fusion-bench 0.2.22__py3-none-any.whl → 0.2.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. fusion_bench/__init__.py +4 -0
  2. fusion_bench/compat/method/__init__.py +5 -2
  3. fusion_bench/compat/method/base_algorithm.py +3 -2
  4. fusion_bench/compat/modelpool/base_pool.py +3 -3
  5. fusion_bench/compat/taskpool/clip_image_classification.py +1 -1
  6. fusion_bench/dataset/gpt2_glue.py +1 -1
  7. fusion_bench/method/__init__.py +12 -2
  8. fusion_bench/method/analysis/task_vector_cos_similarity.py +95 -12
  9. fusion_bench/method/analysis/task_vector_violin_plot.py +160 -52
  10. fusion_bench/method/bitdelta/bitdelta.py +7 -23
  11. fusion_bench/method/ensemble.py +17 -2
  12. fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +2 -0
  13. fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +2 -0
  14. fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +2 -0
  15. fusion_bench/method/linear/__init__.py +6 -2
  16. fusion_bench/method/linear/{simple_average_for_llama.py → simple_average_for_causallm.py} +8 -4
  17. fusion_bench/method/linear/{task_arithmetic_for_llama.py → task_arithmetic_for_causallm.py} +22 -12
  18. fusion_bench/method/linear/ties_merging_for_causallm.py +70 -0
  19. fusion_bench/method/model_stock/__init__.py +1 -0
  20. fusion_bench/method/model_stock/model_stock.py +309 -0
  21. fusion_bench/method/regmean/clip_regmean.py +3 -6
  22. fusion_bench/method/regmean/regmean.py +27 -56
  23. fusion_bench/method/regmean/utils.py +56 -0
  24. fusion_bench/method/regmean_plusplus/regmean_plusplus.py +21 -60
  25. fusion_bench/method/simple_average.py +2 -2
  26. fusion_bench/method/slerp/__init__.py +1 -1
  27. fusion_bench/method/slerp/slerp.py +110 -14
  28. fusion_bench/method/task_arithmetic/task_arithmetic.py +35 -10
  29. fusion_bench/method/ties_merging/ties_merging.py +22 -6
  30. fusion_bench/method/we_moe/flan_t5_we_moe.py +9 -20
  31. fusion_bench/method/wudi/__init__.py +1 -0
  32. fusion_bench/method/wudi/wudi.py +105 -0
  33. fusion_bench/mixins/clip_classification.py +26 -6
  34. fusion_bench/mixins/lightning_fabric.py +4 -0
  35. fusion_bench/mixins/serialization.py +40 -83
  36. fusion_bench/modelpool/base_pool.py +1 -1
  37. fusion_bench/modelpool/causal_lm/causal_lm.py +285 -44
  38. fusion_bench/modelpool/seq2seq_lm/modelpool.py +146 -0
  39. fusion_bench/models/hf_clip.py +4 -0
  40. fusion_bench/models/hf_utils.py +10 -4
  41. fusion_bench/models/linearized/vision_model.py +6 -6
  42. fusion_bench/models/model_card_templates/default.md +8 -1
  43. fusion_bench/models/modeling_smile_mistral/__init__.py +1 -0
  44. fusion_bench/models/we_moe.py +8 -8
  45. fusion_bench/models/wrappers/ensemble.py +136 -7
  46. fusion_bench/scripts/cli.py +2 -2
  47. fusion_bench/taskpool/base_pool.py +99 -17
  48. fusion_bench/taskpool/clip_vision/taskpool.py +12 -5
  49. fusion_bench/taskpool/dummy.py +101 -13
  50. fusion_bench/taskpool/lm_eval_harness/taskpool.py +80 -0
  51. fusion_bench/taskpool/nyuv2_taskpool.py +28 -0
  52. fusion_bench/utils/__init__.py +1 -0
  53. fusion_bench/utils/data.py +6 -4
  54. fusion_bench/utils/devices.py +36 -11
  55. fusion_bench/utils/dtype.py +3 -2
  56. fusion_bench/utils/lazy_state_dict.py +85 -19
  57. fusion_bench/utils/packages.py +3 -3
  58. fusion_bench/utils/parameters.py +0 -2
  59. fusion_bench/utils/rich_utils.py +7 -3
  60. fusion_bench/utils/timer.py +92 -10
  61. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/METADATA +10 -3
  62. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/RECORD +77 -64
  63. fusion_bench_config/_get_started/llm_slerp.yaml +12 -0
  64. fusion_bench_config/method/ensemble/simple_ensemble.yaml +1 -0
