fusion-bench 0.2.26__py3-none-any.whl → 0.2.28__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (125) hide show
  1. fusion_bench/__init__.py +4 -0
  2. fusion_bench/dataset/clip_dataset.py +1 -0
  3. fusion_bench/method/__init__.py +2 -0
  4. fusion_bench/method/adamerging/__init__.py +28 -5
  5. fusion_bench/method/adamerging/resnet_adamerging.py +279 -0
  6. fusion_bench/method/adamerging/task_wise_adamerging.py +2 -14
  7. fusion_bench/method/adamerging/utils.py +58 -0
  8. fusion_bench/method/classification/image_classification_finetune.py +168 -12
  9. fusion_bench/method/dare/simple_average.py +3 -2
  10. fusion_bench/method/dare/task_arithmetic.py +3 -2
  11. fusion_bench/method/simple_average.py +6 -4
  12. fusion_bench/method/task_arithmetic/task_arithmetic.py +4 -1
  13. fusion_bench/mixins/lightning_fabric.py +9 -0
  14. fusion_bench/modelpool/__init__.py +24 -2
  15. fusion_bench/modelpool/base_pool.py +8 -1
  16. fusion_bench/modelpool/causal_lm/causal_lm.py +2 -1
  17. fusion_bench/modelpool/convnext_for_image_classification.py +198 -0
  18. fusion_bench/modelpool/dinov2_for_image_classification.py +197 -0
  19. fusion_bench/modelpool/resnet_for_image_classification.py +289 -5
  20. fusion_bench/models/hf_clip.py +4 -7
  21. fusion_bench/models/hf_utils.py +4 -1
  22. fusion_bench/models/model_card_templates/default.md +1 -1
  23. fusion_bench/taskpool/__init__.py +2 -0
  24. fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
  25. fusion_bench/taskpool/resnet_for_image_classification.py +231 -0
  26. fusion_bench/utils/json.py +49 -8
  27. fusion_bench/utils/state_dict_arithmetic.py +91 -10
  28. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/METADATA +2 -2
  29. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/RECORD +124 -62
  30. fusion_bench_config/fabric/auto.yaml +1 -1
  31. fusion_bench_config/fabric/loggers/swandb_logger.yaml +5 -0
  32. fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
  33. fusion_bench_config/fabric_model_fusion.yaml +1 -0
  34. fusion_bench_config/method/adamerging/resnet.yaml +18 -0
  35. fusion_bench_config/method/classification/clip_finetune.yaml +5 -0
  36. fusion_bench_config/method/classification/image_classification_finetune.yaml +9 -0
  37. fusion_bench_config/method/linear/expo.yaml +5 -0
  38. fusion_bench_config/method/linear/llama_expo.yaml +5 -0
  39. fusion_bench_config/method/linear/llama_expo_with_dare.yaml +3 -0
  40. fusion_bench_config/method/linear/simple_average_for_causallm.yaml +5 -0
  41. fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +3 -0
  42. fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +5 -0
  43. fusion_bench_config/method/linear/weighted_average_for_llama.yaml +5 -0
  44. fusion_bench_config/method/mixtral_moe_merging.yaml +3 -0
  45. fusion_bench_config/method/mixtral_moe_upscaling.yaml +5 -0
  46. fusion_bench_config/method/regmean/clip_regmean.yaml +3 -0
  47. fusion_bench_config/method/regmean/gpt2_regmean.yaml +3 -0
  48. fusion_bench_config/method/regmean/regmean.yaml +3 -0
  49. fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +3 -0
  50. fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +6 -0
  51. fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
  52. fusion_bench_config/method/smile_upscaling/projected_energy.yaml +5 -0
  53. fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +3 -0
  54. fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +5 -0
  55. fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +5 -0
  56. fusion_bench_config/method/wudi/wudi.yaml +3 -0
  57. fusion_bench_config/model_fusion.yaml +2 -1
  58. fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml +10 -0
  59. fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml +10 -0
  60. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py +138 -0
  61. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar10.yaml +1 -1
  62. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar100.yaml +1 -1
  63. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml +14 -0
  64. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml +14 -0
  65. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml +14 -0
  66. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml +14 -0
  67. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml +14 -0
  68. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml +14 -0
  69. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml +14 -0
  70. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml +14 -0
  71. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml +14 -0
  72. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml +14 -0
  73. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml +14 -0
  74. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml +14 -0
  75. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml +14 -0
  76. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml +14 -0
  77. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml +14 -0
  78. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml +14 -0
  79. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml +14 -0
  80. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml +14 -0
  81. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar10.yaml +1 -1
  82. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar100.yaml +1 -1
  83. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml +14 -0
  84. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml +14 -0
  85. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml +14 -0
  86. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml +14 -0
  87. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml +14 -0
