fusion-bench 0.2.26__py3-none-any.whl → 0.2.28__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (125) hide show
  1. fusion_bench/__init__.py +4 -0
  2. fusion_bench/dataset/clip_dataset.py +1 -0
  3. fusion_bench/method/__init__.py +2 -0
  4. fusion_bench/method/adamerging/__init__.py +28 -5
  5. fusion_bench/method/adamerging/resnet_adamerging.py +279 -0
  6. fusion_bench/method/adamerging/task_wise_adamerging.py +2 -14
  7. fusion_bench/method/adamerging/utils.py +58 -0
  8. fusion_bench/method/classification/image_classification_finetune.py +168 -12
  9. fusion_bench/method/dare/simple_average.py +3 -2
  10. fusion_bench/method/dare/task_arithmetic.py +3 -2
  11. fusion_bench/method/simple_average.py +6 -4
  12. fusion_bench/method/task_arithmetic/task_arithmetic.py +4 -1
  13. fusion_bench/mixins/lightning_fabric.py +9 -0
  14. fusion_bench/modelpool/__init__.py +24 -2
  15. fusion_bench/modelpool/base_pool.py +8 -1
  16. fusion_bench/modelpool/causal_lm/causal_lm.py +2 -1
  17. fusion_bench/modelpool/convnext_for_image_classification.py +198 -0
  18. fusion_bench/modelpool/dinov2_for_image_classification.py +197 -0
  19. fusion_bench/modelpool/resnet_for_image_classification.py +289 -5
  20. fusion_bench/models/hf_clip.py +4 -7
  21. fusion_bench/models/hf_utils.py +4 -1
  22. fusion_bench/models/model_card_templates/default.md +1 -1
  23. fusion_bench/taskpool/__init__.py +2 -0
  24. fusion_bench/taskpool/clip_vision/taskpool.py +1 -1
  25. fusion_bench/taskpool/resnet_for_image_classification.py +231 -0
  26. fusion_bench/utils/json.py +49 -8
  27. fusion_bench/utils/state_dict_arithmetic.py +91 -10
  28. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/METADATA +2 -2
  29. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/RECORD +124 -62
  30. fusion_bench_config/fabric/auto.yaml +1 -1
  31. fusion_bench_config/fabric/loggers/swandb_logger.yaml +5 -0
  32. fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
  33. fusion_bench_config/fabric_model_fusion.yaml +1 -0
  34. fusion_bench_config/method/adamerging/resnet.yaml +18 -0
  35. fusion_bench_config/method/classification/clip_finetune.yaml +5 -0
  36. fusion_bench_config/method/classification/image_classification_finetune.yaml +9 -0
  37. fusion_bench_config/method/linear/expo.yaml +5 -0
  38. fusion_bench_config/method/linear/llama_expo.yaml +5 -0
  39. fusion_bench_config/method/linear/llama_expo_with_dare.yaml +3 -0
  40. fusion_bench_config/method/linear/simple_average_for_causallm.yaml +5 -0
  41. fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +3 -0
  42. fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +5 -0
  43. fusion_bench_config/method/linear/weighted_average_for_llama.yaml +5 -0
  44. fusion_bench_config/method/mixtral_moe_merging.yaml +3 -0
  45. fusion_bench_config/method/mixtral_moe_upscaling.yaml +5 -0
  46. fusion_bench_config/method/regmean/clip_regmean.yaml +3 -0
  47. fusion_bench_config/method/regmean/gpt2_regmean.yaml +3 -0
  48. fusion_bench_config/method/regmean/regmean.yaml +3 -0
  49. fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml +3 -0
  50. fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +6 -0
  51. fusion_bench_config/method/smile_upscaling/error_accumulation.yaml +5 -0
  52. fusion_bench_config/method/smile_upscaling/projected_energy.yaml +5 -0
  53. fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +3 -0
  54. fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +5 -0
  55. fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +5 -0
  56. fusion_bench_config/method/wudi/wudi.yaml +3 -0
  57. fusion_bench_config/model_fusion.yaml +2 -1
  58. fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml +10 -0
  59. fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml +10 -0
  60. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py +138 -0
  61. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar10.yaml +1 -1
  62. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet152_cifar100.yaml +1 -1
  63. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml +14 -0
  64. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml +14 -0
  65. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml +14 -0
  66. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml +14 -0
  67. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml +14 -0
  68. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml +14 -0
  69. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml +14 -0
  70. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml +14 -0
  71. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml +14 -0
  72. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml +14 -0
  73. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml +14 -0
  74. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml +14 -0
  75. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml +14 -0
  76. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml +14 -0
  77. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml +14 -0
  78. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml +14 -0
  79. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml +14 -0
  80. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml +14 -0
  81. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar10.yaml +1 -1
  82. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet18_cifar100.yaml +1 -1
  83. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml +14 -0
  84. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml +14 -0
  85. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml +14 -0
  86. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml +14 -0
  87. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml +14 -0
  88. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml +14 -0
  89. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml +14 -0
  90. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml +14 -0
  91. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml +14 -0
  92. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml +14 -0
  93. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml +14 -0
  94. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml +14 -0
  95. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml +14 -0
  96. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml +14 -0
  97. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml +14 -0
  98. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml +14 -0
  99. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml +14 -0
  100. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml +14 -0
  101. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar10.yaml +1 -1
  102. fusion_bench_config/modelpool/{ResNetForImageClassfication → ResNetForImageClassification}/transformers/resnet50_cifar100.yaml +1 -1
