.
718
+ """
719
+ import torch
720
+
721
+ if params and "device" in params:
722
+ raise ValueError(
723
+ "device' can no longer be specified as an inference parameter. "
724
+ "It must be specified at load time. "
725
+ "Please specify the device at load time, for example: "
726
+ "`mlflow.pyfunc.load_model(model_uri, model_config={'device': 'cuda'})`."
727
+ )
728
+
729
+ if isinstance(data, pd.DataFrame):
730
+ inp_data = data.values.astype(np.float32)
731
+ elif isinstance(data, np.ndarray):
732
+ inp_data = data
733
+ elif isinstance(data, (list, dict)):
734
+ raise TypeError(
735
+ "The PyTorch flavor does not support List or Dict input types. "
736
+ "Please use a pandas.DataFrame or a numpy.ndarray"
737
+ )
738
+ else:
739
+ raise TypeError("Input data should be pandas.DataFrame or numpy.ndarray")
740
+
741
+ device = self.device
742
+ with torch.no_grad():
743
+ input_tensor = torch.from_numpy(inp_data).to(device)
744
+ preds = self.pytorch_model(input_tensor, **(params or {}))
745
+ # if the predictions happened on a remote device, copy them back to
746
+ # the host CPU for processing
747
+ if device != _TORCH_CPU_DEVICE_NAME:
748
+ preds = preds.to(_TORCH_CPU_DEVICE_NAME)
749
+ if not isinstance(preds, torch.Tensor):
750
+ raise TypeError(
751
+ "Expected PyTorch model to output a single output tensor, "
752
+ f"but got output of type '{type(preds)}'"
753
+ )
754
+ if isinstance(data, pd.DataFrame):
755
+ predicted = pd.DataFrame(preds.numpy())
756
+ predicted.index = data.index
757
+ else:
758
+ predicted = preds.numpy()
759
+ return predicted
760
+
761
+
762
+ def log_state_dict(state_dict, artifact_path, **kwargs):
763
+ """
764
+ Log a state_dict as an MLflow artifact for the current run.
765
+
766
+ .. warning::
767
+ This function just logs a state_dict as an artifact and doesn't generate
768
+ an :ref:`MLflow Model <models>`.
769
+
770
+ Args:
771
+ state_dict: state_dict to be saved.
772
+ artifact_path: Run-relative artifact path.
773
+ kwargs: kwargs to pass to ``torch.save``.
774
+
775
+ .. code-block:: python
776
+ :caption: Example
777
+
778
+ # Log a model as a state_dict
779
+ with mlflow.start_run():
780
+ state_dict = model.state_dict()
781
+ mlflow.pytorch.log_state_dict(state_dict, artifact_path="model")
782
+
783
+ # Log a checkpoint as a state_dict
784
+ with mlflow.start_run():
785
+ state_dict = {
786
+ "model": model.state_dict(),
787
+ "optimizer": optimizer.state_dict(),
788
+ "epoch": epoch,
789
+ "loss": loss,
790
+ }
791
+ mlflow.pytorch.log_state_dict(state_dict, artifact_path="checkpoint")
792
+ """
793
+
794
+ with TempDir() as tmp:
795
+ local_path = tmp.path()
796
+ save_state_dict(state_dict=state_dict, path=local_path, **kwargs)
797
+ mlflow.log_artifacts(local_path, artifact_path)
798
+
799
+
800
+ def save_state_dict(state_dict, path, **kwargs):
801
+ """
802
+ Save a state_dict to a path on the local file system
803
+
804
+ Args:
805
+ state_dict: state_dict to be saved.
806
+ path: Local path where the state_dict is to be saved.
807
+ kwargs: kwargs to pass to ``torch.save``.
808
+ """
809
+ import torch
810
+
811
+ # The object type check here aims to prevent a scenario where a user accidentally passees
812
+ # a model instead of a state_dict and `torch.save` (which accepts both model and state_dict)
813
+ # successfully completes, leaving the user unaware of the mistake.