  88. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml +14 -0
  89. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml +14 -0
  90. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml +14 -0
  91. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml +14 -0
  92. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml +14 -0
  93. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml +14 -0
  94. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml +14 -0
  95. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml +14 -0
  96. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml +14 -0
  97. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml +14 -0
  98. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml +14 -0
  99. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml +14 -0
  100. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml +14 -0
  101. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar10.yaml +1 -1
  102. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar100.yaml +1 -1
  103. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml +14 -0
  104. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml +14 -0
  105. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml +14 -0
  106. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml +14 -0
  107. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml +14 -0
  108. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml +14 -0
  109. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml +14 -0
  110. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml +14 -0
  111. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml +14 -0
  112. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml +14 -0
  113. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml +14 -0
  114. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml +14 -0
  115. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml +14 -0
  116. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml +14 -0
  117. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml +14 -0
  118. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml +14 -0
  119. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml +14 -0
  120. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml +14 -0
  121. fusion_bench_config/method/clip_finetune.yaml +0 -26
  122. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/WHEEL +0 -0
  123. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/entry_points.txt +0 -0
  124. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/licenses/LICENSE +0 -0
  125. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/top_level.txt +0 -0
@@ -1,3 +1,9 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: SMILE Upscaling (Causal LM)
3
+ # =============================================================================
4
+ # Upscales causal language models (Qwen2/Llama/Mistral) with SMILE.
5
+ # Supports auto-detection or explicit model_type override.
6
+ # =============================================================================
1
7
  # Generic SMILE Upscaling Configuration for CausalLM models
2
8
  # Supports: Qwen2, Llama, Mistral models
3
9
  # The model type will be auto-detected from the base model
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Analysis Configuration: SMILE Error Accumulation
3
+ # =============================================================================
4
+ # Analyzes how approximation error accumulates with gating and rank parameters.
5
+ # =============================================================================
1
6
  # Measure error accumulation
2
7
  _target_: fusion_bench.method.smile_upscaling.error_accumulation.ErrorAccumulationAnalysisForCLIP
3
8
  gate_k: 16
@@ -1,2 +1,7 @@
1
+ # =============================================================================
2
+ # FusionBench Analysis Configuration: SMILE Projected Energy
3
+ # =============================================================================
4
+ # Measures projected energy retained by singular vectors during SMILE upscaling.
5
+ # =============================================================================
1
6
  # Measure projected energy
2
7
  _target_: fusion_bench.method.smile_upscaling.projected_energy.ProjectedEnergyAnalysis
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: SMILE Singular Projection Merging
3
+ # =============================================================================
1
4
  name: singular_projection_merging
2
5
  # merge device on cuda can accelerate the SVD computation
3
6
  device: cuda
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: SMILE Upscaling (Mistral)
3
+ # =============================================================================
4
+ # Specialized SMILE upscaling for Mistral models with rank settings.
5
+ # =============================================================================
1
6
  _target_: fusion_bench.method.smile_upscaling.smile_mistral_upscaling.SmileMistralUpscalingAlgorithm
2
7
  # device to put the models on
3
8
  device: cpu
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: SMILE Upscaling (Qwen2)
3
+ # =============================================================================
4
+ # Specialized SMILE upscaling for Qwen2 models with rank settings.
5
+ # =============================================================================
1
6
  _target_: fusion_bench.method.smile_upscaling.smile_qwen2_upscaling.SmileQwen2UpscalingAlgorithm
2
7
  # device to put the models on
3
8
  device: cpu
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: WUDI Merging
3
+ # =============================================================================
1
4
  _target_: fusion_bench.method.WUDIMerging
2
5
 