  65. fusion_bench_config/method/linear/{simple_average_for_llama.yaml → simple_average_for_causallm.yaml} +1 -1
  66. fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +4 -0
  67. fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +13 -0
  68. fusion_bench_config/method/model_stock/model_stock.yaml +12 -0
  69. fusion_bench_config/method/slerp/slerp_lm.yaml +4 -0
  70. fusion_bench_config/method/wudi/wudi.yaml +4 -0
  71. fusion_bench_config/modelpool/CausalLMPool/{Qwen2.5-1.5B_math_and_coder.yaml → Qwen2.5-1.5B_math_and_code.yaml} +1 -2
  72. fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml +11 -0
  73. fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml +11 -0
  74. fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -4
  75. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/WHEEL +0 -0
  76. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/entry_points.txt +0 -0
  77. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/licenses/LICENSE +0 -0
  78. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/top_level.txt +0 -0
@@ -1,17 +1,17 @@
1
- fusion_bench/__init__.py,sha256=uxXbA9vhNx-RYG6Io9CaFuPEVWe2DjnomSzNY1aABIM,2391
1
+ fusion_bench/__init__.py,sha256=Ha-mkRETS7qxHPdHHgu8bRA3kTvQ64P6tWnx5mGDDA4,2472
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
4
4
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
5
5
  fusion_bench/compat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- fusion_bench/compat/method/__init__.py,sha256=A9pbskEYB4_ryD6sVrR0qI4eVYsbI7sExbhPeypP3fQ,5757
7
- fusion_bench/compat/method/base_algorithm.py,sha256=HHyDMG0FI-6JqRWm4wewXASWylc1GYFZcgrTLJ_r_V8,2323
6
+ fusion_bench/compat/method/__init__.py,sha256=1zDsUiZYd7a59wt6l71yvP8teHoZ6ceOLQLCBokEVDo,5855
7
+ fusion_bench/compat/method/base_algorithm.py,sha256=39kRFQ7ClOF5lt33ZaHXDBIn0Hb2hHFbgYJLPEyzS5I,2395
8
8
  fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py,sha256=m68BRGy4P-P9lLB10oXOBI-p58a-0FOPcrJ4r4MU32k,1100
9
9
  fusion_bench/compat/modelpool/__init__.py,sha256=KD8Ddr9D7rJ5YdHEQsTuNmQ0bgQfqF4l3WNMtHmRHD8,4687
10
- fusion_bench/compat/modelpool/base_pool.py,sha256=1gxQENvdcOSdHmUbw-x7-X-aXtoSa1Gsys_on1ys8FM,10639
10
+ fusion_bench/compat/modelpool/base_pool.py,sha256=-B00OZVGBsF3exwbR2jKRTiXlYr6W2BW6WeG5MIMEc0,10662
11
11
  fusion_bench/compat/modelpool/huggingface_clip_vision.py,sha256=LyIPgepNOK0qrk_EnBdlTC0ZnEkEZvPUy45cO60TiPU,6918
12
12
  fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZyVwXZxbi1jvQ,3651
13
13
  fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
14
- fusion_bench/compat/taskpool/clip_image_classification.py,sha256=ZYZsbsE-fPzm6yafA0p-6wcDwVGryLmtXXtuEXeQbTY,7425
14
+ fusion_bench/compat/taskpool/clip_image_classification.py,sha256=2L-VzsmKxNg8tglUzGA_qmLZ2oR5zKl352ylCmeY9mI,7426
15
15
  fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=JsdAE72V1C1eDcA1WCa0PIcSDTrGPclNKFDQ9G-hYts,5786
16
16
  fusion_bench/constants/__init__.py,sha256=Kgd1ex7odRVAlWAoKfi5iB4IMahndgJYJXqknH8R3vA,195
17
17
  fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal1s4,1656
@@ -21,7 +21,7 @@ fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ew
21
21
  fusion_bench/dataset/__init__.py,sha256=OJiYmcqz0Vm5O7mE4PB5QFJeL_KjrsseQTRsQATGTm4,1050
22
22
  fusion_bench/dataset/clip_dataset.py,sha256=hLL7NyzOIt0gNT1kzjrexFISbj-B0KdlgtyGf6K8NjI,3143
23
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
24
- fusion_bench/dataset/gpt2_glue.py,sha256=UHtQWG2TjZPwsOSxmxxXHKmF3EY9WAqWxqsw8yHIbjg,8858
24
+ fusion_bench/dataset/gpt2_glue.py,sha256=UvNWKAAMnKMNjF0BCpwwc7Nz0SI7KacxRR6SDm9Mn0s,8869
25
25
  fusion_bench/dataset/gsm8k.py,sha256=2OkDGDebZ295vkne2Ni4bhs6GbOIt4Vxx2F1315jsyk,2235
26
26
  fusion_bench/dataset/image_dataset.py,sha256=_N5JJC0lH3EbbrZMeuDatJILrKDK2EKHqtJB-m1pdFs,1879