  103. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml +14 -0
  104. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml +14 -0
  105. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml +14 -0
  106. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml +14 -0
  107. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml +14 -0
  108. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml +14 -0
  109. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml +14 -0
  110. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml +14 -0
  111. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml +14 -0
  112. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml +14 -0
  113. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml +14 -0
  114. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml +14 -0
  115. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml +14 -0
  116. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml +14 -0
  117. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml +14 -0
  118. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml +14 -0
  119. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml +14 -0
  120. fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml +14 -0
  121. fusion_bench_config/method/clip_finetune.yaml +0 -26
  122. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/WHEEL +0 -0
  123. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/entry_points.txt +0 -0
  124. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/licenses/LICENSE +0 -0
  125. {fusion_bench-0.2.26.dist-info → fusion_bench-0.2.28.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- fusion_bench/__init__.py,sha256=Rw9sT2ZegKMxZAG7FBDgqVOqBGlJ-43C5p_EarRHd1M,5816
1
+ fusion_bench/__init__.py,sha256=C-0-HgZFdRjscXqpfNsz7iGUijUeSoP4GFRnFxuxQ7M,5992
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
4
4
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
@@ -19,7 +19,7 @@ fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3y
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
20
  fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
21
21
  fusion_bench/dataset/__init__.py,sha256=2b4UGemg_F1I5cXkAzNMm12XmlP9-06DH8cW1V6ugwo,1495
22
- fusion_bench/dataset/clip_dataset.py,sha256=Y27odUQWiUOb-WdJnorhcxccDvzrHISxisxFbiRrQHs,3185
22
+ fusion_bench/dataset/clip_dataset.py,sha256=xQ1aRiA_WMIZKha0do0Dg5F8qsEIucuouy8AbsxbewI,3263
23
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
24
24
  fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
25
25
  fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
@@ -48,15 +48,15 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
48
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
49
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
50
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- fusion_bench/method/__init__.py,sha256=-r9Sz5haSc5X4eNvxGvHwowQfS2sLfZ21orUC5ae7ws,9454
51
+ fusion_bench/method/__init__.py,sha256=xslTF2298UcTTpbB6bcBbR7UeFU0Gu63fdP7qvex1nk,9527
52
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
53
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
54
54
  fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
55
55
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
56
- fusion_bench/method/simple_average.py,sha256=FuIwHCUNK5CoToBzVt-lo8SK7wjj8CdRpiNLRnAflH4,5519
56
+ fusion_bench/method/simple_average.py,sha256=Er9jiLCmweE_AAQ-QkJ1LoytjHY45t707iIRXr8ZPpE,5735
57
57
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
58
58
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
59
- fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
59
+ fusion_bench/method/adamerging/__init__.py,sha256=jfm0jvjLFWLszSo7CzPp7EnXMItih1XhlHdrRiCgBQ4,1195
60
60
  fusion_bench/method/adamerging/clip_layer_wise_adamerging.py,sha256=LvLYIzl2TsUeNwMeoGK1rW7T0mlxnpxqt3CJD31BKxI,1316
61
61
  fusion_bench/method/adamerging/clip_task_wise_adamerging.py,sha256=MBWHFApCaD_Del8l58CQGfn3eCWhwH-mVSVEBm_Nq4E,6279
62
62
  fusion_bench/method/adamerging/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
@@ -65,8 +65,9 @@ fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py,sha256=4wt0K_99Go7Z
65
65
  fusion_bench/method/adamerging/layer_wise_adamerging.py,sha256=qN4x-2Iy4CuprdlH3fyBFMhjGm36cfM7NMMknL3ZdSA,9877
66
66
  fusion_bench/method/adamerging/llama_adamerging.py,sha256=DHm83VaaxxHFaeFY2qbxgO1Ub3Fiqawy4p5AqCkmEp4,13112
67
67
  fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0yqW6-x5dTyZ5V0mt_Q69qE,8291
68
- fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=tUy_P4lCn6u5srFCIyMdHs-Hc1MSge4meenK8UA25tw,6006
69
- fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
68
+ fusion_bench/method/adamerging/resnet_adamerging.py,sha256=36uH1tFhQVlvD7SoLmlo8Pa5nDjgaI73NyeBugb3Pf0,10952
69
+ fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=HXWyn8WJRXFMaqy5UIsC4gpXkRJDou3Rc5Mt5bu2h00,5682
70
+ fusion_bench/method/adamerging/utils.py,sha256=FJrB_FHlqSMKfHTEHqNsWKny_0fSDNpKMYknR5KLRmg,2078
70
71
  fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
71
72
  fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=EKX_O_H9HR_J1ZacpvxK9C_OotFN25Ezg2SgIvpm8kY,8681
72
73
  fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=lGSFDJrOqt7kYzFg-WXERsnR6tXeYbDXS622nB1z5oU,12641
@@ -79,15 +80,15 @@ fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0Y
79
80
  fusion_bench/method/classification/__init__.py,sha256=byVJ574JQ_DUvsDv8S6ZM6BKAv4ZZ964Ej4btm0aC7k,867
80
81
  fusion_bench/method/classification/clip_finetune.py,sha256=5q5Sr3eVVh8DfYdeSoGjwaKDksC8F2dY2r8Dl-wRaDg,15844
81
82
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
82
- fusion_bench/method/classification/image_classification_finetune.py,sha256=CPMpZvaULWaim01EvJJHlU4C6HQ16OCqZGoMvPBEWtY,8157
83
+ fusion_bench/method/classification/image_classification_finetune.py,sha256=xWSspEuiyM9mz7nTFCLMbJMvkuD-k3B7mx-KMvq7nEU,15310
83
84
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
84
85
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
85
86
  fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py,sha256=Nx-3AiAeIt5zmcC21Ta2_-4cAQg9hOWvThurXNZzA-w,10580
86
87
  fusion_bench/method/concrete_subspace/clip_post_defense.py,sha256=h-c0ioxDopg7pUoRjxx3epqQxVKZAZWz8s7yHjM88mg,32355
87
88
  fusion_bench/method/concrete_subspace/clip_safe_concrete_adamerging.py,sha256=eEKKUBgHufYTBaWWxkIKDF0lkuLI2bBgNHVr1JqT41c,35694
88
89
  fusion_bench/method/dare/__init__.py,sha256=63Xwkawyl_Ooy4xFxoDlP6wf-rgEWNqPuWTT9-6Ku5o,156
89
- fusion_bench/method/dare/simple_average.py,sha256=jR08PokPIr5PWSZbGVOp3IApgKvxAIovg3vnB2KiTwk,906
90
- fusion_bench/method/dare/task_arithmetic.py,sha256=Seno_2BhuogdRxXOni8alnHG-fdW15_OWoAvMoBoJj0,2780
90
+ fusion_bench/method/dare/simple_average.py,sha256=ZNQEznItNgntEI704nD0R2vSu9HLXQ9-I23G7LcfsU4,950
91