3
6
  iter_num: 400
@@ -3,7 +3,7 @@
3
3
  # =============================================================================
4
4
  # This configuration file defines the settings for running model fusion experiments
5
5
  # within FusionBench using standard PyTorch (without Lightning Fabric).
6
- #
6
+ #
7
7
  # The configuration includes:
8
8
  #
9
9
  # - Hydra framework settings and overrides
@@ -30,6 +30,7 @@ _recursive_: false # Disable recursive instantiation
30
30
  # =============================================================================
31
31
  # Experiment Execution Settings
32
32
  # =============================================================================
33
+ seed: null # Random seed for reproducibility
33
34
  # Development and debugging options
34
35
  fast_dev_run: false # This option is for quick testing. For example, run single batch instead of full dataset
35
36
  dry_run: false # Show configuration without running experiment
@@ -0,0 +1,10 @@
1
+ _target_: fusion_bench.modelpool.ConvNextForImageClassificationPool
2
+ _recursive_: False
3
+ models:
4
+ _pretrained_:
5
+ config_path: facebook/convnext-base-224
6
+ pretrained: true
7
+ dataset_name: null
8
+ train_datasets: null
9
+ val_datasets: null
10
+ test_datasets: null
@@ -0,0 +1,10 @@
1
+ _target_: fusion_bench.modelpool.Dinov2ForImageClassificationPool
2
+ _recursive_: False
3
+ models:
4
+ _pretrained_:
5
+ config_path: facebook/dinov2-base-imagenet1k-1-layer
6
+ pretrained: true
7
+ dataset_name: null
8
+ train_datasets: null
9
+ val_datasets: null
10
+ test_datasets: null
@@ -0,0 +1,138 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ Script to generate ResNet modelpool configs using Jinja templates.
4
+
5
+ This script generates YAML configuration files for different ResNet models
6
+ and datasets using a Jinja2 template.
7
+ """
8
+
9
+ import os
10
+ from pathlib import Path
11
+
12
+ from jinja2 import Template
13
+
14
+ # Template for the ResNet modelpool config
15
+ CONFIG_TEMPLATE = """defaults:
16
+ - /dataset/image_classification/train@train_datasets:
17
+ - {{ dataset_name }}
18
+ - /dataset/image_classification/test@val_datasets:
19
+ - {{ dataset_name }}
20
+ - _self_
21
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
22
+ _recursive_: False
23
+ type: transformers
24
+ models:
25
+ _pretrained_:
26
+ config_path: {{ config_path }}
27
+ pretrained: true
28
+ dataset_name: {{ dataset_name }}
29
+ """
30
+
31
+
32
+ def generate_config(model_path, dataset_name, output_dir=None):
33
+ """
34
+ Generate a single config file using the template.
35
+
36
+ Args:
37
+ config_path (str): The HuggingFace model path (e.g., "microsoft/resnet-18")
38
+ dataset_name (str): The dataset name (e.g., "cifar10")
39
+ output_dir (str, optional): Output directory. If None, uses current directory.
40
+
41
+ Returns:
42
+ str: The generated config content
43
+ """
44
+ template = Template(CONFIG_TEMPLATE)
45
+ config_content = template.render(config_path=model_path, dataset_name=dataset_name)
46
+
47
+ if output_dir:
48
+ # Extract model name from config_path for filename
49
+ model_name = model_path.split("/")[
50
+ -1
51
+ ] # e.g., "resnet-18" from "microsoft/resnet-18"
52
+ filename = f"{model_name.replace('-','')}_{dataset_name}.yaml"
53
+ output_path = Path(output_dir) / filename
54
+
55
+ # Ensure output directory exists
56
+ output_path.parent.mkdir(parents=True, exist_ok=True)
57
+
58
+ # Write the config file
59
+ with open(output_path, "w") as f:
60
+ f.write(config_content)
61
+
62
+ print(f"Generated config: {output_path}")
63
+
64
+ return config_content
65
+
66
+
67
+ def generate_all_configs(output_dir=None):
68
+ """
69
+ Generate configs for common ResNet models and datasets.
70
+
71
+ Args:
72
+ output_dir (str, optional): Output directory. If None, uses current directory.
73
+ """
74
+ from fusion_bench.constants.clip_vision import TASK_NAMES_TALL20
75
+
76
+ if output_dir is None:
77
+ output_dir = Path(__file__).parent
78
+
79
+ # Common ResNet models from HuggingFace
80
+ models = [
81
+ "microsoft/resnet-18",
82
+ "microsoft/resnet-50",
83
+ "microsoft/resnet-152",
84
+ ]
85
+
86
+ # Common datasets
87
+ datasets = TASK_NAMES_TALL20
88
+
89
+ print(f"Generating configs in directory: {output_dir}")
90
+
91
+ for model_path in models:
92
+ for dataset in datasets:
93
+ generate_config(model_path, dataset, output_dir)
94
+
95
+
96
+ def main():
97
+ """Main function to run the config generation."""