27
27
  fusion_bench/dataset/imdb.py,sha256=YRzeq5z-Fl0aYcC2QtwEBWFkvucvpNo975jwjL5SZvs,260
@@ -48,12 +48,12 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
48
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
49
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
50
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- fusion_bench/method/__init__.py,sha256=qY7eYLbOJTxyKXRqa5yUG3m1uZO9xqU0YwXczXitBH4,8572
51
+ fusion_bench/method/__init__.py,sha256=-d5WMlvY3kHYSUeompoG71T6fSttXPDjPf6X4TxNkqY,8986
52
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
53
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
54
- fusion_bench/method/ensemble.py,sha256=oGiTJUderoPP0Opd7nHwC6h3VBmGTQ5inuG3wb6F4-A,3097
54
+ fusion_bench/method/ensemble.py,sha256=Bjzqxt-tUp5cawT1jIhqKswN5QH3bkYbmuI4LS4uTG0,3619
55
55
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
56
- fusion_bench/method/simple_average.py,sha256=fLd14_0218JKyXmwe5M6kgumfD60u2ZVnm3B7PBX-Uc,5508
56
+ fusion_bench/method/simple_average.py,sha256=FuIwHCUNK5CoToBzVt-lo8SK7wjj8CdRpiNLRnAflH4,5519
57
57
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
58
58
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
59
59
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
@@ -68,10 +68,10 @@ fusion_bench/method/adamerging/min_norm_solvers.py,sha256=a7n2X0BE_YajlaUygyHV0y
68
68
  fusion_bench/method/adamerging/task_wise_adamerging.py,sha256=tUy_P4lCn6u5srFCIyMdHs-Hc1MSge4meenK8UA25tw,6006
69
69
  fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
70
70
  fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
71
- fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=pL-XsWTo258yZTEsER_6KXS7JePneVNEHN_nv8Db0qo,5468
72
- fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=ie8hPl6QsVz9MQ6C2OEpzIBxQnmVKNf1FPc5bThmQGM,7606
71
+ fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=EKX_O_H9HR_J1ZacpvxK9C_OotFN25Ezg2SgIvpm8kY,8681
72
+ fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=lGSFDJrOqt7kYzFg-WXERsnR6tXeYbDXS622nB1z5oU,12641
73
73
  fusion_bench/method/bitdelta/__init__.py,sha256=s4T39gVHShECcJe6mCzQbQzhRkTjDiczW7LTrldbpJo,105
74
- fusion_bench/method/bitdelta/bitdelta.py,sha256=HtzlRS0zCU4-joNyQIUIOkrsXeBtDgZGyfUBMfx4biw,4949
74
+ fusion_bench/method/bitdelta/bitdelta.py,sha256=pujrxg-7GxEMZVEEVlNqc9gR8y8lA0oZ9K25FDxZ3s0,4342
75
75
  fusion_bench/method/bitdelta/bitdelta_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
76
76
  fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cwr-o8cE63kpBzHUA3S0FeJPX-Xf3mIS5ziIos,15546
77
77
  fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
@@ -102,9 +102,9 @@ fusion_bench/method/doge_ta/doge_ta.py,sha256=jrJF52JUBdrB3EGWaXJMFZE-v8syzZGr4s
102
102
  fusion_bench/method/doge_ta/layer_wise_adamerging.py,sha256=rLk3Nep5d6wMUNCp6q7pC7L0pfBvUwGBIuiGM7CQOf4,9780
103
103
  fusion_bench/method/expert_sparsity/__init__.py,sha256=nt7k5cKqA2Bax1aM93ODwsEuibZ_hdFgQsUos_8h2v8,271
104
104
  fusion_bench/method/expert_sparsity/mixtral/__init__.py,sha256=FyKDZIyYUnqvGIdJ5BS639UpzSBj11g28ATHs1Yczdk,545
105
- fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=e4fsXKSjCdmK-sThX6REk_d1hf-UolRLssQr7b6jD-M,5597
106
- fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=GJVIose_Duk4C6Re4LtaxSzGjR8XLGGlhLhsGMECwjw,4960
107
- fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=-0qWYkvHqKouJynn-kT907JQtiMLChtppOTL4SUYR9M,5090
105
+ fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py,sha256=zZa4IAKimFZMoxoQ_Oi7z2R9o5H6kxV2QTb0e-t9kDY,5665
106
+ fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=v1FQBFSMlbd0p2j5gDrOrK1Il4I0ABuS1IqfpVjacxA,5028
107
+ fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=PGmNBypJ20zKw_FRw9L2VykaxKBBDEYP_zG-XPM44YM,5158