+ fusion_bench/method/dare/task_arithmetic.py,sha256=ogPwONZ7faci3WS948ppuhXzYVDBl3ghSB-TVzqP4p8,2824
91
92
  fusion_bench/method/dare/ties_merging.py,sha256=aAIMdIpsBs0vnSKGhqDTFKEChBTmcvczt9JmK_Dr4D4,3424
92
93
  fusion_bench/method/dare/utils.py,sha256=TSZMZidnwqVHG36A0UI9Wz_rXNvojXnww7_E7-YfeRI,2888
93
94
  fusion_bench/method/dawe/__init__.py,sha256=JrhtX-qAHymU8z44QtFMxtM5Qx5iH1Kxo5cptH0KNgo,83
@@ -228,7 +229,7 @@ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuY
228
229
  fusion_bench/method/tall_mask/task_arithmetic.py,sha256=RX_JgEPwG52EPYGXWYGuq0LBeyJHMbVZn7Qy_4QmSsQ,4373
229
230
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
230
231
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
231
- fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=KsSBshf04MUwIjoc0HAAmY6cWMqjZwZOYXbUuU4EaL0,6320
232
+ fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=yGMWk2--VlXTcQjDjnPdiug1q_rpjzu5SFvgCYDfTQ0,6479
232
233
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
233
234
  fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
234
235
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
@@ -270,7 +271,7 @@ fusion_bench/mixins/__init__.py,sha256=2_mAT0VHiUYGyWJyiDSxcFmI4Qt64Y2qlNu1Z11fg
270
271
  fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
271
272
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
272
273
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
273
- fusion_bench/mixins/lightning_fabric.py,sha256=5iamAL7YV6lEm_-8NuzFjfIy1vslwKthSpCSWLLhlCM,7506
274
+ fusion_bench/mixins/lightning_fabric.py,sha256=-ACc6F87oNHSKmFl-DTo1vhCWyR8lZ7o_WIvuRnv3QU,7884
274
275
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
275
276
  fusion_bench/mixins/pyinstrument.py,sha256=I8CLVRUK6G_U8S5x-netmtAcy6m9uLB0UGB1AokbheU,5108
276
277
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
@@ -279,15 +280,17 @@ fusion_bench/mixins/simple_profiler.py,sha256=QA4fZhD-uL06fZaoqBQowI0c_qrAUhWszF
279
280
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
280
281
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
281
282
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
282
- fusion_bench/modelpool/__init__.py,sha256=wKAkEgit_1ZtDAOKOntzrUKdCjOFIxnPMYN02B970Wg,1671
283
- fusion_bench/modelpool/base_pool.py,sha256=5snzTmqn1Xs_dy0Ws5QWxs9uCAXMwIuclrwfikKPh9o,12298
283
+ fusion_bench/modelpool/__init__.py,sha256=qDlBPrWFW-Z-LByzmfqP1ozYhWx2lYAEjhqjKF4EAbY,2307
284
+ fusion_bench/modelpool/base_pool.py,sha256=7v01al93RjJ5CynUM-HnM6mCgCX9asUmaqPNmxioNoA,12531
285
+ fusion_bench/modelpool/convnext_for_image_classification.py,sha256=m9MxFgfzNjGnHOU6gufaTPgkk67lifNNwW03nHUxXKo,7377
286
+ fusion_bench/modelpool/dinov2_for_image_classification.py,sha256=Wd60J5Ji4KwXUYTPcYYXuYWrcpDlh7pjGZ-zjjRqYio,7496
284
287
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
285
288
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
286
289
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
287
290
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
288
- fusion_bench/modelpool/resnet_for_image_classification.py,sha256=G72gRG6LzVWZcf_AvH5TKDVB2zyRrVG3RUe3WlU9_wE,7398
291
+ fusion_bench/modelpool/resnet_for_image_classification.py,sha256=drSQt6xMZnag2drrjepCu8jpORF_ui8MJj_CipqoRCU,20004
289
292
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
290
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=gpUQqxZIuKoaQ-gvdPsLVxI7UifueR6k3YzbUV1i0lk,19902
293
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=FbatPI6aAJbaT5qa4Get2I0i8fxmbq0N6xwajolXpdg,19993
291
294
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
292
295
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=ENQfAAwQ3NFEyDv0C313HA0h5yF6QyvT0_IOe9cDQ40,9250
293
296
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
@@ -298,8 +301,8 @@ fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNM
298
301
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
299
302
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
300
303
  fusion_bench/models/__init__.py,sha256=TURxx0Hnv3LBz2VFN36Y6ZfIOxvAGbKro5zhn6rtwP4,893
301
- fusion_bench/models/hf_clip.py,sha256=lL4LxbdwC_rDWRozdEJmRlzKaNcQMpWwCSMDE0tfZRM,7525
302
- fusion_bench/models/hf_utils.py,sha256=bfB3QAUqsG-TyUeOWrZt8V7GeWDhp-fKg3P0J3D_TbQ,5497
304
+ fusion_bench/models/hf_clip.py,sha256=1xdcAQtkHYJzLhOSlJl24qhMiwC_jdhp2Va-eN5X9vs,7499
305
+ fusion_bench/models/hf_utils.py,sha256=1gu9Z1zR5tvImGo6N9iQodNPnFA3wg7ndxYcDutQKCU,5558
303
306
  fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
304
307
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
305
308
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
@@ -328,7 +331,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
328
331
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
329
332
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
330
333
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
331
- fusion_bench/models/model_card_templates/default.md,sha256=DJXwDODCsqIOhkgP57-iCShxLYK_jnsDsJYH1GfbBY8,1028
334
+ fusion_bench/models/model_card_templates/default.md,sha256=OoU83l1hip1gKsoA08hoKx-nCrOYbKaVTVCjK0pt9WY,1028
332
335
  fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
333
336
  fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
334
337
  fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
@@ -395,16 +398,17 @@ fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpw
395
398
  fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
396
399
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
397
400
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
398
- fusion_bench/taskpool/__init__.py,sha256=-ltXMsS3jeGxa9vnhOyrbITOUtfNjLwkGPfS2mKDOdY,1312
401
+ fusion_bench/taskpool/__init__.py,sha256=n5jUUMI1TDK0g72PpFLlajqZ6FwEKjyfQLY4hnYlQ4I,1479
399
402
  fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
400
403
  fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
401
404
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
402
405
  fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
406
+ fusion_bench/taskpool/resnet_for_image_classification.py,sha256=f6hZH29137oJ0IOi0o5kfAzcwpo6-oKZlFmC2H0aBF4,7706
403
407
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
404
408
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
405
409
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
406
410
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
407
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=99F8w_e4-UnoeDkSjo0z_8Wstx6e635h0IqSdtfT7ms,16460
411
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=-BMgFR8quJLfU60vU9mq6Ye-4bFGPp-4e_xY8RfhB84,16503
408
412
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
409
413
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
410
414
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
