fusion-bench 0.2.26__py3-none-any.whl → 0.2.28__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +4 -0
- fusion_bench/dataset/clip_dataset.py +1 -0
- fusion_bench/method/__init__.py +2 -0
- fusion_bench/method/adamerging/__init__.py +28 -5
- fusion_bench/method/adamerging/resnet_adamerging.py +279 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +2 -14
- fusion_bench/method/adamerging/utils.py +58 -0
- fusion_bench/method/classification/image_classification_finetune.py +168 -12
- fusion_bench/method/dare/simple_average.py +3 -2
- fusion_bench/method/dare/task_arithmetic.py +3 -2
- fusion_bench/method/simple_average.py +6 -4
- fusion_bench/method/task_arithmetic/task_arithmetic.py +4 -1
- fusion_bench/mixins/lightning_fabric.py +9 -0
- fusion_bench/modelpool/__init__.py +24 -2
- fusion_bench/modelpool/base_pool.py +8 -1
- fusion_bench/modelpool/causal_lm/causal_lm.py +2 -1
- fusion_bench/modelpool/convnext_for_image_classification.py +198 -0
- fusion_bench/modelpool/dinov2_for_image_classification.py +197 -0
- fusion_bench/modelpool/resnet_for_image_classification.py +289 -5
- fusion_bench/models/hf_clip.py +4 -7
- fusion_bench/models/hf_utils.py +4 -1
- fusion_bench/models/model_card_templates/default.md +1 -1
- fusion_bench/taskpool/__init__.py +2 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
- fusion_bench/taskpool/resnet_for_image_classification.py +231 -0
- fusion_bench/utils/json.py +49 -8
- fusion_bench/utils/state_dict_arithmetic.py +91 -10
- {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/METADATA +2 -2
- {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/RECORD +124 -62
- fusion_bench_config/fabric/auto.yaml +1 -1
- fusion_bench_config/fabric/loggers/swandb_logger.yaml +5 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric_model_fusion.yaml +1 -0
- fusion_bench_config/method/adamerging/resnet.yaml +18 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +5 -0
- fusion_bench_config/method/classification/image_classification_finetune.yaml +9 -0
- fusion_bench_config/method/linear/expo.yaml +5 -0
- fusion_bench_config/method/linear/llama_expo.yaml +5 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +3 -0
- fusion_bench_config/method/linear/simple_average_for_causallm.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +3 -0
- fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +5 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +5 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +3 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +5 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +3 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +3 -0
- fusion_bench_config/method/regmean/regmean.yaml +3 -0
- fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +3 -0
- fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/projected_energy.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +3 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +5 -0
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +5 -0
- fusion_bench_config/method/wudi/wudi.yaml +3 -0
- fusion_bench_config/model_fusion.yaml +2 -1
- fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml +10 -0
- fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml +10 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py +138 -0
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar10.yaml +1 -1
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar100.yaml +1 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml +14 -0
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar10.yaml +1 -1
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar100.yaml +1 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml +14 -0
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar10.yaml +1 -1
- fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar100.yaml +1 -1
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml +14 -0
- fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml +14 -0
- fusion_bench_config/method/clip_finetune.yaml +0 -26
- {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/WHEEL +0 -0
- {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/entry_points.txt +0 -0
- {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/licenses/LICENSE +0 -0
- {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
fusion_bench/__init__.py,sha256=
|
|
1
|
+
fusion_bench/__init__.py,sha256=C-0-HgZFdRjscXqpfNsz7iGUijUeSoP4GFRnFxuxQ7M,5992
|
|
2
2
|
fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
|
|
3
3
|
fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
|
|
4
4
|
fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
|
|
@@ -19,7 +19,7 @@ fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3y
|
|
|
19
19
|
fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
|
|
20
20
|
fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
|
|
21
21
|
fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
|
|
22
|
-
fusion_bench/dataset/clip_dataset.py,sha256=
|
|
22
|
+
fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
|
|
23
23
|
fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
|
|
24
24
|
fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
|
|
25
25
|
fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
|
|
@@ -48,15 +48,15 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
|
|
|
48
48
|
fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
|
|
49
49
|
fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
|
|
50
50
|
fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
|
-
fusion_bench/method/__init__.py,sha256
|
|
51
|
+
fusion_bench/method/__init__.py,sha256=xslTF2298UcTTpbB6bcBbR7UeFU0Gu63fdP7qvex1nk,9527
|
|
52
52
|
fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
|
|
53