98
+ import argparse
99
+
100
+ parser = argparse.ArgumentParser(description="Generate ResNet modelpool configs")
101
+ parser.add_argument(
102
+ "--config-path",
103
+ type=str,
104
+ help="HuggingFace model path (e.g., microsoft/resnet-18)",
105
+ )
106
+ parser.add_argument("--dataset", type=str, help="Dataset name (e.g., cifar10)")
107
+ parser.add_argument(
108
+ "--output-dir", type=str, help="Output directory (default: current directory)"
109
+ )
110
+ parser.add_argument(
111
+ "--generate-all",
112
+ action="store_true",
113
+ help="Generate configs for all common ResNet models and datasets",
114
+ )
115
+
116
+ args = parser.parse_args()
117
+
118
+ if args.generate_all:
119
+ generate_all_configs(args.output_dir)
120
+ elif args.config_path and args.dataset:
121
+ config_content = generate_config(
122
+ args.config_path, args.dataset, args.output_dir
123
+ )
124
+ if not args.output_dir:
125
+ print("Generated config:")
126
+ print(config_content)
127
+ else:
128
+ parser.print_help()
129
+ print("\nExample usage:")
130
+ print(
131
+ " python _generate_config.py --config-path microsoft/resnet-18 --dataset cifar10"
132
+ )
133
+ print(" python _generate_config.py --generate-all")
134
+ print(" python _generate_config.py --generate-all --output-dir .")
135
+
136
+
137
+ if __name__ == "__main__":
138
+ main()
@@ -11,4 +11,4 @@ models:
11
11
  _pretrained_:
12
12
  config_path: microsoft/resnet-152
13
13
  pretrained: true
14
- dataset_name: cifar10
14
+ dataset_name: cifar10
@@ -11,4 +11,4 @@ models:
11
11
  _pretrained_:
12
12
  config_path: microsoft/resnet-152
13
13
  pretrained: true
14
- dataset_name: cifar100
14
+ dataset_name: cifar100
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - dtd
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - dtd
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: dtd
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - emnist_letters
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - emnist_letters
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: emnist_letters
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - eurosat
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - eurosat
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: eurosat
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - fashion_mnist
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - fashion_mnist
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: fashion_mnist
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - fer2013
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - fer2013
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: fer2013
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - food101
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - food101
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: food101
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - gtsrb
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - gtsrb
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: gtsrb
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - kmnist
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - kmnist
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: kmnist
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - mnist
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - mnist
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: mnist
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - oxford-iiit-pet
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - oxford-iiit-pet
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: oxford-iiit-pet
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - oxford_flowers102
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - oxford_flowers102
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: oxford_flowers102
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - pcam
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - pcam
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: pcam
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - rendered-sst2
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - rendered-sst2
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: rendered-sst2
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - resisc45
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - resisc45
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: resisc45
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - stanford-cars
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - stanford-cars
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: stanford-cars
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - stl10
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - stl10
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: stl10
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - sun397
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - sun397
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: sun397
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - svhn
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - svhn
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-152
13
+ pretrained: true
14
+ dataset_name: svhn
@@ -11,4 +11,4 @@ models:
11
11
  _pretrained_:
12
12
  config_path: microsoft/resnet-18
13
13
  pretrained: true
14
- dataset_name: cifar10
14
+ dataset_name: cifar10
@@ -11,4 +11,4 @@ models:
11
11
  _pretrained_:
12
12
  config_path: microsoft/resnet-18
13
13
  pretrained: true
14
- dataset_name: cifar100
14
+ dataset_name: cifar100
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - dtd
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - dtd
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: dtd
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - emnist_letters
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - emnist_letters
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: emnist_letters
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - eurosat
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - eurosat
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: eurosat
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - fashion_mnist
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - fashion_mnist
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: fashion_mnist
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - fer2013
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - fer2013
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: fer2013
@@ -0,0 +1,14 @@
1
+ defaults:
2
+ - /dataset/image_classification/train@train_datasets:
3
+ - food101
4
+ - /dataset/image_classification/test@val_datasets:
5
+ - food101
6
+ - _self_
7
+ _target_: fusion_bench.modelpool.ResNetForImageClassificationPool
8
+ _recursive_: False
9
+ type: transformers
10
+ models:
11
+ _pretrained_:
12
+ config_path: microsoft/resnet-18
13
+ pretrained: true
14
+ dataset_name: food101