108
108
  fusion_bench/method/expert_sparsity/utils/calibration_data.py,sha256=r2yZtT3ZYC0frwSpNetiyDOSzHiUZS3oaIPRfb4tjaE,5459
109
109
  fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqvesqk2NJw5AY_1ztLVE,225
110
110
  fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=bWoP3iM2TyY116UcdXNIrvYjHtiOvtIf7kuiFTyfIas,7343
@@ -128,12 +128,13 @@ fusion_bench/method/isotropic_merging/iso.py,sha256=MwKqfk0oyxqtdOzeSx_9jFXX1a4R
128
128
  fusion_bench/method/isotropic_merging/iso_utils.py,sha256=7L8PYUIJROwHJQmhFY-tdEhkLAnzVKXr-ae55FQ1QSo,6928
129
129
  fusion_bench/method/knots/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
130
130
  fusion_bench/method/knots/knots_utils.py,sha256=NWlzo4nhQypUcNknU832MP3QT42VsLx-6WQ9QXuSigw,795
131
- fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbnWD-jlRbe4,283
131
+ fusion_bench/method/linear/__init__.py,sha256=0U7JqlX8JuMECKlvLNM16Lxc1lCBN2bVqH8FtNoD-Fw,417
132
132
  fusion_bench/method/linear/expo.py,sha256=N7XnBTC0Nz_4gRs1f9TL9g-j-Lku5TF0lAjGKhZHwOw,3990
133
133
  fusion_bench/method/linear/linear_interpolation.py,sha256=Y01HPMBb7TaCjEBsbC6gqQyHvY1SRpwPyPPLxvYrL0s,2223
134
134
  fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
135
- fusion_bench/method/linear/simple_average_for_llama.py,sha256=5psacdQiqtUK_lwYZcXp9kgIU3MFGk6G1JatxeMUjE8,3339
136
- fusion_bench/method/linear/task_arithmetic_for_llama.py,sha256=4SZpiTD7OzhWUXtcdK3PYdXbBGyDqiZd7oZOQ0lraN0,1963
135
+ fusion_bench/method/linear/simple_average_for_causallm.py,sha256=qc-JiPLu19442DcP0xCl4EDGzVnIbq3WGiAiWkNzv6E,3448
136
+ fusion_bench/method/linear/task_arithmetic_for_causallm.py,sha256=7cewnrjX47omokAdhNvDIQV8zz06_ZNKPWM7CZx30R0,2247
137
+ fusion_bench/method/linear/ties_merging_for_causallm.py,sha256=yi0RCC6eRwXMKUC_cBdFLvejia4nmjPh9Pd0MpaUrVg,2392
137
138
  fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
138
139
  fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=1nvjOMABuEISyYaTRrFiwHLWvSTgHT8pEzTYBTLBRUg,18779
139
140
  fusion_bench/method/lm_finetune/causal_lm_pretrain.py,sha256=4CL9KGFsUzrt-edMfTooo4G4apzTH_57rso3DGGvKL0,219
@@ -142,6 +143,8 @@ fusion_bench/method/lm_finetune/peftfinetune_sft.py,sha256=klZ_IDr5-1xoYvyVZwug9
142
143
  fusion_bench/method/mixture_of_experts/__init__.py,sha256=r95iu1-3tgIUP7sWuAbLuqV7xexNYMYPZkM4_8egfp8,198
143
144
  fusion_bench/method/mixture_of_experts/mixtral_merging.py,sha256=-n1CLP1o08VyMSfaTq42kRutbw-cFDSCWHTu0iNh6ok,4237
144
145
  fusion_bench/method/mixture_of_experts/mixtral_upcycling.py,sha256=AHf6CvuJl8cIbSzua5vakkId3EtHoX4vE6BAKujyJz4,10592
146
+ fusion_bench/method/model_stock/__init__.py,sha256=wTcwUJ8GljoacK1zfgs3yctGBP6G2OjeTRtiozabqew,36
147
+ fusion_bench/method/model_stock/model_stock.py,sha256=CKzMrJ1QUmZIu8ze7DaIMM5ViWnRslgErCShZSlWbRs,11432
145
148
  fusion_bench/method/moe_pruner/__init__.py,sha256=UzOxEoA9PwLg7fmJXNeksDv9cO6iE9nV9g1ZhZLnBiQ,165
146
149
  fusion_bench/method/moe_pruner/moe_pruner.py,sha256=DWj1YHSHssc6no0yoTEftozl-YVdxPUsAE9uGcKmaIY,11459
147
150
  fusion_bench/method/moe_pruner/hooks/__init__.py,sha256=QYtT3Ei0-53mcoMirBbv_Z2ac8Uv3cN9b-ziCI2rzyo,136
@@ -191,14 +194,15 @@ fusion_bench/method/rankone_moe/__init__.py,sha256=hvYxnloCrzim9s7HUaNA3dcuThEcf
191
194
  fusion_bench/method/rankone_moe/clip_rankone_moe.py,sha256=2wnzyHHZSQagZenu9viJ-68MmRG0ppOLR5JHZuT1FKE,5457
192
195
  fusion_bench/method/rankone_moe/rankone_moe.py,sha256=YPWneidBJjms2SrYgH5tAim4KBl3Rrcmeq9Xf5QwU58,8489
193
196
  fusion_bench/method/regmean/__init__.py,sha256=VVqAkdHkb005Sc2XmeiedQYzb3q5aQNI8xzEJnE4thg,158
194
- fusion_bench/method/regmean/clip_regmean.py,sha256=cjIOgViczbK_5YCMHgYwvEpOz190LVkSupPpjZH141w,4929
197