53
|
fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
|
|
54
54
|
fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
|
|
55
55
|
fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
|
|
56
|
-
fusion_bench/method/simple_average.py,sha256=
|
|
56
|
+
fusion_bench/method/simple_average.py,sha256=Er9jiLCmweE_AAQ-QkJ1LoytjHY45t707iIRXr8ZPpE,5735
|
|
57
57
|
fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
|
|
58
58
|
fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
|
|
59
|
-
fusion_bench/method/adamerging/__init__.py,sha256=
|
|
59
|
+
fusion_bench/method/adamerging/__init__.py,sha256=jfm0jvjLFWLszSo7CzPp7EnXMItih1XhlHdrRiCgBQ4,1195
|
|
60
60
|
fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=LvLYIzl2TsUeNwMeoGK1rW7T0mlxnpxqt3CJD31BKxI,1316
|
|
61
61
|
fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=MBWHFApCaD_Del8l58CQGfn3eCWhwH-mVSVEBm_Nq4E,6279
|
|
62
62
|
fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
|
|
@@ -65,8 +65,9 @@ fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=4wt0K_99Go7Z
|
|
|
65
65
|
fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=qN4x-2Iy4CuprdlH3fyBFMhjGm36cfM7NMMknL3ZdSA,9877
|
|
66
66
|
fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
|
|
67
67
|
fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
|
|
68
|
-
fusion_bench/method/adamerging/
|
|
69
|
-
fusion_bench/method/adamerging/
|
|
68
|
+
fusion_bench/method/adamerging/resnet_adamerging.py,sha256=36uH1tFhQVlvD7SoLmlo8Pa5nDjgaI73NyeBugb3Pf0,10952
|
|
69
|
+
fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=HXWyn8WJRXFMaqy5UIsC4gpXkRJDou3Rc5Mt5bu2h00,5682
|
|
70
|
+
fusion_bench/method/adamerging/utils.py,sha256=FJrB_FHlqSMKfHTEHqNsWKny_0fSDNpKMYknR5KLRmg,2078
|
|
70
71
|
fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
|
|
71
72
|
fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=EKX_O_H9HR_J1ZacpvxK9C_OotFN25Ezg2SgIvpm8kY,8681
|
|
72
73
|
fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=lGSFDJrOqt7kYzFg-WXERsnR6tXeYbDXS622nB1z5oU,12641
|
|
@@ -79,15 +80,15 @@ fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0Y
|
|
|
79
80
|
fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
|
|
80
81
|
fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
|
|
81
82
|
fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
|
|
82
|
-
fusion_bench/method/classification/image_classification_finetune.py,sha256=
|
|
83
|
+
fusion_bench/method/classification/image_classification_finetune.py,sha256=xWSspEuiyM9mz7nTFCLMbJMvkuD-k3B7mx-KMvq7nEU,15310
|
|
83
84
|
fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
|
|
84
85
|
fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
|
|
85
86
|
fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
|
|
86
87
|
fusion_bench/method/concrete_subspace/clip_post_defense.py,sha256=h-c0ioxDopg7pUoRjxx3epqQxVKZAZWz8s7yHjM88mg,32355
|
|
87
88
|
fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py,sha256=eEKKUBgHufYTBaWWxkIKDF0lkuLI2bBgNHVr1JqT41c,35694
|
|
88
89
|
fusion_bench/method/dare/__init__.py,sha256=63Xwkawyl_Ooy4xFxoDlP6wf-rgEWNqPuWTT9-6Ku5o,156
|
|
89
|
-
fusion_bench/method/dare/simple_average.py,sha256=
|
|
90
|
-
fusion_bench/method/dare/task_arithmetic.py,sha256=
|
|
90
|
+
fusion_bench/method/dare/simple_average.py,sha256=ZNQEznItNgntEI704nD0R2vSu9HLXQ9-I23G7LcfsU4,950
|
|
91
|
+
fusion_bench/method/dare/task_arithmetic.py,sha256=ogPwONZ7faci3WS948ppuhXzYVDBl3ghSB-TVzqP4p8,2824
|
|
91
92
|
fusion_bench/method/dare/ties_merging.py,sha256=aAIMdIpsBs0vnSKGhqDTFKEChBTmcvczt9JmK_Dr4D4,3424
|
|
92
93
|
fusion_bench/method/dare/utils.py,sha256=TSZMZidnwqVHG36A0UI9Wz_rXNvojXnww7_E7-YfeRI,2888
|
|
93
94
|
fusion_bench/method/dawe/__init__.py,sha256=JrhtX-qAHymU8z44QtFMxtM5Qx5iH1Kxo5cptH0KNgo,83
|
|
@@ -228,7 +229,7 @@ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuY
|
|
|
228
229
|
fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
|
|
229
230
|
fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
|
|
230
231
|
fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
|
|
231
|
-
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=
|
|
232
|
+
fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=yGMWk2--VlXTcQjDjnPdiug1q_rpjzu5SFvgCYDfTQ0,6479
|
|
232
233
|
fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
|
|
233
234
|
fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
|
|
234
235
|
fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
|
|
@@ -270,7 +271,7 @@ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fg
|
|
|
270
271
|
fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
|
|
271
272
|
fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
|
|
272
273
|
fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
|
|
273
|
-
fusion_bench/mixins/lightning_fabric.py,sha256
|
|
274
|
+
fusion_bench/mixins/lightning_fabric.py,sha256=-ACc6F87oNHSKmFl-DTo1vhCWyR8lZ7o_WIvuRnv3QU,7884
|
|
274
275
|
fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
|
|
275
276
|
fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
|
|
276
277
|
fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
|
|
@@ -279,15 +280,17 @@ fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszF
|
|
|
279
280
|
fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
280
281
|
fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
|
|
281
282
|
fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
|
|
282
|
-
fusion_bench/modelpool/__init__.py,sha256=
|
|
283
|
-
fusion_bench/modelpool/base_pool.py,sha256=
|
|
283
|
+
fusion_bench/modelpool/__init__.py,sha256=qDlBPrWFW-Z-LByzmfqP1ozYhWx2lYAEjhqjKF4EAbY,2307
|
|
284
|
+
fusion_bench/modelpool/base_pool.py,sha256=7v01al93RjJ5CynUM-HnM6mCgCX9asUmaqPNmxioNoA,12531
|
|
285
|
+