814
+ if not isinstance(state_dict, dict):
815
+ raise TypeError(
816
+ "Invalid object type for `state_dict`: {}. Must be an instance of `dict`".format(
817
+ type(state_dict)
818
+ )
819
+ )
820
+
821
+ os.makedirs(path, exist_ok=True)
822
+ state_dict_path = os.path.join(path, _TORCH_STATE_DICT_FILE_NAME)
823
+ torch.save(state_dict, state_dict_path, **kwargs)
824
+
825
+
826
+ def load_state_dict(state_dict_uri, **kwargs):
827
+ """
828
+ Load a state_dict from a local file or a run.
829
+
830
+ Args:
831
+ state_dict_uri: The location, in URI format, of the state_dict, for example:
832
+
833
+ - ``/Users/me/path/to/local/state_dict``
834
+ - ``relative/path/to/local/state_dict``
835
+ - ``s3://my_bucket/path/to/state_dict``
836
+ - ``runs:/<mlflow_run_id>/run-relative/path/to/state_dict``
837
+
838
+ For more information about supported URI schemes, see `Referencing Artifacts \
839
+ <https://www.mlflow.org/docs/latest/concepts.html#artifact-locations>`_.
840
+
841
+ kwargs: kwargs to pass to ``torch.load``.
842
+
843
+ Returns:
844
+ A state_dict
845
+
846
+ .. code-block:: python
847
+ :caption: Example
848
+
849
+ with mlflow.start_run():
850
+ artifact_path = "model"
851
+ mlflow.pytorch.log_state_dict(model.state_dict(), artifact_path)
852
+ state_dict_uri = mlflow.get_artifact_uri(artifact_path)
853
+
854
+ state_dict = mlflow.pytorch.load_state_dict(state_dict_uri)
855
+ """
856
+ import torch
857
+
858
+ local_path = _download_artifact_from_uri(artifact_uri=state_dict_uri)
859
+ state_dict_path = os.path.join(local_path, _TORCH_STATE_DICT_FILE_NAME)
860
+ return torch.load(state_dict_path, **kwargs)
861
+
862
+
863
+ @autologging_integration(FLAVOR_NAME)
864
+ def autolog(
865
+ log_every_n_epoch=1,
866
+ log_every_n_step=None,
867
+ log_models=True,
868
+ log_datasets=True,
869
+ disable=False,
870
+ exclusive=False,
871
+ disable_for_unsupported_versions=False,
872
+ silent=False,
873
+ registered_model_name=None,
874
+ extra_tags=None,
875
+ checkpoint=True,
876
+ checkpoint_monitor="val_loss",
877
+ checkpoint_mode="min",
878
+ checkpoint_save_best_only=True,
879
+ checkpoint_save_weights_only=False,
880
+ checkpoint_save_freq="epoch",
881
+ ):
882
+ """
883
+ Enables (or disables) and configures autologging from `PyTorch Lightning
884
+ <https://pytorch-lightning.readthedocs.io/en/latest>`_ to MLflow.
885
+
886
+ Autologging is performed when you call the `fit` method of
887
+ `pytorch_lightning.Trainer() \
888
+ <https://pytorch-lightning.readthedocs.io/en/latest/trainer.html#>`_.
889
+
890
+ Explore the complete `PyTorch MNIST \
891
+ <https://github.com/mlflow/mlflow/tree/master/examples/pytorch/MNIST>`_ for
892
+ an expansive example with implementation of additional lightening steps.
893
+
894
+ **Note**: Full autologging is only supported for PyTorch Lightning models,
895
+ i.e., models that subclass
896
+ `pytorch_lightning.LightningModule \
897
+ <https://pytorch-lightning.readthedocs.io/en/latest/lightning_module.html>`_.
898
+ Autologging support for vanilla PyTorch (ie models that only subclass
899
+ `torch.nn.Module <https://pytorch.org/docs/stable/generated/torch.nn.Module.html>`_)
900
+ only autologs calls to
901
+ `torch.utils.tensorboard.SummaryWriter <https://pytorch.org/docs/stable/tensorboard.html>`_'s
902
+ ``add_scalar`` and ``add_hparams`` methods to mlflow. In this case, there's also
903
+ no notion of an "epoch".