+ fusion_bench/method/regmean/clip_regmean.py,sha256=FiT7-W5Dl5GIeYf6lTmvppqIApGO5HpoRIhOG0EEE_8,4864
195
198
  fusion_bench/method/regmean/gpt2_regmean.py,sha256=s_5Ntgm6CUB7CXEBLplp1a3KrzyNCEY9qOC6xhCvHko,5325
196
- fusion_bench/method/regmean/regmean.py,sha256=XXRaarHqmOtRjFs3uuoYMTezg4xNgOKbkyJvyftnneY,16125
199
+ fusion_bench/method/regmean/regmean.py,sha256=brYPtVZ0qn9oYj6s2knxBnNxkUVjmPggliHmsJoroTo,14852
200
+ fusion_bench/method/regmean/utils.py,sha256=tdrZnvUPUMkS45qeJpKunOqOHhmJgXlUH47cKj0B8Q0,1681
197
201
  fusion_bench/method/regmean_plusplus/__init__.py,sha256=rf_yZ-VJN2YdDjYiBzyikbtTIrwc3ChFFlQNBTnHars,142
198
202
  fusion_bench/method/regmean_plusplus/clip_regmean_plusplus.py,sha256=hw8pX_sXFltKXYxivB1uBQomsrPntK_qTOOIx14Z67Y,7412
199
- fusion_bench/method/regmean_plusplus/regmean_plusplus.py,sha256=I02yA0h1EevEH2wl33OF5JfGFVWywR2hfM8t2wAJ3SY,16099
200
- fusion_bench/method/slerp/__init__.py,sha256=Wgl9gg01Xou6jyZeBRD98kRnB_dAADDaPqRTHoONx9o,59
201
- fusion_bench/method/slerp/slerp.py,sha256=cc3JSBLu1DTKIPGxXXobomHntvFLKWsAr-B2YsjhfaI,3536
203
+ fusion_bench/method/regmean_plusplus/regmean_plusplus.py,sha256=VSPa7D7iLXy6vDwnr2ydS81vNU3mvc2lyUJFD3xCtRk,14595
204
+ fusion_bench/method/slerp/__init__.py,sha256=zIsw0NQ1pl1IwtzDihm-Qah063aR1vwwXvhhFm5qMDI,77
205
+ fusion_bench/method/slerp/slerp.py,sha256=cCuhBl6JAJe8ft4FxFL8SphQHHUY5CsTJtg_gd5Hy6E,7886
202
206
  fusion_bench/method/slerp/slerp_utils.py,sha256=vksRo6n7FqY7By9aqbwTL4XV3BjcU_GrUl_r85Kpfjc,3504
203
207
  fusion_bench/method/smile_upscaling/__init__.py,sha256=6ZpUSHUFVsT1U7V3TIDWBFqcHte7SjHW0wp6CAE8NVg,165
204
208
  fusion_bench/method/smile_upscaling/causal_lm_upscaling.py,sha256=PN7n3YLptEYtrSItOU0TwNjpmw5c1p4k05ZNA5Tx8XE,13995
@@ -219,7 +223,7 @@ fusion_bench/method/tall_mask/__init__.py,sha256=XINPP8PqGQ01he9p2RyHaKGyrcYoJuY
219
223
  fusion_bench/method/tall_mask/task_arithmetic.py,sha256=c-5ehKV_t46ljvKTBDr-eA3-FbSD_UNXlza4cOqK5aI,4371
220
224
  fusion_bench/method/tall_mask/utils.py,sha256=Wlp8WcPwR_lCaBIZ9rgG6ewLfSzz3G7kPk9yj13pvls,8817
221
225
  fusion_bench/method/task_arithmetic/__init__.py,sha256=pSx_NV5Ra_6UXpyYWCi6ANQoAnEtymZt_X1dDN9wT4Y,96
222
- fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=k4p8ADupDR5nZGHZjNgNsO8I_8rzqVyAr6Tejh85V0A,5525
226
+ fusion_bench/method/task_arithmetic/task_arithmetic.py,sha256=KsSBshf04MUwIjoc0HAAmY6cWMqjZwZOYXbUuU4EaL0,6320
223
227
  fusion_bench/method/task_singular_vector/TSVC.py,sha256=yn4SrZNvtA6PoGYJmbmtNeDyDbGnRCgfZ7ZCg914AZU,410
224
228
  fusion_bench/method/task_singular_vector/TSVM.py,sha256=Sdgoi8xT0Hl19pmGdIuUS3D1DsVqSVD-Hipp-Sj_HoA,13652
225
229
  fusion_bench/method/task_singular_vector/__init__.py,sha256=WMucyl9pu_Ev2kcdrfT4moqMMbzD7hHQVFME5Su5jMA,298
@@ -228,7 +232,7 @@ fusion_bench/method/task_singular_vector/utils/TSVM_utils.py,sha256=WGM8wCICdGsN
228
232
  fusion_bench/method/task_singular_vector/utils/__init__.py,sha256=Mep62TnXJscBEFZ6QDsI28cWmfygt8EPwjQdfUJzEZQ,315
229
233
  fusion_bench/method/task_singular_vector/utils/task_singular_interference.py,sha256=tXsFwx8eomzu00nSp95CjjWZX82zq32ff2Q6VM_29CM,1348
230
234
  fusion_bench/method/ties_merging/__init__.py,sha256=9u9teBbdILbupr9jbwk-qCXSzssCssC5FUV2BfpyZM4,67
231
- fusion_bench/method/ties_merging/ties_merging.py,sha256=eCpGa9F4VoT0zsl7XKK7WsKz45tu_DkFHeffyJospJc,5152
235
+ fusion_bench/method/ties_merging/ties_merging.py,sha256=u2o7Wo2SJJsxxhBeAhsmY7k4bdZkUtwAwGePGI4Sggc,5916
232
236
  fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjAqhBpj-ucMlMtR95082kPDsJPU,10296
233
237
  fusion_bench/method/trust_region/__init__.py,sha256=4ao0E-jTlmTQPArbFWD_dFn_4yve3urNIuSMT8JtRIM,91
234
238
  fusion_bench/method/trust_region/clip_task_arithmetic.py,sha256=SWP7sRMiXzkDZ3KdNht3zqjaTcAtB4wpnnd8KYbcKZI,7441