fusion_bench/modelpool/convnext_for_image_classification.py,sha256=m9MxFgfzNjGnHOU6gufaTPgkk67lifNNwW03nHUxXKo,7377
|
|
286
|
+
fusion_bench/modelpool/dinov2_for_image_classification.py,sha256=Wd60J5Ji4KwXUYTPcYYXuYWrcpDlh7pjGZ-zjjRqYio,7496
|
|
284
287
|
fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
|
|
285
288
|
fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
|
|
286
289
|
fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
|
|
287
290
|
fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
|
|
288
|
-
fusion_bench/modelpool/resnet_for_image_classification.py,sha256=
|
|
291
|
+
fusion_bench/modelpool/resnet_for_image_classification.py,sha256=drSQt6xMZnag2drrjepCu8jpORF_ui8MJj_CipqoRCU,20004
|
|
289
292
|
fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
|
|
290
|
-
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=
|
|
293
|
+
fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=FbatPI6aAJbaT5qa4Get2I0i8fxmbq0N6xwajolXpdg,19993
|
|
291
294
|
fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
|
|
292
295
|
fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
|
|
293
296
|
fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
|
|
@@ -298,8 +301,8 @@ fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNM
|
|
|
298
301
|
fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
|
|
299
302
|
fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
|
|
300
303
|
fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
|
|
301
|
-
fusion_bench/models/hf_clip.py,sha256=
|
|
302
|
-
fusion_bench/models/hf_utils.py,sha256=
|
|
304
|
+
fusion_bench/models/hf_clip.py,sha256=1xdcAQtkHYJzLhOSlJl24qhMiwC_jdhp2Va-eN5X9vs,7499
|
|
305
|
+
fusion_bench/models/hf_utils.py,sha256=1gu9Z1zR5tvImGo6N9iQodNPnFA3wg7ndxYcDutQKCU,5558
|
|
303
306
|
fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
|
|
304
307
|
fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
|
|
305
308
|
fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
|
|
@@ -328,7 +331,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
|
|
|
328
331
|
fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
|
|
329
332
|
fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
|
|
330
333
|
fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
|
|
331
|
-
fusion_bench/models/model_card_templates/default.md,sha256=
|
|
334
|
+
fusion_bench/models/model_card_templates/default.md,sha256=OoU83l1hip1gKsoA08hoKx-nCrOYbKaVTVCjK0pt9WY,1028
|
|
332
335
|
fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
|
|
333
336
|
fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
|
|
334
337
|
fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
|
|
@@ -395,16 +398,17 @@ fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpw
|
|
|
395
398
|
fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
|
|
396
399
|
fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
397
400
|
fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
|
|
398
|
-
fusion_bench/taskpool/__init__.py,sha256
|
|
401
|
+
fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
|
|
399
402
|
fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
|
|
400
403
|
fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
|
|
401
404
|
fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
|
|
402
405
|
fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
|
|
406
|
+
fusion_bench/taskpool/resnet_for_image_classification.py,sha256=f6hZH29137oJ0IOi0o5kfAzcwpo6-oKZlFmC2H0aBF4,7706
|
|
403
407
|
fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
|
|
404
408
|
fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
|
|
405
409
|
fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
|
|
406
410
|
fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
|
|
407
|
-
fusion_bench/taskpool/clip_vision/taskpool.py,sha256
|
|
411
|
+
fusion_bench/taskpool/clip_vision/taskpool.py,sha256=-BMgFR8quJLfU60vU9mq6Ye-4bFGPp-4e_xY8RfhB84,16503
|
|
408
412
|
fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
409
413
|
fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
|
|
410
414
|
fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
|
|
@@ -462,7 +466,7 @@ fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,
|
|
|
462
466
|
fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
|
|
463
467
|
fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
|
|
464
468
|
fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
|
|
465
|
-
fusion_bench/utils/json.py,sha256=
|
|
469
|
+
fusion_bench/utils/json.py,sha256=LXmlqdUxgBepaFjf2JoLrOHQ7CdFAcKLzHL8LaSkPog,4359
|
|
466
470
|
fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
|
|
467
471
|
fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
|
|
468
472
|
fusion_bench/utils/misc.py,sha256=_7BaS9dNKyySGU0qmTmE0Tk8WK82TEm7IBJxVRkuEAw,5315
|
|
@@ -473,7 +477,7 @@ fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,26
|
|
|
473
477
|
fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
|
|
474
478
|
fusion_bench/utils/rich_utils.py,sha256=3Z0di-1IOs3QoovF2frNA28ITVKWBLdm84zbXdTrM28,5924
|
|
475
479
|
fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
|
|
476
|
-
fusion_bench/utils/state_dict_arithmetic.py,sha256=
|
|
480
|
+
fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW5V5IhuXGtI_nxk,41234
|
|
477
481
|
fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
|
|
478
482
|
fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
|
|
479
483
|
fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
|
|
@@ -484,14 +488,14 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
|
|
|
484
488
|
fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
|
|
485
489
|
fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
|
|
486
490
|
fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