904
+
905
+ Args:
906
+ log_every_n_epoch: If specified, logs metrics once every `n` epochs. By default, metrics
907
+ are logged after every epoch.
908
+ log_every_n_step: If specified, logs batch metrics once every `n` training step.
909
+ By default, metrics are not logged for steps. Note that setting this to 1 can cause
910
+ performance issues and is not recommended. Metrics are logged against Lightning's global
911
+ step number, and when multiple optimizers are used it is assumed that all optimizers
912
+ are stepped in each training step.
913
+ log_models: If ``True``, trained models are logged as MLflow model artifacts.
914
+ If ``False``, trained models are not logged.
915
+ log_datasets: If ``True``, dataset information is logged to MLflow Tracking.
916
+ If ``False``, dataset information is not logged.
917
+ disable: If ``True``, disables the PyTorch Lightning autologging integration.
918
+ If ``False``, enables the PyTorch Lightning autologging integration.
919
+ exclusive: If ``True``, autologged content is not logged to user-created fluent runs.
920
+ If ``False``, autologged content is logged to the active fluent run, which may be
921
+ user-created.
922
+ disable_for_unsupported_versions: If ``True``, disable autologging for versions of
923
+ pytorch and pytorch-lightning that have not been tested against this version
924
+ of the MLflow client or are incompatible.
925
+ silent: If ``True``, suppress all event logs and warnings from MLflow during PyTorch
926
+ Lightning autologging. If ``False``, show all events and warnings during PyTorch
927
+ Lightning autologging.
928
+ registered_model_name: If given, each time a model is trained, it is registered as a
929
+ new model version of the registered model with this name. The registered model is
930
+ created if it does not already exist.
931
+ extra_tags: A dictionary of extra tags to set on each managed run created by autologging.
932
+ checkpoint: Enable automatic model checkpointing, this feature only supports
933
+ pytorch-lightning >= 1.6.0.
934
+ checkpoint_monitor: In automatic model checkpointing, the metric name to monitor if
935
+ you set `model_checkpoint_save_best_only` to True.
936
+ checkpoint_mode: one of {"min", "max"}. In automatic model checkpointing,
937
+ if save_best_only=True, the decision to overwrite the current save file is made based on
938
+ either the maximization or the minimization of the monitored quantity.
939
+ checkpoint_save_best_only: If True, automatic model checkpointing only saves when
940
+ the model is considered the "best" model according to the quantity
941
+ monitored and previous checkpoint model is overwritten.
942
+ checkpoint_save_weights_only: In automatic model checkpointing, if True, then
943
+ only the model's weights will be saved. Otherwise, the optimizer states,
944
+ lr-scheduler states, etc are added in the checkpoint too.
945
+ checkpoint_save_freq: `"epoch"` or integer. When using `"epoch"`, the callback
946
+ saves the model after each epoch. When using integer, the callback
947
+ saves the model at end of this many batches. Note that if the saving isn't aligned to
948
+ epochs, the monitored metric may potentially be less reliable (it
949
+ could reflect as little as 1 batch, since the metrics get reset
950
+ every epoch). Defaults to `"epoch"`.
951
+
952
+ .. code-block:: python
953
+ :test:
954
+ :caption: Example
955
+
956
+ import os
957
+
958
+ import lightning as L
959
+ import torch
960
+ from torch.nn import functional as F
961
+ from torch.utils.data import DataLoader, Subset
962
+ from torchmetrics import Accuracy
963
+ from torchvision import transforms
964
+ from torchvision.datasets import MNIST
965
+
966
+ import mlflow.pytorch
967
+ from mlflow import MlflowClient
968
+
969
+
970
+ class MNISTModel(L.LightningModule):
971
+ def __init__(self):
972
+ super().__init__()
973
+ self.l1 = torch.nn.Linear(28 * 28, 10)
974
+ self.accuracy = Accuracy("multiclass", num_classes=10)
975
+
976
+ def forward(self, x):
977
+ return torch.relu(self.l1(x.view(x.size(0), -1)))
978
+
979
+ def training_step(self, batch, batch_nb):
980
+ x, y = batch
981
+ logits = self(x)
982
+ loss = F.cross_entropy(logits, y)
983
+ pred = logits.argmax(dim=1)
984
+ acc = self.accuracy(pred, y)
985
+
986
+ # PyTorch `self.log` will be automatically captured by MLflow.