@@ -236,12 +240,14 @@ fusion_bench/method/trust_region/utils.py,sha256=iUNEY43mE0WZBsKAmttHwSvNpijzBzV
236
240
  fusion_bench/method/we_moe/__init__.py,sha256=w3HIl1hj1C-o1_iLlOXbSc-BXPMRafeoq3HXl1x9Voc,141
237
241
  fusion_bench/method/we_moe/clip_we_moe.py,sha256=JsDTNOy6fwCctyj5RuP9FKjBkXpOEG_GMfr_6H6oFNk,5667
238
242
  fusion_bench/method/we_moe/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
239
- fusion_bench/method/we_moe/flan_t5_we_moe.py,sha256=PfAaMsy-C5otOE-k8iXgE0oK1Ct6KKys2lAVMk33iC0,11738
243
+ fusion_bench/method/we_moe/flan_t5_we_moe.py,sha256=LevS5IJbbts9IjLnZ85Br6kCVvxIMprGIP4Ad8xM5MI,11143
240
244
  fusion_bench/method/we_moe/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
241
245
  fusion_bench/method/we_moe/we_moe.py,sha256=_QtmD04oFh7aLhmPq8EYchYB7BIN9ZFWOeysSx7kJmo,8372
242
246
  fusion_bench/method/weighted_average/__init__.py,sha256=bLxIuuB72hH05J_Spz4MZbiLpYL39iwgVIQa_QeQpIk,118
243
247
  fusion_bench/method/weighted_average/llama.py,sha256=vvxXp8v98kvXfHi7fYupnIrOVoA3tp08lmV2jDri_BY,3731
244
248
  fusion_bench/method/weighted_average/weighted_average.py,sha256=E4byEA2VfXozu7S_gnYVvwI3qg8AFWaSeNRHGbs2Tno,3340
249
+ fusion_bench/method/wudi/__init__.py,sha256=08qPzOlhjw-Ab8TwyY9MGOGx_TLrUTueJc1WgRIvuxU,44
250
+ fusion_bench/method/wudi/wudi.py,sha256=HL3Y0MPjozp7NML_UNjIWWPbQDQxYH_WG_BuyripeBQ,3602
245
251
  fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
246
252
  fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
247
253
  fusion_bench/metrics/continual_learning/backward_transfer.py,sha256=LCMWFFmBgWv7UIAJqiTaSvVvanx4qjnXIGuCMYvzmtc,559
@@ -256,43 +262,43 @@ fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84E
256
262
  fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
257
263
  fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
258
264
  fusion_bench/mixins/__init__.py,sha256=yjRvcB9Mn-c0g8tXmoBf2Dn8gyc-Na6dyhc4r674asM,1213
259
- fusion_bench/mixins/clip_classification.py,sha256=VJdeOGbaWryT8TQZ1GKMxuKMCccGLXedkMKDKUxK_2M,8498
265
+ fusion_bench/mixins/clip_classification.py,sha256=8dqJuI3AVetFZKuzTp1SR2kGQ-vGvfbcmwfnzuUiwfI,10096
260
266
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
261
267
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
262
- fusion_bench/mixins/lightning_fabric.py,sha256=ns9H_dkSDD8jJ7GL4YcAypewUcy9mzbX3Xy0bBcyGVY,7403
268
+ fusion_bench/mixins/lightning_fabric.py,sha256=5iamAL7YV6lEm_-8NuzFjfIy1vslwKthSpCSWLLhlCM,7506
263
269
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
264
270
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
265
- fusion_bench/mixins/serialization.py,sha256=VZxHzCozvG3VwlAv9WF1td3RHowyDSGjJhjaRoT5DeQ,14672
271
+ fusion_bench/mixins/serialization.py,sha256=z73Mmq952TIdPwwZ8cRdl3n0_uc9lqylFI9fxKesREs,13260
266
272
  fusion_bench/mixins/simple_profiler.py,sha256=czWMl6p9PoxbQ5A8Uifwleaq5QPGEn0qMc8MXu9dSZM,2200
267
273
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
268
274
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
269
275
  fusion_bench/modelpool/PeftModelForSeq2SeqLM.py,sha256=rxPKTTWno3KAcTTEfydPpXx1b0EJa8PLbqrberweFF8,2108
270
276
  fusion_bench/modelpool/__init__.py,sha256=WFDdiwPqdkzVsDYguWPPGGX_ZTRZhUCK8WMuhZpjKCg,1512
271
- fusion_bench/modelpool/base_pool.py,sha256=JyqE-HcgNNDWdTvZe21ixomShahVDQz7hiF80LPXja0,9768
277
+ fusion_bench/modelpool/base_pool.py,sha256=u2ahVkurq60yH86LMw1Rw98cpcgDTRiVeICpm9jewNI,9785
272
278
  fusion_bench/modelpool/huggingface_automodel.py,sha256=OJ6EyYyjNv1_Bhjn-zli-e__BJ0xVa4Fx9lhXVb-DJo,552
273
279
  fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RPE2dcepeEB3agBKkkH-xA3yMj1czw,2014
274
280
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