|
|
487
|
-
fusion_bench-0.2.
|
|
491
|
+
fusion_bench-0.2.28.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
|
|
488
492
|
fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
|
|
489
493
|
fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
|
|
490
|
-
fusion_bench_config/fabric_model_fusion.yaml,sha256=
|
|
494
|
+
fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
|
|
491
495
|
fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
|
|
492
496
|
fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
|
|
493
497
|
fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
|
|
494
|
-
fusion_bench_config/model_fusion.yaml,sha256=
|
|
498
|
+
fusion_bench_config/model_fusion.yaml,sha256=QCq61w-40Lhl53-pTsKSVbn48iNE619YeRIxurH8Hxc,2511
|
|
495
499
|
fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
|
|
496
500
|
fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
|
|
497
501
|
fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
|
|
@@ -588,25 +592,25 @@ fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml,sha25
|
|
|
588
592
|
fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml,sha256=4lb37lxTUStAR8eXhNxp3RONwSOYJI0bKY-hViZnjtE,94
|
|
589
593
|
fusion_bench_config/dataset/text_generation/train/gsm8k.yaml,sha256=gP-xAZQxHHqTEf_Dgbi4F_SQDgGZFeddwMFsvcE1WW0,90
|
|
590
594
|
fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha256=6BhKgApz8LhdDyATqCsaonBo0Q99o1uM22F0yj_pJi4,178
|
|
591
|
-
fusion_bench_config/fabric/auto.yaml,sha256=
|
|
595
|
+
fusion_bench_config/fabric/auto.yaml,sha256=PoYC5vtDogZ3Ce9H8fv2nlLTTT-q6hMPW-7CwSQ-g08,652
|
|
592
596
|
fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sRzsipW7GDQJWs,705
|
|
593
597
|
fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
|
|
594
598
|
fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
|
|
595
599
|
fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=ZgcRy1kW-nTrNsXjljvjArdPLgB_H38I64wkh4UNaH0,362
|
|
596
600
|
fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
|
|
601
|
+
fusion_bench_config/fabric/loggers/swandb_logger.yaml,sha256=Z5T06kyfwXYuB0Tkkj_S_k62JAb3WSvDql_GUjN8ZvQ,256
|
|
597
602
|
fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=wBfGo2zb4OG4e-Zx3SjanagvfUBxz41Sz-cyoNtLaZs,368
|
|
598
|
-
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=
|
|
603
|
+
fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=awIrv7gJRZrbar_tbKpd_MTCqzzPjFhXizWfOyqZeos,202
|
|
599
604
|
fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
|
|
600
605
|
fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
|
|
601
606
|
fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=4NTFnpZTEByH4Z6f-nwDtS4GUFtcluja27hXKWNRUiE,347
|
|
602
607
|
fusion_bench_config/hydra/default.yaml,sha256=Fpi3pV1hqPoPk5QdBncse6NlNOAl2YHzD44LvRNbzq4,256
|
|
603
608
|
fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
|
|
604
609
|
fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
|
|
605
|
-
fusion_bench_config/method/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
|
|
606
610
|
fusion_bench_config/method/depth_upscaling.yaml,sha256=86YqczaMzZftymLy_k2cb-GMy4C42yTxxP4c4htZTBs,1230
|
|
607
611
|
fusion_bench_config/method/dummy.yaml,sha256=Pw2w6WQiw3K4_KH0THPs4NSM7lZoZLsNbB72iPSVsl8,427
|
|
608
|
-
fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=
|
|
609
|
-
fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=
|
|
612
|
+
fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=Fdd4rHhHm7rkhP8_KJoivX8Wxh_tcKOXz1udDMtb4k0,374
|
|
613
|
+
fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=igjbRMt7CGeyIzajRhjWgAIDOgInaMSBFqZM_COmjkY,584
|
|
610
614
|
fusion_bench_config/method/model_recombination.yaml,sha256=DeyVPdDCL-eyJDlPZXLAIWfKi3p8nN0dLFRx5ydsERc,740
|
|
611
615
|
fusion_bench_config/method/simple_average.yaml,sha256=uB51mNlFKb9S3Go1p6SLGgr3PWJFZs97Ccn1zZZkEug,577
|
|
612
616
|
fusion_bench_config/method/task_arithmetic.yaml,sha256=zQmNpnQrZTHiRv_KmYnHPMScKf8MUMLbQYh9254_1Jg,580
|
|
@@ -616,12 +620,13 @@ fusion_bench_config/method/adamerging/clip.yaml,sha256=NBJaK0a4RxV3D2LRciUeWmTqa
|
|
|
616
620
|
fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml,sha256=DxkZhcuu_-ErIUqBUmWKN5UXYYWKoKPX6IgjV-Txwv0,541
|
|
617
621
|
fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml,sha256=bLz6zc5CofeUO2XhS5zthkkuWlcX7rCBpyujYckmUqk,536
|
|
618
622
|
fusion_bench_config/method/adamerging/llama_sft.yaml,sha256=khKzfhvQ5oxBMH0d-YvyjN-qIgQNeevDodXngS5g9KY,1022
|
|
623
|
+
fusion_bench_config/method/adamerging/resnet.yaml,sha256=qYD_DnDC5yXcBOOQIlwWetsUXR5xTHbtEG71KppAIm0,534
|
|
619
624
|
fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml,sha256=hxVA4deUr1go1RZl12qD8PekwydWJ9SBQowSqmo3A8I,139
|
|
620
625
|
fusion_bench_config/method/analysis/task_vector_violin_plot.yaml,sha256=FmBGj0Ib2xYd-49x_xZSeVbExwL-A9-tHhHTMBrT_Fg,134
|
|
621
626
|
fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=uuR5x1IVTWyZjTSd5i1JXd_D8tG7tWBfOpgMBDCBgR0,436
|
|
622
627
|
fusion_bench_config/method/classification/clip_continual_finetune.yaml,sha256=Ls63kdLb1bLwUEqzfyTtJcpFOdv3HmwzBML0V2JnnAs,791
|
|
623
|
-
fusion_bench_config/method/classification/clip_finetune.yaml,sha256=
|
|
624
|
-
fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=
|
|
628
|
+
fusion_bench_config/method/classification/clip_finetune.yaml,sha256=VnP3JKcRaLQFRt6ohvKkh6MTLC6cf8AruSUqQ7bXC6A,1020
|
|
629
|
+
fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=oB2LgEgvtxSww_RLsE0B0uMPFqBsng4Py7qcpF7PrzU,778
|
|
625
630
|
fusion_bench_config/method/classification/image_classification_finetune_test.yaml,sha256=IxUbjeTSvpPZpZsRhOMlmrCALgWOSZjgeUjo1M41aCg,175
|
|
626
631
|
fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
|
|
627
632
|
fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
|
|
@@ -650,15 +655,15 @@ fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDL
|
|
|
650
655
|
fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
|
|
651
656
|
fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
|
|
652
657
|
fusion_bench_config/method/isotropic_merging/iso_cts.yaml,sha256=70BODJt69pZ_9xH7S_Z2Yzb299LFIGkXy1bQiHQad6A,110
|
|
653
|
-
fusion_bench_config/method/linear/expo.yaml,sha256=
|
|
658
|
+
fusion_bench_config/method/linear/expo.yaml,sha256=A8fpPnR12je2kgqDuC3Y18jZ6GPm6QPPhro7PFZADWc,768
|
|
654
659
|
fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=cAL_ekEIJhJD4cfAbKilV0k_lNNPoJqY4sABVEKcM7E,523
|
|
655
|
-
fusion_bench_config/method/linear/llama_expo.yaml,sha256=
|
|
656
|
-
fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=
|
|
657
|
-
fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=
|
|
658
|
-
fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=
|
|
659
|
-
fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=
|
|
660
|
+
fusion_bench_config/method/linear/llama_expo.yaml,sha256=87grnsueFkhjKPuFOsiOjoTpBNAdqOD3zvclsofGt4A,984
|
|
661
|
+
fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=6P9fUXZdf3stVMkwKjFglKzHNEQ0GpYSh64kfrTCVmw,602
|
|
662
|
+
fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=KfNu3scx18S3KmfFpb_wsnbguE7hoGFk_L_Z-AXtxsQ,693
|
|
663
|
+
fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=lkNQ56q3reQTKR40BkEta_eORXdqPQV8dEpjKcgimvM,366
|
|
664
|
+
fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=bqUXMlf5PngHyT-aZ1FqEHzi5-KeUwGyTdHLpL_2E1Q,869
|
|
660
665
|
fusion_bench_config/method/linear/weighted_average.yaml,sha256=OjE4EdfDHPYx8PlBJ6xIpCz4ITu_65VsRyefioRXGQ8,408
|
|
661
|
-
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=
|
|
666
|
+
fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=VHGfLIE6G0FMwJ_8sVG1jKWFsSacgmErst0sdu7NeB8,902
|
|
662
667
|
fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
|
|
663
668
|
fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
|
|
664
669
|
fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
|
|
@@ -680,18 +685,18 @@ fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE3
|
|
|
680
685
|
fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
|
|
681
686
|
fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
|
|
682
687
|
fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
|
|
683
|
-
fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=
|
|
684
|
-
fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=
|
|
685
|
-
fusion_bench_config/method/regmean/regmean.yaml,sha256=
|
|
686
|
-
fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=
|
|
688
|
+
fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=cxv_6-a2WzqdrotZMPY3vMcbCuY4O0qM14I6GPKJ84I,637
|
|
689
|
+
fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=Qd4hS5rt0L8zxM-YsXoChCjyR5rJc0jC1k4VA3czhUo,634
|
|
690
|
+
fusion_bench_config/method/regmean/regmean.yaml,sha256=mi1FHMg2YmScFfZfN2F82TisSju32YiLtrPYvBXO6oE,312
|
|
691
|
+
fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=8CSUdznjVuzGMPSGiLHlxCazBBVNbNNDDzpPHkCFSH8,647
|
|
687
692
|
fusion_bench_config/method/slerp/slerp.yaml,sha256=XR3z6iqyHirkoFSdLAeV2bP1yyI25MoWG-LqdE-ypjA,719
|
|
688
693
|
fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=hO07n6elZg_FrqEfSfbdR-tb1hqwT7vaLgAZKdF8O1o,479
|
|
689
|
-
fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=
|
|
690
|
-
fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=
|
|
691
|
-
fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=
|
|
692
|
-
fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=
|
|
693
|
-
fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=
|
|
694
|
-
fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=
|
|
694
|
+
fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=_fUBKoz9Jts6ogflFi4D7z7rsrLgCQBbnL1yVVxahro,1347
|
|
695
|
+
fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=p99GZc4s1tfro2NJggNcuuLGrcAPralF6EMxUaywmAQ,537
|
|
696
|
+
fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=wFwwJVjoTgBhM9yqkCanGxiivMqQN6VHjHZQEBDCiiQ,496
|
|
697
|
+
fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=Tx8TCKEESIy2NQge_lP48wJlNdyk2BH5E7TVyiNl2kM,430
|
|
698
|
+
fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=twzNiksQpAn0PQexMLvRyFwjLb7PsTPhk8vllOiVD64,754
|
|
699
|
+
fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=lArBuG-mdHTRCgW_zaQS--vtiGU0JZGtGcFHu6avOmc,800
|
|
695
700
|
fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=38DGdOjpDo-dOMpfy807p3x-eAvibjED-BGtFGnaycA,689
|
|
696
701
|
fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
|
|
697
702
|
fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
|
|
@@ -703,7 +708,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
|
|
|
703
708
|
fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
|
|
704
709
|
fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
|
|
705
710
|
fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
|
|
706
|
-
fusion_bench_config/method/wudi/wudi.yaml,sha256=
|
|
711
|
+
fusion_bench_config/method/wudi/wudi.yaml,sha256=ZX3HI0vLjTJ5iFZt32-M_O60h6D6oBuf0WY7zBXUOWI,285
|
|
707
712
|
fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
|
|
708
713
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
|
|
709
714
|
fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
|
|
@@ -884,6 +889,8 @@ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml,sha256=
|
|
|
884
889
|
fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml,sha256=SODG0kcnAP6yC0_J_SpSVMRV-v5qGV22gcWdiBaZo1I,368
|
|
885
890
|
fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml,sha256=zwInWJS8yrhch4vOL1ypRKNWWpJKlhQsyY0Ln14CC-M,389
|
|
886