@@ -462,7 +466,7 @@ fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,
462
466
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
463
467
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
464
468
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
465
- fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
469
+ fusion_bench/utils/json.py,sha256=LXmlqdUxgBepaFjf2JoLrOHQ7CdFAcKLzHL8LaSkPog,4359
466
470
  fusion_bench/utils/lazy_imports.py,sha256=s-1ABhPyyHs7gW4aodCzu3NySzILzTL7kVNZ0DZRXJA,6156
467
471
  fusion_bench/utils/lazy_state_dict.py,sha256=mJaiAtKB1vlNUAoQILnnCmU80FGJ8MSwmdPpmdhOyDE,22206
468
472
  fusion_bench/utils/misc.py,sha256=_7BaS9dNKyySGU0qmTmE0Tk8WK82TEm7IBJxVRkuEAw,5315
@@ -473,7 +477,7 @@ fusion_bench/utils/path.py,sha256=piznok_znXkTY71VBwJrxBlXureYOdQnMfvqaZ26qvc,26
473
477
  fusion_bench/utils/pylogger.py,sha256=1Uy_LkHkbrYdt1g5Ge_eAh2YoCJwn3U3Ndouz9sVA6g,3419
474
478
  fusion_bench/utils/rich_utils.py,sha256=3Z0di-1IOs3QoovF2frNA28ITVKWBLdm84zbXdTrM28,5924
475
479
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
476
- fusion_bench/utils/state_dict_arithmetic.py,sha256=kETybQPAcmupmTuKYKFThBDU2WBlhFPdj_Qzv500cFg,38385
480
+ fusion_bench/utils/state_dict_arithmetic.py,sha256=bXO3zewO3KDzRmTaznlsnURIoSlcW5V5IhuXGtI_nxk,41234
477
481
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
478
482
  fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
479
483
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
@@ -484,14 +488,14 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
484
488
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
485
489
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
486
490
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
487
- fusion_bench-0.2.26.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
491
+ fusion_bench-0.2.28.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
488
492
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
489
493
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
490
- fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
494
+ fusion_bench_config/fabric_model_fusion.yaml,sha256=kSQbhBsKypVFA3rmkdhY9BITnZWDXJof-I35t473_U0,2646
491
495
  fusion_bench_config/llama_full_finetune.yaml,sha256=wmtslON9MTEp8L9Y6Wz3adqsZq_IFU1y6dCcxuikoEU,787
492
496
  fusion_bench_config/llama_magnitude_pruning.yaml,sha256=xFyDJpb8gyIjosteOpEW9eayONWhl0B763r1XmO-9w8,633
493
497
  fusion_bench_config/llama_model_fusion.yaml,sha256=KMMDFPAiiOU1vIMWw58FoMhi8-_SDImF4eqlg9ZoprY,586
494
- fusion_bench_config/model_fusion.yaml,sha256=hODoFHcSl4hla0X8lt2oXwUKwYS4V6aw-Sxhyv6j70M,2467
498
+ fusion_bench_config/model_fusion.yaml,sha256=QCq61w-40Lhl53-pTsKSVbn48iNE619YeRIxurH8Hxc,2511
495
499
  fusion_bench_config/nyuv2_config.yaml,sha256=VtiqcyNwTxsiv8FFxdSBiUp0Qqtxig0j2bSZ8Faf4xA,540
496
500
  fusion_bench_config/nyuv2_mtl_train.yaml,sha256=VpQsJ9oheIlcbfU_vdmIVXJEESKG7GuftSmmoDptstE,609
497
501
  fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_6OlldG6jo9LYZrx0U-xLZXtB8I6yxnFHM_I,630
@@ -588,25 +592,25 @@ fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml,sha25
588
592
  fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml,sha256=4lb37lxTUStAR8eXhNxp3RONwSOYJI0bKY-hViZnjtE,94
589
593
  fusion_bench_config/dataset/text_generation/train/gsm8k.yaml,sha256=gP-xAZQxHHqTEf_Dgbi4F_SQDgGZFeddwMFsvcE1WW0,90
590
594
  fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml,sha256=6BhKgApz8LhdDyATqCsaonBo0Q99o1uM22F0yj_pJi4,178
591
- fusion_bench_config/fabric/auto.yaml,sha256=dB2OvR2P5W7r9Zf1ada2qcQ6hjBnFwWMpszGS-Gmua4,574
595
+ fusion_bench_config/fabric/auto.yaml,sha256=PoYC5vtDogZ3Ce9H8fv2nlLTTT-q6hMPW-7CwSQ-g08,652
592
596
  fusion_bench_config/fabric/llama_ddp.yaml,sha256=bOOuK5BPKmScE6yh5xY59qlawlMk2sRzsipW7GDQJWs,705
593
597
  fusion_bench_config/fabric/llama_fsdp.yaml,sha256=pTvz0k79dSOVAAlvU0T1kNd8TNCwz2FGjDOujBtQ_Ks,574
594
598
  fusion_bench_config/fabric/llama_peft_fsdp.yaml,sha256=AosSmY4624iahKbTWY681BsZTC1ul78x9aHZ9zHS81s,579
595
599
  fusion_bench_config/fabric/loggers/csv_logger.yaml,sha256=ZgcRy1kW-nTrNsXjljvjArdPLgB_H38I64wkh4UNaH0,362
596
600
  fusion_bench_config/fabric/loggers/mlflow_logger.yaml,sha256=iu_3Y57hRuc-FjJGoTDlcRqxq3K6U2vHBaBvhOPp8hk,71
601
+ fusion_bench_config/fabric/loggers/swandb_logger.yaml,sha256=Z5T06kyfwXYuB0Tkkj_S_k62JAb3WSvDql_GUjN8ZvQ,256
597
602
  fusion_bench_config/fabric/loggers/tensorboard_logger.yaml,sha256=wBfGo2zb4OG4e-Zx3SjanagvfUBxz41Sz-cyoNtLaZs,368
598
- fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=eF4slc6QPRuMCMJVeFHNJirsGiB15WQIxNgioXNwezc,142
603
+ fusion_bench_config/fabric/loggers/wandb_logger.yaml,sha256=awIrv7gJRZrbar_tbKpd_MTCqzzPjFhXizWfOyqZeos,202
599
604
  fusion_bench_config/fabric/strategy/deepspeed.yaml,sha256=zcSUeHVaATy92oTTRx3_hWQkCB3BPR7YOIt_U1gimCU,343
600
605
  fusion_bench_config/fabric/strategy/llama_fsdp.yaml,sha256=WBx05GFUCuEtF-H7LhlTq95VZeaIg36hqntw478qJng,307
601
606
  fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml,sha256=4NTFnpZTEByH4Z6f-nwDtS4GUFtcluja27hXKWNRUiE,347
602
607
  fusion_bench_config/hydra/default.yaml,sha256=Fpi3pV1hqPoPk5QdBncse6NlNOAl2YHzD44LvRNbzq4,256
603
608
  fusion_bench_config/hydra/help/fusion_bench_help.yaml,sha256=v8s891Cr5wyxBXGDn_VBBwwRmb0JXOL874Sl-zNoCWA,1880
604
609
  fusion_bench_config/hydra/job_logging/rich_logging.yaml,sha256=_dYGeFTCqaPrRowLXBNMXwzYhw8ns1TkQFfALwK1aCw,441
605
- fusion_bench_config/method/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
606
610
  fusion_bench_config/method/depth_upscaling.yaml,sha256=86YqczaMzZftymLy_k2cb-GMy4C42yTxxP4c4htZTBs,1230
607
611
  fusion_bench_config/method/dummy.yaml,sha256=Pw2w6WQiw3K4_KH0THPs4NSM7lZoZLsNbB72iPSVsl8,427
608
- fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=AdVhXD6Crw-B3QyNpP4ToHRSg-EeSCIGtazA7lQvPOU,148
609
- fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=wYDRnWOpZ6SgvL2Fm9wIDomrN2x5Jaq5vg1hjh3druk,210
612
+ fusion_bench_config/method/mixtral_moe_merging.yaml,sha256=Fdd4rHhHm7rkhP8_KJoivX8Wxh_tcKOXz1udDMtb4k0,374
613
+ fusion_bench_config/method/mixtral_moe_upscaling.yaml,sha256=igjbRMt7CGeyIzajRhjWgAIDOgInaMSBFqZM_COmjkY,584
610
614
  fusion_bench_config/method/model_recombination.yaml,sha256=DeyVPdDCL-eyJDlPZXLAIWfKi3p8nN0dLFRx5ydsERc,740
611
615
  fusion_bench_config/method/simple_average.yaml,sha256=uB51mNlFKb9S3Go1p6SLGgr3PWJFZs97Ccn1zZZkEug,577
612
616
  fusion_bench_config/method/task_arithmetic.yaml,sha256=zQmNpnQrZTHiRv_KmYnHPMScKf8MUMLbQYh9254_1Jg,580
@@ -616,12 +620,13 @@ fusion_bench_config/method/adamerging/clip.yaml,sha256=NBJaK0a4RxV3D2LRciUeWmTqa
616
620
  fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml,sha256=DxkZhcuu_-ErIUqBUmWKN5UXYYWKoKPX6IgjV-Txwv0,541
617
621
  fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml,sha256=bLz6zc5CofeUO2XhS5zthkkuWlcX7rCBpyujYckmUqk,536
618
622