987
+ self.log("train_loss", loss, on_epoch=True)
988
+ self.log("acc", acc, on_epoch=True)
989
+ return loss
990
+
991
+ def configure_optimizers(self):
992
+ return torch.optim.Adam(self.parameters(), lr=0.02)
993
+
994
+
995
+ def print_auto_logged_info(r):
996
+ tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")}
997
+ artifacts = [f.path for f in MlflowClient().list_artifacts(r.info.run_id, "model")]
998
+ print(f"run_id: {r.info.run_id}")
999
+ print(f"artifacts: {artifacts}")
1000
+ print(f"params: {r.data.params}")
1001
+ print(f"metrics: {r.data.metrics}")
1002
+ print(f"tags: {tags}")
1003
+
1004
+
1005
+ # Initialize our model.
1006
+ mnist_model = MNISTModel()
1007
+
1008
+ # Load MNIST dataset.
1009
+ train_ds = MNIST(
1010
+ os.getcwd(), train=True, download=True, transform=transforms.ToTensor()
1011
+ )
1012
+ # Only take a subset of the data for faster training.
1013
+ indices = torch.arange(32)
1014
+ train_ds = Subset(train_ds, indices)
1015
+ train_loader = DataLoader(train_ds, batch_size=8)
1016
+
1017
+ # Initialize a trainer.
1018
+ trainer = L.Trainer(max_epochs=3)
1019
+
1020
+ # Auto log all MLflow entities
1021
+ mlflow.pytorch.autolog()
1022
+
1023
+ # Train the model.
1024
+ with mlflow.start_run() as run:
1025
+ trainer.fit(mnist_model, train_loader)
1026
+
1027
+ # Fetch the auto logged parameters and metrics.
1028
+ print_auto_logged_info(mlflow.get_run(run_id=run.info.run_id))
1029
+ """
1030
+ try:
1031
+ import pytorch_lightning as pl
1032
+ except ImportError:
1033
+ pass
1034
+ else:
1035
+ from mlflow.pytorch._lightning_autolog import patched_fit
1036
+
1037
+ safe_patch(
1038
+ FLAVOR_NAME, pl.Trainer, "fit", patched_fit, manage_run=True, extra_tags=extra_tags
1039
+ )
1040
+
1041
+ try:
1042
+ import lightning as L
1043
+ except ImportError:
1044
+ pass
1045
+ else:
1046
+ from mlflow.pytorch._lightning_autolog import patched_fit
1047
+
1048
+ safe_patch(
1049
+ FLAVOR_NAME, L.Trainer, "fit", patched_fit, manage_run=True, extra_tags=extra_tags
1050
+ )
1051
+
1052
+ try:
1053
+ import torch.utils.tensorboard.writer
1054
+ except ImportError:
1055
+ pass
1056
+ else:
1057
+ from mlflow.pytorch._pytorch_autolog import (
1058
+ flush_metrics_queue,
1059
+ patched_add_event,
1060
+ patched_add_hparams,
1061
+ patched_add_summary,
1062
+ )
1063
+
1064
+ safe_patch(
1065
+ FLAVOR_NAME,
1066
+ torch.utils.tensorboard.writer.FileWriter,
1067
+ "add_event",
1068
+ partial(patched_add_event, mlflow_log_every_n_step=log_every_n_step),
1069
+ manage_run=True,
1070
+ extra_tags=extra_tags,
1071
+ )
1072
+ safe_patch(
1073
+ FLAVOR_NAME,
1074
+ torch.utils.tensorboard.writer.FileWriter,
1075
+ "add_summary",
1076
+ patched_add_summary,
1077
+ manage_run=True,
1078
+ extra_tags=extra_tags,
1079
+ )
1080
+ safe_patch(
1081
+ FLAVOR_NAME,
1082
+ torch.utils.tensorboard.SummaryWriter,
1083
+ "add_hparams",
1084
+ patched_add_hparams,
1085
+ manage_run=True,
1086
+ extra_tags=extra_tags,
1087
+ )
1088
+
1089
+ atexit.register(flush_metrics_queue)
1090
+
1091
+
1092
+ if autolog.__doc__ is not None:
1093
+ autolog.__doc__ = autolog.__doc__.replace("MIN_REQ_VERSION", str(MIN_REQ_VERSION)).replace(
1094
+ "MAX_REQ_VERSION", str(MAX_REQ_VERSION)
1095
+ )
1096
+
1097
+
1098
+ def load_checkpoint(model_class, run_id=None, epoch=None, global_step=None, kwargs=None):
1099
+ """
1100
+ If you enable "checkpoint" in autologging, during pytorch-lightning model
1101
+ training execution, checkpointed models are logged as MLflow artifacts.