891
|
fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml,sha256=ufmu4b3lyxn2XLDMVYxP-bKwYaGTjB5-JoYXLG8v8tY,368
|
|
892
|
+
fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml,sha256=gcXV5WIYe9Ep-54fjgT9HqbCBY7UiqbqkHvoNCQx62Y,259
|
|
893
|
+
fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml,sha256=jxe6rvV37FBGsV-Pdnyxe-G-Vw-HzOXuT2NMHKBSBOU,270
|
|
887
894
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md,sha256=DC0HF-isCHshipHTC0Rof6GvjTUa0i2DVQZKrklQQlU,2416
|
|
888
895
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml,sha256=jbJqqciORJQknpSzh2zKiFm6VKDOsmaSk9XfPCVmHGg,1220
|
|
889
896
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml,sha256=q2_E2R1wIOdxd-AF-wjXkPO64gJgD27YXsZ8FFLWUIo,1607
|
|
@@ -892,12 +899,67 @@ fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.ya
|
|
|
892
899
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml,sha256=JpPxNF-M5D179nEtfroM4xgEQHN4jHlj6qXXChKt0jg,701
|
|
893
900
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml,sha256=Edu1Ij1gXcRQs3REHkKvaBVZRXAYVUkdaahtuSnpkmc,225
|
|
894
901
|
fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml,sha256=pC28PjVeUkkR-Jd4l0vYh1BScrUn7DAgGIqfuK4wH_I,1185
|
|
895
|
-
fusion_bench_config/modelpool/
|
|
896
|
-
fusion_bench_config/modelpool/
|
|
897
|
-
fusion_bench_config/modelpool/
|
|
898
|
-
fusion_bench_config/modelpool/
|
|
899
|
-
fusion_bench_config/modelpool/
|
|
900
|
-
fusion_bench_config/modelpool/
|
|
902
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py,sha256=c3vWGNGQJ6ybd43NeQZsNFo9gmvKoHERzswHYCnBtH0,4102
|
|
903
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar10.yaml,sha256=MjEdh1WQ1Cgd_9KQg53Egr0gjcptTl8eDt_jhJIzOhY,374
|
|
904
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar100.yaml,sha256=zIWKMuMS0HXsisR46PVGi2Kqs2_1OW2DfQDKeAfIhxU,377
|
|
905
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml,sha256=BkPCRMQsJdn5oU-jlLj-nBBidLNhxPRwCwdFs3L99dw,362
|
|
906
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml,sha256=g2Rc-B852dFIVydK77hcJTVa-_b15pL6i3yESP0jDeo,395
|
|
907
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml,sha256=Sc_lrZLIyNrRt0V7z1K96juyNHPQHBEbzMjjkqtQNtw,374
|
|
908
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml,sha256=qwtFygQQo_G7KfWR-kjLcyzHu4Sl6KVQEgbgborLtJg,392
|
|
909
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml,sha256=eFQFV2mCHPjLA3eBVk7oU0moah6szOjyDgNY9a_NFj4,374
|
|
910
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml,sha256=gl4iQdogT7A35YaGxYnmh27F-U7I6XgHGaFPX4d1xcQ,374
|
|
911
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml,sha256=zCmDzrj76hJgl6_-m-C90raKDZAoy2jvyzVBKCytFGs,368
|
|
912
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml,sha256=_HWFcO_t3qDrf-35-e2tcCTAJ3wF7EOW682IHuaN0Vs,371
|
|
913
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml,sha256=Jmfv4pbFrzt6DgRLBaZ9dBTKPyZ1K89v0qTcAdLDD_Y,368
|
|
914
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml,sha256=NBQQUFxEgE_aNJhtW0VODNWjzoAzGr6Sv5bWZtuewgE,398
|
|
915
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml,sha256=iJBZeAX4pZoo16Z42fkF_iSY9L3Vk7gdHr3045Mb4U8,404
|
|
916
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml,sha256=mMQr_cmnCHDnEUmIWrwNofMXrDw8WTD26CdgAlliVdA,365
|
|
917
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml,sha256=-cx_JY09HJO-kDN-Gloq8rLx11LcWWqVQ_90b_YmFLQ,392
|
|
918
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml,sha256=94YlYy2WMHuyeG3Yrf1XzKWkXbsKljmZ1lI189ENltU,377
|
|
919
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml,sha256=-2e3YTLg6vZogzcPggWlRXvVZgU_kRX7YrYp_XPDR3Y,392
|
|
920
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml,sha256=Jn9e14gnho8FSzwphpvLR67JYVm-_Xh0VnXU7egYOrs,368
|
|
921
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml,sha256=ATLUWhHsHYYFEcKiouzBajEluuSjbo0RUG4vSTaLTWA,371
|
|
922
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml,sha256=mwhu_DYicLAOzPIo__2cItat2xwF5N1B45owxqCvRhA,365
|
|
923
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar10.yaml,sha256=xsiXuZssaumpWk1QHUKk_qcHz7s9SOmkuimLZ7NLXB0,373
|
|
924
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar100.yaml,sha256=IT85uNPz7WvJkqzZ-IKAuQFoDzooBKQSiLPLdDLCWcQ,376
|
|
925
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml,sha256=bJJIo3s-u5c5U5Ty3f20QwEhx_I7T3qv7BHivZ1uIMI,361
|
|
926
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml,sha256=mYnfUSjEOOvqGqy_0TpzoMkEdLezzNGbixoltP_EnpQ,394
|
|
927
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml,sha256=wqBYl115VoFo66BNn_yhJ_eKy6ESOamVlTQkkWDduQE,373
|
|
928
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml,sha256=Yf1-q73whqAO-_uXgEqT1S-pRHLA4OA4RS-dgYIIZQU,391
|
|
929
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml,sha256=ASUBIhghLH_HLPKDIDDWtkgiwY2RmofzWBjeyLW5R-A,373
|
|
930
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml,sha256=EC2S3n3Vca8MUB2CYmsctNM__nErHWNRr6A869rClGY,373
|
|
931
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml,sha256=j8dAX4t99KSOG3n7lJgF57iQOEUvIC-C7pMaUALpKDQ,367
|
|
932
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml,sha256=YyrdVREoWdr_W0D15Hmrzasdd2u0sSbIFeKw0Npu1kE,370
|
|
933
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml,sha256=jfGzGmT4Z4YUac6AuAKxKgRwMiJgOWp0qjeT7YdT8zg,367
|
|
934
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml,sha256=HuPpnNMm_cWicrLsWd3vLZPLXZYhyrZZmlgKrI6O3hU,397
|
|
935
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml,sha256=6GAh1U8nJ76PU0Plrszz-6Jcc9XIPdP8tJdp81ON6Rc,403
|
|
936
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml,sha256=hUqs6xSzjtNUFuuxxPbvq9I6sixv4mxlQ81dxPESurI,364
|
|
937
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml,sha256=hlZjBSQTFrkQYMnIIIh-a-dj0DTqf2V2XbLYhzJwSMo,391