  fusion_bench_config/method/adamerging/llama_sft.yaml,sha256=khKzfhvQ5oxBMH0d-YvyjN-qIgQNeevDodXngS5g9KY,1022
623
+ fusion_bench_config/method/adamerging/resnet.yaml,sha256=qYD_DnDC5yXcBOOQIlwWetsUXR5xTHbtEG71KppAIm0,534
619
624
  fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml,sha256=hxVA4deUr1go1RZl12qD8PekwydWJ9SBQowSqmo3A8I,139
620
625
  fusion_bench_config/method/analysis/task_vector_violin_plot.yaml,sha256=FmBGj0Ib2xYd-49x_xZSeVbExwL-A9-tHhHTMBrT_Fg,134
621
626
  fusion_bench_config/method/bitdelta/bitdelta.yaml,sha256=uuR5x1IVTWyZjTSd5i1JXd_D8tG7tWBfOpgMBDCBgR0,436
622
627
  fusion_bench_config/method/classification/clip_continual_finetune.yaml,sha256=Ls63kdLb1bLwUEqzfyTtJcpFOdv3HmwzBML0V2JnnAs,791
623
- fusion_bench_config/method/classification/clip_finetune.yaml,sha256=yWjcdKYaKvy53sGaygg2ElAjb9-YFCyCGE1s9aB_dPM,677
624
- fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=fl60RFCYwmrwwu3QlaJTFiBLmSmnjHxl-xyq4Gb80iU,401
628
+ fusion_bench_config/method/classification/clip_finetune.yaml,sha256=VnP3JKcRaLQFRt6ohvKkh6MTLC6cf8AruSUqQ7bXC6A,1020
629
+ fusion_bench_config/method/classification/image_classification_finetune.yaml,sha256=oB2LgEgvtxSww_RLsE0B0uMPFqBsng4Py7qcpF7PrzU,778
625
630
  fusion_bench_config/method/classification/image_classification_finetune_test.yaml,sha256=IxUbjeTSvpPZpZsRhOMlmrCALgWOSZjgeUjo1M41aCg,175
626
631
  fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml,sha256=r0zR1WenY1fYba6mEBAoHJZKcx1x7L2cQmEA_54NTYM,739
627
632
  fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml,sha256=eNoqcY1iMbs0Y5kKi_ya3rmQQMHqU7ht3EU7G_xmwN0,746
@@ -650,15 +655,15 @@ fusion_bench_config/method/gossip/layer_wise_clip.yaml,sha256=Wr4St9qaitcco8AQDL
650
655
  fusion_bench_config/method/gossip/layer_wise_flan_t5.yaml,sha256=2yBqbhwz2vq65wTjs2G1qp9pTxiApFF0GJ6sa1L_JXU,813
651
656
  fusion_bench_config/method/isotropic_merging/iso_c.yaml,sha256=mn_5nyc7s_a7QH1MkEj9ZncjNHtZa0mzfXcUGRJOiAw,81
652
657
  fusion_bench_config/method/isotropic_merging/iso_cts.yaml,sha256=70BODJt69pZ_9xH7S_Z2Yzb299LFIGkXy1bQiHQad6A,110
653
- fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdtsLTEWQTbO9wQ0Y,420
658
+ fusion_bench_config/method/linear/expo.yaml,sha256=A8fpPnR12je2kgqDuC3Y18jZ6GPm6QPPhro7PFZADWc,768
654
659
  fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=cAL_ekEIJhJD4cfAbKilV0k_lNNPoJqY4sABVEKcM7E,523
655
- fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
656
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
657
- fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=qqeIr61PJEcfZclZ5vV64GCzyt-8b1zB0FDZu8DsbXQ,322
658
- fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=tJA0n0_XVvll4rZYVHQVqFCz8W3Bey6NjPKMIH3-P0U,142
659
- fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=1oEIdxV0OqWjDQ9V_lmXEPUayp4KbKHE2SvpCLmiKOU,489
660
+ fusion_bench_config/method/linear/llama_expo.yaml,sha256=87grnsueFkhjKPuFOsiOjoTpBNAdqOD3zvclsofGt4A,984
661
+ fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=6P9fUXZdf3stVMkwKjFglKzHNEQ0GpYSh64kfrTCVmw,602
662
+ fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=KfNu3scx18S3KmfFpb_wsnbguE7hoGFk_L_Z-AXtxsQ,693
663
+ fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=lkNQ56q3reQTKR40BkEta_eORXdqPQV8dEpjKcgimvM,366
664
+ fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=bqUXMlf5PngHyT-aZ1FqEHzi5-KeUwGyTdHLpL_2E1Q,869
660
665
  fusion_bench_config/method/linear/weighted_average.yaml,sha256=OjE4EdfDHPYx8PlBJ6xIpCz4ITu_65VsRyefioRXGQ8,408
661
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=886ZKr81gyN7DISqtbrM5WnjSXd_6AlakQyOJQagoYY,518
666
+ fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=VHGfLIE6G0FMwJ_8sVG1jKWFsSacgmErst0sdu7NeB8,902
662
667
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
663
668
  fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
664
669
  fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
@@ -680,18 +685,18 @@ fusion_bench_config/method/randes/superposed_model_soup.yaml,sha256=7M9qV_wCgrE3
680
685
  fusion_bench_config/method/randes/superposed_task_arithmetic.yaml,sha256=Pw0pZtwoMIPiqHfFNbN8wqNDyYb4L5p6fIOaaDSzJQg,498
681
686
  fusion_bench_config/method/randes/superposed_task_arithmetic_lora.yaml,sha256=xH8IkGnjvKLEWsms64toWhOrKIJG9dYfqQGOsVT4GDc,539
682
687
  fusion_bench_config/method/rankone_moe/rankone_moe.yaml,sha256=rYas_GFFHvn3AgKNrI0Zp4ElL9e3SppGPrFAMa_u9r8,863
683
- fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=QfkCHCLK9wbyB1Tq1S7YT3351MbWzOjUQiALE-EJBgw,426
684
- fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o8tYQkhXxPV8lRf-dRNPIsOs,422
685
- fusion_bench_config/method/regmean/regmean.yaml,sha256=ZgVVLx-lHwVgjtjTl4VZUlthh8yyua87QvoJfmNHud4,101
686
- fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=A034ryEwvosqyQzA3KWs7kdp-3CUnoJtCujVywV-uzA,434
688
+ fusion_bench_config/method/regmean/clip_regmean.yaml,sha256=cxv_6-a2WzqdrotZMPY3vMcbCuY4O0qM14I6GPKJ84I,637
689
+ fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=Qd4hS5rt0L8zxM-YsXoChCjyR5rJc0jC1k4VA3czhUo,634
690
+ fusion_bench_config/method/regmean/regmean.yaml,sha256=mi1FHMg2YmScFfZfN2F82TisSju32YiLtrPYvBXO6oE,312
691
+ fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=8CSUdznjVuzGMPSGiLHlxCazBBVNbNNDDzpPHkCFSH8,647
687
692
  fusion_bench_config/method/slerp/slerp.yaml,sha256=XR3z6iqyHirkoFSdLAeV2bP1yyI25MoWG-LqdE-ypjA,719
688
693
  fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=hO07n6elZg_FrqEfSfbdR-tb1hqwT7vaLgAZKdF8O1o,479
689
- fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=skLwgu_VHShm4m0oEOkqKzcBS5Cz7J29xEj7pTaSm0k,916
690
- fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=6Gui-OuQ3P_4TwO_syh9SWJCNeHiAQzS55aO-ByYKbQ,154
691
- fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=M_EBOC3B_pxaBO3tD6mnbXpvy6-EaegSsE-jdJs-HY0,114
692
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=ZMn_ImRjjc2uozf7ocQIzbgvFDpBV7S-34KptbBXVGo,200
693
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
694
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=MfZ1u1HIJoy_csWiLzR4GLz-eiaVxo2gmNYre224yqo,433
694
+ fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=_fUBKoz9Jts6ogflFi4D7z7rsrLgCQBbnL1yVVxahro,1347
695
+ fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=p99GZc4s1tfro2NJggNcuuLGrcAPralF6EMxUaywmAQ,537
696
+ fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=wFwwJVjoTgBhM9yqkCanGxiivMqQN6VHjHZQEBDCiiQ,496
697
+ fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=Tx8TCKEESIy2NQge_lP48wJlNdyk2BH5E7TVyiNl2kM,430
698
+ fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=twzNiksQpAn0PQexMLvRyFwjLb7PsTPhk8vllOiVD64,754
699
+ fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=lArBuG-mdHTRCgW_zaQS--vtiGU0JZGtGcFHu6avOmc,800
695
700
  fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=38DGdOjpDo-dOMpfy807p3x-eAvibjED-BGtFGnaycA,689