275
281
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
276
282
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
277
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=GXJDDjLkhv6psBGAPk3Wh6zfq0Li1KogNHEN2wETFng,8305
283
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=gpUQqxZIuKoaQ-gvdPsLVxI7UifueR6k3YzbUV1i0lk,19902
278
284
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
279
285
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=e5t9olRMOj_SyGVy-gqn7RwC5FAqxNsJDongWIv2KFY,7108
280
286
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
281
287
  fusion_bench/modelpool/openclip_vision/modelpool.py,sha256=2MieB4PMvg85DaiYu49m3BzuBjib1xozJHTpYyHhRTs,11102
282
288
  fusion_bench/modelpool/seq2seq_lm/__init__.py,sha256=FnfSMHcwNHDQEMdB2HdK4WphQ6MufsRLUkczuALjM4Q,57
283
- fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgVXF_pfTKLPeL9XKP-s,2052
289
+ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=yfa_B5TUIkuC1fTn4xD3HHnFPd6AYE-HWpfB8ZrShB8,8819
284
290
  fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNMsNR3VnzFiCpxNGuAGF39rZ9DpBA,129
285
291
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
286
292
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
287
293
  fusion_bench/models/__init__.py,sha256=LeLQw2Yphu4QKZxjws_7MCM50XvFP1rTrvJ_2SR5zIA,271
288
- fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
289
- fusion_bench/models/hf_utils.py,sha256=3vyt8_2_ZWQIWCBX9Yi5CW99lOl4SnmVIil7FyS2w9k,5312
294
+ fusion_bench/models/hf_clip.py,sha256=lL4LxbdwC_rDWRozdEJmRlzKaNcQMpWwCSMDE0tfZRM,7525
295
+ fusion_bench/models/hf_utils.py,sha256=bfB3QAUqsG-TyUeOWrZt8V7GeWDhp-fKg3P0J3D_TbQ,5497
290
296
  fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
291
297
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
292
298
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
293
299
  fusion_bench/models/sparse_we_moe.py,sha256=mFvwYzuwhAfvJ2HhUNRhSu1pbexEP1FsVWXHDxTVUJs,15261
294
300
  fusion_bench/models/utils.py,sha256=RSvk_WCk80L9aH70MsDRyDQUMO9pIOC64FsbT9PBtu0,3110
295
- fusion_bench/models/we_moe.py,sha256=Hkfbazt59cekLR9Xrj044uTcLx3ITXmPWqlWeBWXZW0,7176
301
+ fusion_bench/models/we_moe.py,sha256=KVRz9z-ddk2lhzpLRm0UMOS6L4pw7L4B9oN99gyW78U,7263
296
302
  fusion_bench/models/chat_templates/__init__.py,sha256=v9vKrCfBgZ3UsMBQatZv1Z-ayPualBl5ciV0aO3p3iY,85
297
303
  fusion_bench/models/chat_templates/llama_3_Instruct.py,sha256=E6grNPECr0r1KDPIGW_DmpKQw5-Dh5WbMiTaHWDXwXo,4008
298
304
  fusion_bench/models/chat_templates/load_tokenizer.py,sha256=yRs3dB2tZo0Oh-YLJcMZzWSQ5Ps8KXrggZNb5F-aBuM,1400
@@ -303,7 +309,7 @@ fusion_bench/models/expert_sparsity/mixtral/modeling_mixtral.py,sha256=uGbn69toZ
303
309
  fusion_bench/models/expert_sparsity/mixtral/wrapper.py,sha256=1zACEwXDNbi9uwI96oD84YrCsh6b8yh25ZjP3q37muo,10167
304
310
  fusion_bench/models/linearized/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
305
311
  fusion_bench/models/linearized/linearized_model_utils.py,sha256=eYdDHoDJMTb7isaFXEtZmWkggNfUyjV4gxOFo95zOl4,3274
306
- fusion_bench/models/linearized/vision_model.py,sha256=x79OiIifAI6GxvUlTc6Vs1oxFAdhnNIwerRX2Zw6CTU,4649
312
+ fusion_bench/models/linearized/vision_model.py,sha256=zqAnto9WpnaCJWFbVhG7wiRvS9eDQb4VqwtkBfQWJuM,4655
307
313
  fusion_bench/models/llama/__init__.py,sha256=fATLhtF7BamECgEhY4-DFQSprlGvbQDdIbdim-zghws,699
308
314
  fusion_bench/models/llama/patcher.py,sha256=5rYhqKzxKyEuKflSL0d6uJYKh4-Z9Gdkg-OTDAqlIdY,2758
309
315
  fusion_bench/models/llama/tokenizer_loader.py,sha256=boUp9xZraJNvzd35oSLE--TXD_Pho7pN4xUGEQ5sHjo,5169
@@ -315,7 +321,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
315
321
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
316
322