|
|
938
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml,sha256=wHYquC1bT3OVlfwR_IQhnRUhAA4OA1mXvylgXbUgF4E,376
|
|
939
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml,sha256=N8GDAVR4akC_LgWpSq-OBhmZXE8EnHcgmZT9C4Mf88E,391
|
|
940
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml,sha256=NOHcRm0iKiGADXej-ovDD9gk_uPtPIGqfoUiTC00CuY,367
|
|
941
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml,sha256=rytamVle0ACaUpK0kQJWq1dqvH9UN5UmpAFATYFYJ40,370
|
|
942
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml,sha256=1OKSAr-CZqP7JN9w255Qpj-hOy52K78kgMXsUeveQZU,364
|
|
943
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar10.yaml,sha256=g38RQxsEHKCs-4mY7JYaoJEs7KKyKEr6K6iWgGIRG-U,373
|
|
944
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar100.yaml,sha256=CqoolQghhRczOv9y7mWAsBVVOgBXKR3iY2_OAdokFMQ,376
|
|
945
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml,sha256=Q6bJM92ZDMflKN9ato0pzVbFI3H70yfUfk8Du-bnTiM,361
|
|
946
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml,sha256=fAIuxU_p0iU2oNNYnhVr33-15BttA297hN_5XJnlnGo,394
|
|
947
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml,sha256=awDPy5b-QOSGzwYNKUv2_1k38Wj_cWAso13LXeIwi4A,373
|
|
948
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml,sha256=x-v6DawF_Mvbh5xI3zgBxj2ZMEB6WLBHDGk8O6C2NCQ,391
|
|
949
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml,sha256=046EAIV7tssMkOLVJew9ZLCPzZUX4QUfkHwGRAQy6PA,373
|
|
950
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml,sha256=G9KmdAIfdMWp2KcZUkdacq1CWYCiXbNhL695xVs8myo,373
|
|
951
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml,sha256=q0o79gEpDrQ-KAsoVlfEig5No29S4DgKT2pR8X-43Co,367
|
|
952
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml,sha256=LpBnMQC1x6WnsaMHz4Dfxgrbzr6yHazViPxejY3gQLI,370
|
|
953
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml,sha256=h095GSEtx_vL1fvphkmnmifQSnNkMMqy3pXcBmJF7h0,367
|
|
954
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml,sha256=0jgc2SF5eFAzTqwHSD312EEvBhlUaiZ3PZncgPd5Xd8,397
|
|
955
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml,sha256=2ZtTD1AhJY88V9LrnxXovQn7a3AcLINBoTxSW4B3tyw,403
|
|
956
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml,sha256=y9evfipe7w_oq7Fn1rTNHvXylwTll3TgzP_u2oy_AYU,364
|
|
957
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml,sha256=vsoHGxzFMOwNSMkd10ri1_WqtUp9sTDmlmrEPPP2ECw,391
|
|
958
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml,sha256=f3Fz2zcS15hZC94QX1f1kgUclk9_9if_V8d98-h4RlE,376
|
|
959
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml,sha256=HUmMrlBzg5BhDelLc3TLY_A0p3ValfXjHZo9jruo4vk,391
|
|
960
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml,sha256=5LS4T1BQHpNxzTSdMwEMAtt9SZ2Am9sPABG5rinGags,367
|
|
961
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml,sha256=IhUORkW5FT329LjiQC3nIXNbuIM846urzM3dNchPUdk,370
|
|
962
|
+
fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml,sha256=HtK3e0F1XpnzdyCbaePdDOt8tvnUtpywuYNephXQl5A,364
|
|
901
963
|
fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
|
|
902
964
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml,sha256=GK2ewBU0bZmWpaqtdl7zZDUuSmRH1Jz7CFfauYipodk,334
|
|
903
965
|
fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256=qs9LGlcfv-xDFPAhCCzaD5UVI4P8Mza57AqU0EQCeGo,1697
|
|
@@ -953,8 +1015,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
|
|
|
953
1015
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
|
|
954
1016
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
|
|
955
1017
|
fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
|
|
956
|
-
fusion_bench-0.2.
|
|
957
|
-
fusion_bench-0.2.
|
|
958
|
-
fusion_bench-0.2.
|
|
959
|
-
fusion_bench-0.2.
|
|
960
|
-
fusion_bench-0.2.
|
|
1018
|
+
fusion_bench-0.2.28.dist-info/METADATA,sha256=2m3tF3J5gbcupGjZt_0Md77Tb7h3oDxwwp_Q_sZsdIM,24307
|
|
1019
|
+
fusion_bench-0.2.28.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
1020
|
+
fusion_bench-0.2.28.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
|
|
1021
|
+
fusion_bench-0.2.28.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
|
|
1022
|
+
fusion_bench-0.2.28.dist-info/RECORD,,
|
|
@@ -32,6 +32,7 @@ _recursive_: false # Disable recursive instantiation
|
|
|
32
32
|
# =============================================================================
|
|
33
33
|
# Experiment Execution Settings
|
|
34
34
|
# =============================================================================
|
|
35
|
+
seed: null # Random seed for reproducibility
|
|
35
36
|
# Development and debugging options
|
|
36
37
|
fast_dev_run: false # This option is for quick testing. For example, run single batch instead of full dataset
|
|
37
38
|
dry_run: false # Show configuration without running experiment
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# for layer-wise adamerging, use fusion_bench.method.ResNetLayerWiseAdamerging
|
|
2
|
+
_target_: fusion_bench.method.ResNetTaskWiseAdamerging
|
|
3
|
+
max_steps: 1000
|
|
4
|
+
init_values: null
|
|
5
|
+
resume_weights_path: null
|
|
6
|
+
# if `clamp_weights` is true, the weights will be clamped to [0, 1]
|
|
7
|
+
clamp_weights: false
|
|
8
|
+
# arguments of `functional_call`
|
|
9
|
+
tie_weights: true
|
|
10
|
+
strict: false
|
|
11
|
+
# optimizer and lr scheduler for test-time adaptation training
|
|
12
|
+
optimizer:
|
|
13
|
+
_target_: torch.optim.Adam
|
|
14
|
+
lr: 1e-3
|
|
15
|
+
lr_scheduler: null
|
|
16
|
+
dataloader_kwargs:
|
|
17
|
+
batch_size: 16
|
|
18
|
+
num_workers: 4
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: CLIP Finetune
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# Finetunes CLIP models with optional LoRA adapters.