696
701
  fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
697
702
  fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
@@ -703,7 +708,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
703
708
  fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
704
709
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
705
710
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
706
- fusion_bench_config/method/wudi/wudi.yaml,sha256=3mJ6-XKHwwHALS3d503ybGM7pc1PhEK91YwwMybuzMc,76
711
+ fusion_bench_config/method/wudi/wudi.yaml,sha256=ZX3HI0vLjTJ5iFZt32-M_O60h6D6oBuf0WY7zBXUOWI,285
707
712
  fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
708
713
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
709
714
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
@@ -884,6 +889,8 @@ fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b-it.yaml,sha256=
884
889
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-2b.yaml,sha256=SODG0kcnAP6yC0_J_SpSVMRV-v5qGV22gcWdiBaZo1I,368
885
890
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b-it.yaml,sha256=zwInWJS8yrhch4vOL1ypRKNWWpJKlhQsyY0Ln14CC-M,389
886
891
  fusion_bench_config/modelpool/CausalLMPool/mergebench/gemma-2-9b.yaml,sha256=ufmu4b3lyxn2XLDMVYxP-bKwYaGTjB5-JoYXLG8v8tY,368
892
+ fusion_bench_config/modelpool/ConvNextForImageClassification/convnext-base-224.yaml,sha256=gcXV5WIYe9Ep-54fjgT9HqbCBY7UiqbqkHvoNCQx62Y,259
893
+ fusion_bench_config/modelpool/Dinov2ForImageClassification/dinov2-base-imagenet1k-1-layer.yaml,sha256=jxe6rvV37FBGsV-Pdnyxe-G-Vw-HzOXuT2NMHKBSBOU,270
887
894
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/README.md,sha256=DC0HF-isCHshipHTC0Rof6GvjTUa0i2DVQZKrklQQlU,2416
888
895
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-16_TA8.yaml,sha256=jbJqqciORJQknpSzh2zKiFm6VKDOsmaSk9XfPCVmHGg,1220
889
896
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA8.yaml,sha256=q2_E2R1wIOdxd-AF-wjXkPO64gJgD27YXsZ8FFLWUIo,1607
@@ -892,12 +899,67 @@ fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_cars.ya
892
899
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_TA_sun397_dtd.yaml,sha256=JpPxNF-M5D179nEtfroM4xgEQHN4jHlj6qXXChKt0jg,701
893
900
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-B-32_individual.yaml,sha256=Edu1Ij1gXcRQs3REHkKvaBVZRXAYVUkdaahtuSnpkmc,225
894
901
  fusion_bench_config/modelpool/OpenCLIPVisionModelPool/ViT-L-14_TA8.yaml,sha256=pC28PjVeUkkR-Jd4l0vYh1BScrUn7DAgGIqfuK4wH_I,1185
895
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar10.yaml,sha256=CLn-9uSMsQurlUL1uvfiXfPe7huQDTyehkhs4NJ5GOs,375
896
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet152_cifar100.yaml,sha256=_WD401eyMtDXdwse_nb3Y8ELCIG_EL2PpHuY40-y0pU,378
897
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar10.yaml,sha256=DPsMtgtczaP8WOqADkjqbJUTnNk3ZOsHiCf6A4_oPu0,374
898
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet18_cifar100.yaml,sha256=VzCKLMbhNXxlqtKUEDpsiL-GVOeoG7iNsu5TZAWK51I,377
899
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar10.yaml,sha256=rOOzE5KFamspHgBzAqQg5m0a4B22_uniK6WHhG6-kBA,374
900
- fusion_bench_config/modelpool/ResNetForImageClassfication/transformers/resnet50_cifar100.yaml,sha256=8t5OR0yhdnGsLgASVJwUbdUgsl4GHLS4HhDuXyxNERU,377
902
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/_generate_config.py,sha256=c3vWGNGQJ6ybd43NeQZsNFo9gmvKoHERzswHYCnBtH0,4102
903
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar10.yaml,sha256=MjEdh1WQ1Cgd_9KQg53Egr0gjcptTl8eDt_jhJIzOhY,374
904
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_cifar100.yaml,sha256=zIWKMuMS0HXsisR46PVGi2Kqs2_1OW2DfQDKeAfIhxU,377
905
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_dtd.yaml,sha256=BkPCRMQsJdn5oU-jlLj-nBBidLNhxPRwCwdFs3L99dw,362
906
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_emnist_letters.yaml,sha256=g2Rc-B852dFIVydK77hcJTVa-_b15pL6i3yESP0jDeo,395
907
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_eurosat.yaml,sha256=Sc_lrZLIyNrRt0V7z1K96juyNHPQHBEbzMjjkqtQNtw,374
908
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fashion_mnist.yaml,sha256=qwtFygQQo_G7KfWR-kjLcyzHu4Sl6KVQEgbgborLtJg,392
909
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_fer2013.yaml,sha256=eFQFV2mCHPjLA3eBVk7oU0moah6szOjyDgNY9a_NFj4,374
910
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_food101.yaml,sha256=gl4iQdogT7A35YaGxYnmh27F-U7I6XgHGaFPX4d1xcQ,374
911
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_gtsrb.yaml,sha256=zCmDzrj76hJgl6_-m-C90raKDZAoy2jvyzVBKCytFGs,368
912
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_kmnist.yaml,sha256=_HWFcO_t3qDrf-35-e2tcCTAJ3wF7EOW682IHuaN0Vs,371
913
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_mnist.yaml,sha256=Jmfv4pbFrzt6DgRLBaZ9dBTKPyZ1K89v0qTcAdLDD_Y,368
914
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford-iiit-pet.yaml,sha256=NBQQUFxEgE_aNJhtW0VODNWjzoAzGr6Sv5bWZtuewgE,398
915
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_oxford_flowers102.yaml,sha256=iJBZeAX4pZoo16Z42fkF_iSY9L3Vk7gdHr3045Mb4U8,404
916
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_pcam.yaml,sha256=mMQr_cmnCHDnEUmIWrwNofMXrDw8WTD26CdgAlliVdA,365
917
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_rendered-sst2.yaml,sha256=-cx_JY09HJO-kDN-Gloq8rLx11LcWWqVQ_90b_YmFLQ,392
918
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_resisc45.yaml,sha256=94YlYy2WMHuyeG3Yrf1XzKWkXbsKljmZ1lI189ENltU,377
919
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stanford-cars.yaml,sha256=-2e3YTLg6vZogzcPggWlRXvVZgU_kRX7YrYp_XPDR3Y,392
920
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_stl10.yaml,sha256=Jn9e14gnho8FSzwphpvLR67JYVm-_Xh0VnXU7egYOrs,368
921
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_sun397.yaml,sha256=ATLUWhHsHYYFEcKiouzBajEluuSjbo0RUG4vSTaLTWA,371
922
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet152_svhn.yaml,sha256=mwhu_DYicLAOzPIo__2cItat2xwF5N1B45owxqCvRhA,365
923
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar10.yaml,sha256=xsiXuZssaumpWk1QHUKk_qcHz7s9SOmkuimLZ7NLXB0,373
924
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_cifar100.yaml,sha256=IT85uNPz7WvJkqzZ-IKAuQFoDzooBKQSiLPLdDLCWcQ,376
925
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_dtd.yaml,sha256=bJJIo3s-u5c5U5Ty3f20QwEhx_I7T3qv7BHivZ1uIMI,361
926
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_emnist_letters.yaml,sha256=mYnfUSjEOOvqGqy_0TpzoMkEdLezzNGbixoltP_EnpQ,394
927
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_eurosat.yaml,sha256=wqBYl115VoFo66BNn_yhJ_eKy6ESOamVlTQkkWDduQE,373
928
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fashion_mnist.yaml,sha256=Yf1-q73whqAO-_uXgEqT1S-pRHLA4OA4RS-dgYIIZQU,391
929
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_fer2013.yaml,sha256=ASUBIhghLH_HLPKDIDDWtkgiwY2RmofzWBjeyLW5R-A,373
930