1102
+ Using this API, you can load the checkpointed model.
1103
+
1104
+ If you want to load the latest checkpoint, set both `epoch` and `global_step` to None.
1105
+ If "checkpoint_save_freq" is set to "epoch" in autologging,
1106
+ you can set `epoch` param to the epoch of the checkpoint to load specific epoch checkpoint.
1107
+ If "checkpoint_save_freq" is set to an integer in autologging,
1108
+ you can set `global_step` param to the global step of the checkpoint to load specific
1109
+ global step checkpoint.
1110
+ `epoch` param and `global_step` can't be set together.
1111
+
1112
+ Args:
1113
+ model_class: The class of the training model, the class should inherit
1114
+ 'pytorch_lightning.LightningModule'.
1115
+ run_id: The id of the run which model is logged to. If not provided,
1116
+ current active run is used.
1117
+ epoch: The epoch of the checkpoint to be loaded, if you set
1118
+ "checkpoint_save_freq" to "epoch".
1119
+ global_step: The global step of the checkpoint to be loaded, if
1120
+ you set "checkpoint_save_freq" to an integer.
1121
+ kwargs: Any extra kwargs needed to init the model.
1122
+
1123
+ Returns:
1124
+ The instance of a pytorch-lightning model restored from the specified checkpoint.
1125
+
1126
+ .. code-block:: python
1127
+ :caption: Example
1128
+
1129
+ import mlflow
1130
+
1131
+ mlflow.pytorch.autolog(checkpoint=True)
1132
+
1133
+ model = MyLightningModuleNet() # A custom-pytorch lightning model
1134
+ train_loader = create_train_dataset_loader()
1135
+ trainer = Trainer()
1136
+
1137
+ with mlflow.start_run() as run:
1138
+ trainer.fit(model, train_loader)
1139
+
1140
+ run_id = run.info.run_id
1141
+
1142
+ # load latest checkpoint model
1143
+ latest_checkpoint_model = mlflow.pytorch.load_checkpoint(MyLightningModuleNet, run_id)
1144
+
1145
+ # load history checkpoint model logged in second epoch
1146
+ checkpoint_model = mlflow.pytorch.load_checkpoint(MyLightningModuleNet, run_id, epoch=2)
1147
+ """
1148
+ with TempDir() as tmp_dir:
1149
+ downloaded_checkpoint_filepath = download_checkpoint_artifact(
1150
+ run_id=run_id, epoch=epoch, global_step=global_step, dst_path=tmp_dir.path()
1151
+ )
1152
+ return model_class.load_from_checkpoint(downloaded_checkpoint_filepath, **(kwargs or {}))
1153
+
1154
+
1155
+ __all__ = [
1156
+ "autolog",
1157
+ "load_model",
1158
+ "save_model",
1159
+ "log_model",
1160
+ "get_default_pip_requirements",
1161
+ "get_default_conda_env",
1162
+ "load_checkpoint",
1163
+ ]
1164
+
1165
+ try:
1166
+ from mlflow.pytorch._lightning_autolog import MlflowModelCheckpointCallback # noqa: F401
1167
+
1168
+ __all__.append("MlflowModelCheckpointCallback")
1169
+ except ImportError:
1170
+ # Swallow exception if pytorch-lightning is not installed.
1171
+ pass