|
|
5
|
+
# =============================================================================
|
|
1
6
|
name: clip_finetune
|
|
2
7
|
seed: 42
|
|
3
8
|
learning_rate: 1e-5
|
|
@@ -1,6 +1,15 @@
|
|
|
1
1
|
_target_: fusion_bench.method.classification.ImageClassificationFineTuning
|
|
2
2
|
max_epochs: 10
|
|
3
3
|
max_steps: null
|
|
4
|
+
# if ``save_top_k == k``,
|
|
5
|
+
# the best k models according to the quantity monitored will be saved.
|
|
6
|
+
# If ``save_top_k == 0``, no models are saved.
|
|
7
|
+
# If ``save_top_k == -1``, all models are saved.
|
|
8
|
+
save_top_k: 1
|
|
9
|
+
# Interval (in epochs or steps, determined by `max_epochs` and `max_steps`) between checkpoints.
|
|
10
|
+
save_interval: 1
|
|
11
|
+
save_on_train_epoch_end: true
|
|
12
|
+
training_data_ratio: null
|
|
4
13
|
label_smoothing: 0
|
|
5
14
|
optimizer:
|
|
6
15
|
_target_: torch.optim.SGD
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: ExPO
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# Extrapolates from pretrained to finetuned direction by a factor.
|
|
5
|
+
# =============================================================================
|
|
1
6
|
# This algorithm merges a pretrained model with a finetuned model.
|
|
2
7
|
#
|
|
3
8
|
# $$\theta_{merged} = \theta_{ft} + \alpha (\theta_{ft} - \theta_{pre})$$
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: ExPO for LLaMA
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# LLaMA-specific ExPO with backbone-only and attention scaling options.
|
|
5
|
+
# =============================================================================
|
|
1
6
|
# This algorithm merges a pretrained model with a finetuned model.
|
|
2
7
|
#
|
|
3
8
|
# $$\theta_{merged} = \theta_{ft} + \alpha (\theta_{ft} - \theta_{pre})$$
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: ExPO with DARE (LLaMA)
|
|
3
|
+
# =============================================================================
|
|
1
4
|
_target_: fusion_bench.method.linear.llama_expo.ExPOWithDareForLLama
|
|
2
5
|
extrapolation_factor: 0.1
|
|
3
6
|
attention_scaling_factor: 1.0
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: Simple Average (Causal LM)
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# Uniformly averages causal LM weights with optional backbone-only.
|
|
5
|
+
# =============================================================================
|
|
1
6
|
_target_: fusion_bench.method.SimpleAverageForCausalLM
|
|
2
7
|
# set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
|
|
3
8
|
# if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: Task Arithmetic (Causal LM)
|
|
3
|
+
# =============================================================================
|
|
1
4
|
_target_: fusion_bench.method.TaskArithmeticForCausalLM
|
|
2
5
|
scaling_factor: 0.3
|
|
3
6
|
merge_backbone: false
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: TIES Merging (Causal LM)
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# TIES merging adapted for causal language models with optional backbone-only.
|
|
5
|
+
# =============================================================================
|
|
1
6
|
_target_: fusion_bench.method.TiesMergingForCausalLM
|
|
2
7
|
# Scaling factor $\lambda$
|
|
3
8
|
scaling_factor: 0.3
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: Weighted Average for LLaMA
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# Like Weighted Average but supports merging only backbone and saving tokenizer.
|
|
5
|
+
# =============================================================================
|
|
1
6
|
_target_: fusion_bench.method.WeightedAverageForLLama
|
|
2
7
|
normalize: true # if true, the weights will be normalized before merging
|
|
3
8
|
weights: # List of weights for each model
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: Mixtral MoE Merging/Upscaling
|
|
3
|
+
# =============================================================================
|
|
1
4
|
name: mixtral_moe_upscaling # or "mixtral_for_causal_lm_moe_upscaling"
|
|
2
5
|
experts_per_token: 2
|
|
3
6
|
# path to save the upscaled model
|
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: Mixtral MoE Upscaling
|
|
3
|
+
# =============================================================================
|
|
4
|
+
# Upscales a base model into a Mixture-of-Experts variant (Mixtral family).
|
|
5
|
+
# =============================================================================
|
|
1
6
|
# or fusion_bench.method.MixtralUpscalingAlgorithm
|
|
2
7
|
_target_: fusion_bench.method.MixtralForCausalLMUpscalingAlgorithm
|
|
3
8
|
num_experts: 4
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: RegMean (CLIP)
|
|
3
|
+
# =============================================================================
|
|
1
4
|
_target_: fusion_bench.method.RegMeanAlgorithmForCLIP
|
|
2
5
|
# list, regular expression of names of parameters that need to be excluded
|
|
3
6
|
exclude_param_names_regex: []
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: RegMean (GPT-2)
|
|
3
|
+
# =============================================================================
|
|
1
4
|
_target_: fusion_bench.method.RegMeanAlgorithmForGPT2
|
|
2
5
|
# list, regular expression of names of parameters that need to be excluded
|
|
3
6
|
exclude_param_names_regex: []
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: RegMean (Base)
|
|
3
|
+
# =============================================================================
|
|
1
4
|
_target_: ???
|
|
2
5
|
num_regmean_examples: 256
|
|
3
6
|
reduce_non_diagonal_ratio: 0.1
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
# =============================================================================
|
|
2
|
+
# FusionBench Method Configuration: RegMean++ (CLIP)
|
|
3
|
+
# =============================================================================
|
|
1
4
|
_target_: fusion_bench.method.RegMeanAlgorithmForCLIPPlusPlus
|
|
2
5
|
# list, regular expression of names of parameters that need to be excluded
|
|
3
6
|
exclude_param_names_regex: []
|