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_food101.yaml,sha256=EC2S3n3Vca8MUB2CYmsctNM__nErHWNRr6A869rClGY,373
931
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_gtsrb.yaml,sha256=j8dAX4t99KSOG3n7lJgF57iQOEUvIC-C7pMaUALpKDQ,367
932
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_kmnist.yaml,sha256=YyrdVREoWdr_W0D15Hmrzasdd2u0sSbIFeKw0Npu1kE,370
933
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_mnist.yaml,sha256=jfGzGmT4Z4YUac6AuAKxKgRwMiJgOWp0qjeT7YdT8zg,367
934
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford-iiit-pet.yaml,sha256=HuPpnNMm_cWicrLsWd3vLZPLXZYhyrZZmlgKrI6O3hU,397
935
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_oxford_flowers102.yaml,sha256=6GAh1U8nJ76PU0Plrszz-6Jcc9XIPdP8tJdp81ON6Rc,403
936
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_pcam.yaml,sha256=hUqs6xSzjtNUFuuxxPbvq9I6sixv4mxlQ81dxPESurI,364
937
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_rendered-sst2.yaml,sha256=hlZjBSQTFrkQYMnIIIh-a-dj0DTqf2V2XbLYhzJwSMo,391
938
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_resisc45.yaml,sha256=wHYquC1bT3OVlfwR_IQhnRUhAA4OA1mXvylgXbUgF4E,376
939
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stanford-cars.yaml,sha256=N8GDAVR4akC_LgWpSq-OBhmZXE8EnHcgmZT9C4Mf88E,391
940
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_stl10.yaml,sha256=NOHcRm0iKiGADXej-ovDD9gk_uPtPIGqfoUiTC00CuY,367
941
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_sun397.yaml,sha256=rytamVle0ACaUpK0kQJWq1dqvH9UN5UmpAFATYFYJ40,370
942
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet18_svhn.yaml,sha256=1OKSAr-CZqP7JN9w255Qpj-hOy52K78kgMXsUeveQZU,364
943
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar10.yaml,sha256=g38RQxsEHKCs-4mY7JYaoJEs7KKyKEr6K6iWgGIRG-U,373
944
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_cifar100.yaml,sha256=CqoolQghhRczOv9y7mWAsBVVOgBXKR3iY2_OAdokFMQ,376
945
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_dtd.yaml,sha256=Q6bJM92ZDMflKN9ato0pzVbFI3H70yfUfk8Du-bnTiM,361
946
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_emnist_letters.yaml,sha256=fAIuxU_p0iU2oNNYnhVr33-15BttA297hN_5XJnlnGo,394
947
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_eurosat.yaml,sha256=awDPy5b-QOSGzwYNKUv2_1k38Wj_cWAso13LXeIwi4A,373
948
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fashion_mnist.yaml,sha256=x-v6DawF_Mvbh5xI3zgBxj2ZMEB6WLBHDGk8O6C2NCQ,391
949
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_fer2013.yaml,sha256=046EAIV7tssMkOLVJew9ZLCPzZUX4QUfkHwGRAQy6PA,373
950
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_food101.yaml,sha256=G9KmdAIfdMWp2KcZUkdacq1CWYCiXbNhL695xVs8myo,373
951
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_gtsrb.yaml,sha256=q0o79gEpDrQ-KAsoVlfEig5No29S4DgKT2pR8X-43Co,367
952
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_kmnist.yaml,sha256=LpBnMQC1x6WnsaMHz4Dfxgrbzr6yHazViPxejY3gQLI,370
953
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_mnist.yaml,sha256=h095GSEtx_vL1fvphkmnmifQSnNkMMqy3pXcBmJF7h0,367
954
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford-iiit-pet.yaml,sha256=0jgc2SF5eFAzTqwHSD312EEvBhlUaiZ3PZncgPd5Xd8,397
955
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_oxford_flowers102.yaml,sha256=2ZtTD1AhJY88V9LrnxXovQn7a3AcLINBoTxSW4B3tyw,403
956
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_pcam.yaml,sha256=y9evfipe7w_oq7Fn1rTNHvXylwTll3TgzP_u2oy_AYU,364
957
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_rendered-sst2.yaml,sha256=vsoHGxzFMOwNSMkd10ri1_WqtUp9sTDmlmrEPPP2ECw,391
958
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_resisc45.yaml,sha256=f3Fz2zcS15hZC94QX1f1kgUclk9_9if_V8d98-h4RlE,376
959
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stanford-cars.yaml,sha256=HUmMrlBzg5BhDelLc3TLY_A0p3ValfXjHZo9jruo4vk,391
960
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_stl10.yaml,sha256=5LS4T1BQHpNxzTSdMwEMAtt9SZ2Am9sPABG5rinGags,367
961
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_sun397.yaml,sha256=IhUORkW5FT329LjiQC3nIXNbuIM846urzM3dNchPUdk,370
962
+ fusion_bench_config/modelpool/ResNetForImageClassification/transformers/resnet50_svhn.yaml,sha256=HtK3e0F1XpnzdyCbaePdDOt8tvnUtpywuYNephXQl5A,364
901
963
  fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml,sha256=mRx-Xx4s6_IBoJJRogIBW4egmqW0wi1kGVWp_YwYVvQ,233
902
964
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml,sha256=GK2ewBU0bZmWpaqtdl7zZDUuSmRH1Jz7CFfauYipodk,334
903
965
  fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml,sha256=qs9LGlcfv-xDFPAhCCzaD5UVI4P8Mza57AqU0EQCeGo,1697
@@ -953,8 +1015,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
953
1015
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
954
1016
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
955
1017
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
956
- fusion_bench-0.2.26.dist-info/METADATA,sha256=BOHkLorLs0w_fgAtRz7tpYVExKxFiClGISLlsnW3BG8,24307
957
- fusion_bench-0.2.26.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
958
- fusion_bench-0.2.26.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
959
- fusion_bench-0.2.26.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
960
- fusion_bench-0.2.26.dist-info/RECORD,,
1018
+ fusion_bench-0.2.28.dist-info/METADATA,sha256=2m3tF3J5gbcupGjZt_0Md77Tb7h3oDxwwp_Q_sZsdIM,24307
1019
+ fusion_bench-0.2.28.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1020
+ fusion_bench-0.2.28.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
1021
+ fusion_bench-0.2.28.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
1022
+ fusion_bench-0.2.28.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  defaults:
2
- - loggers: tensorboard_logger
2
+ - loggers: tensorboard_logger # to choose the logger, e.g., tensorboard_logger, wandb_logger, swandb_logger
3
3
  - _self_
4
4
  _target_: lightning.Fabric
5
5
  _recursive_: true
@@ -0,0 +1,5 @@
1
+ #https://github.com/SwanHubX/SwanLab/blob/main/swanlab/integration/pytorch_lightning.py
2
+ _target_: swandb.integration.pytorch_lightning.SwanLabLogger
3
+ project: ${hydra:job.config_name}
4
+ description: "SwanLab logger with FusionBench"
5
+ save_dir: ${path.log_dir}
@@ -1,2 +1,4 @@
1
1
  # https://lightning.ai/docs/fabric/2.4.0/guide/loggers/wandb.html#weights-and-biases
2
2
  _target_: wandb.integration.lightning.fabric.WandbLogger
3
+ project: ${hydra:job.config_name}
4
+ save_dir: ${path.log_dir}
@@ -32,6 +32,7 @@ _recursive_: false # Disable recursive instantiation
32
32
  # =============================================================================
33
33
  # Experiment Execution Settings
34
34
  # =============================================================================
35
+ seed: null # Random seed for reproducibility
35
36
  # Development and debugging options
36
37
  fast_dev_run: false # This option is for quick testing. For example, run single batch instead of full dataset
37
38
  dry_run: false # Show configuration without running experiment
@@ -0,0 +1,18 @@
1
+ # for layer-wise adamerging, use fusion_bench.method.ResNetLayerWiseAdamerging
2
+ _target_: fusion_bench.method.ResNetTaskWiseAdamerging
3
+ max_steps: 1000
4
+ init_values: null
5
+ resume_weights_path: null
6
+ # if `clamp_weights` is true, the weights will be clamped to [0, 1]
7
+ clamp_weights: false
8
+ # arguments of `functional_call`
9
+ tie_weights: true
10
+ strict: false
11
+ # optimizer and lr scheduler for test-time adaptation training
12
+ optimizer:
13
+ _target_: torch.optim.Adam
14
+ lr: 1e-3
15
+ lr_scheduler: null
16
+ dataloader_kwargs:
17
+ batch_size: 16
18
+ num_workers: 4
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: CLIP Finetune
3
+ # =============================================================================
4
+ # Finetunes CLIP models with optional LoRA adapters.
5
+ # =============================================================================
1
6
  name: clip_finetune
2
7
  seed: 42
3
8
  learning_rate: 1e-5
@@ -1,6 +1,15 @@
1
1
  _target_: fusion_bench.method.classification.ImageClassificationFineTuning
2
2
  max_epochs: 10
3
3
  max_steps: null
4
+ # if ``save_top_k == k``,
5
+ # the best k models according to the quantity monitored will be saved.
6
+ # If ``save_top_k == 0``, no models are saved.
7
+ # If ``save_top_k == -1``, all models are saved.
8
+ save_top_k: 1
9
+ # Interval (in epochs or steps, determined by `max_epochs` and `max_steps`) between checkpoints.
10
+ save_interval: 1
11
+ save_on_train_epoch_end: true
12
+ training_data_ratio: null
4
13
  label_smoothing: 0
5
14
  optimizer:
6
15
  _target_: torch.optim.SGD
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: ExPO
3
+ # =============================================================================
4
+ # Extrapolates from pretrained to finetuned direction by a factor.
5
+ # =============================================================================
1
6
  # This algorithm merges a pretrained model with a finetuned model.
2
7
  #
3
8
  # $$\theta_{merged} = \theta_{ft} + \alpha (\theta_{ft} - \theta_{pre})$$
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: ExPO for LLaMA
3
+ # =============================================================================
4
+ # LLaMA-specific ExPO with backbone-only and attention scaling options.
5
+ # =============================================================================
1
6
  # This algorithm merges a pretrained model with a finetuned model.
2
7
  #
3
8
  # $$\theta_{merged} = \theta_{ft} + \alpha (\theta_{ft} - \theta_{pre})$$
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: ExPO with DARE (LLaMA)
3
+ # =============================================================================
1
4
  _target_: fusion_bench.method.linear.llama_expo.ExPOWithDareForLLama
2
5
  extrapolation_factor: 0.1
3
6
  attention_scaling_factor: 1.0
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: Simple Average (Causal LM)
3
+ # =============================================================================
4
+ # Uniformly averages causal LM weights with optional backbone-only.
5
+ # =============================================================================
1
6
  _target_: fusion_bench.method.SimpleAverageForCausalLM
2
7
  # set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
3
8
  # if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: Task Arithmetic (Causal LM)
3
+ # =============================================================================
1
4
  _target_: fusion_bench.method.TaskArithmeticForCausalLM
2
5
  scaling_factor: 0.3
3
6
  merge_backbone: false
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: TIES Merging (Causal LM)
3
+ # =============================================================================
4
+ # TIES merging adapted for causal language models with optional backbone-only.
5
+ # =============================================================================
1
6
  _target_: fusion_bench.method.TiesMergingForCausalLM
2
7
  # Scaling factor $\lambda$
3
8
  scaling_factor: 0.3
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: Weighted Average for LLaMA
3
+ # =============================================================================
4
+ # Like Weighted Average but supports merging only backbone and saving tokenizer.
5
+ # =============================================================================
1
6
  _target_: fusion_bench.method.WeightedAverageForLLama
2
7
  normalize: true # if true, the weights will be normalized before merging
3
8
  weights: # List of weights for each model
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: Mixtral MoE Merging/Upscaling
3
+ # =============================================================================
1
4
  name: mixtral_moe_upscaling # or "mixtral_for_causal_lm_moe_upscaling"
2
5
  experts_per_token: 2
3
6
  # path to save the upscaled model
@@ -1,3 +1,8 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: Mixtral MoE Upscaling
3
+ # =============================================================================
4
+ # Upscales a base model into a Mixture-of-Experts variant (Mixtral family).
5
+ # =============================================================================
1
6
  # or fusion_bench.method.MixtralUpscalingAlgorithm
2
7
  _target_: fusion_bench.method.MixtralForCausalLMUpscalingAlgorithm
3
8
  num_experts: 4
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: RegMean (CLIP)
3
+ # =============================================================================
1
4
  _target_: fusion_bench.method.RegMeanAlgorithmForCLIP
2
5
  # list, regular expression of names of parameters that need to be excluded
3
6
  exclude_param_names_regex: []
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: RegMean (GPT-2)
3
+ # =============================================================================
1
4
  _target_: fusion_bench.method.RegMeanAlgorithmForGPT2
2
5
  # list, regular expression of names of parameters that need to be excluded
3
6
  exclude_param_names_regex: []
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: RegMean (Base)
3
+ # =============================================================================
1
4
  _target_: ???
2
5
  num_regmean_examples: 256
3
6
  reduce_non_diagonal_ratio: 0.1
@@ -1,3 +1,6 @@
1
+ # =============================================================================
2
+ # FusionBench Method Configuration: RegMean++ (CLIP)
3
+ # =============================================================================
1
4
  _target_: fusion_bench.method.RegMeanAlgorithmForCLIPPlusPlus
2
5
  # list, regular expression of names of parameters that need to be excluded
3
6
  exclude_param_names_regex: []