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
317
323
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
318
- fusion_bench/models/model_card_templates/default.md,sha256=Abd8tUhdZU-B5jwc7N6Gm0zLGNkfx6fr7MAL03VtFDg,885
324
+ fusion_bench/models/model_card_templates/default.md,sha256=DJXwDODCsqIOhkgP57-iCShxLYK_jnsDsJYH1GfbBY8,1028
319
325
  fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
320
326
  fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
321
327
  fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
@@ -334,7 +340,7 @@ fusion_bench/models/modeling_smile_llama/__init__.py,sha256=gnA-KPzl6C6g9a7_retD
334
340
  fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py,sha256=9_f8PlvFS0Ex6uCn8siWwiqU3yy5dlXKz0UDgLuQVPY,546
335
341
  fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py,sha256=7d6mCHWVli5GR26znbFthamlhmec77iRuYx_3HsD5vs,27282
336
342
  fusion_bench/models/modeling_smile_llama/register.py,sha256=oQ35dFhCmrkZZQt-8SuTi8sg9f2MJno9Om83bMTqYUc,378
337
- fusion_bench/models/modeling_smile_mistral/__init__.py,sha256=nJdiks1TJWIFr8sCSTrMqxzFOTCvx6KgDBXDpogzWfQ,175
343
+ fusion_bench/models/modeling_smile_mistral/__init__.py,sha256=_r5ggpcusM4K6yPypZd-SC5F_941oBfE8Ef960GuJeE,205
338
344
  fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py,sha256=yt1-JBlkJmlJw7dvB4_V8M0gy5ihD8isDxcmwyW85d4,633
339
345
  fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py,sha256=5cN1M_XhcFCoJb8yvO1KCwHD_UH__hJg_X2D9C85R34,33128
340
346
  fusion_bench/models/modeling_smile_mistral/register.py,sha256=7nSJC4FveUi78rp53Ps6TcPGedHZ79cikYM5GIfEZfw,400
@@ -359,7 +365,7 @@ fusion_bench/models/smile_moe/utils/svd_utils.py,sha256=A2u7lH5Bo2qhgwplHPAz56pd
359
365
  fusion_bench/models/surgery/__init__.py,sha256=tcUSi2m9GzGWfvRDQScIbdEbFBS_35gm9zGKN7VpE70,53
360
366
  fusion_bench/models/surgery/surgerymodelwrapper.py,sha256=F8jX88K5zVWC6HsfN-nGNkEiPwNrN11ydyQQ1EZHehM,5133
361
367
  fusion_bench/models/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
362
- fusion_bench/models/wrappers/ensemble.py,sha256=MQ92yxI_D8AzzA8sbpZE-rp-vWxO0tTICFnF8Y1Gyss,6380
368
+ fusion_bench/models/wrappers/ensemble.py,sha256=T-DAKrAm-ciZwV6Hbt8uASbjtoQpHTlvVyan3rhk_8k,11632
363
369
  fusion_bench/models/wrappers/layer_wise_fusion.py,sha256=A7LjG0inL5oeEVOkJwEUDM15v4dpQnsCq2y9zA78R3k,11198
364
370
  fusion_bench/models/wrappers/layer_wise_fusion_doge_ta.py,sha256=q5Hc4BtLpAawMbxsWJRL-8OR-x7994Jhr9IyN7vKZ9o,16930
365
371
  fusion_bench/models/wrappers/task_wise_fusion.py,sha256=ROLANdDq0bZ3sIROqIv3udPN8lzDdEwxD0Jonx-5ycw,17465
@@ -374,29 +380,29 @@ fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31Asmvwv
374
380
  fusion_bench/programs/base_program.py,sha256=Bl_bv8SawEUc-GBTtZFMoii0y-r-0hOXBAJkQFexWCU,3475
375
381
  fusion_bench/programs/fabric_fusion_program.py,sha256=jt0_tlg37a2jBl2YikaC0N71Gmr4J340wkKAekyT180,12453
376
382
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
377
- fusion_bench/scripts/cli.py,sha256=VwcwqY--kGDEGI1RoTQ5X32FaKducdRUKf2CZRXcfCM,2739
383
+ fusion_bench/scripts/cli.py,sha256=kEWLEkZEBqUr1_-XTePzNC5NM8lwWvgUBf0Lcuk_FI8,2739
378
384
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
379
385
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
380
386
  fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
381
387
  fusion_bench/scripts/clip/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
382
388
  fusion_bench/scripts/clip/convert_checkpoint.py,sha256=zncgRAhInFpJDSHIm3GO4F6BzgsdAQVj3LLmV7g-JiQ,1221
383
389
  fusion_bench/taskpool/__init__.py,sha256=-ltXMsS3jeGxa9vnhOyrbITOUtfNjLwkGPfS2mKDOdY,1312
384
- fusion_bench/taskpool/base_pool.py,sha256=YXib1qOYYJvtwIvGtN9-FhD3h-N63j0a9jWl0KJO-Fw,933
385
- fusion_bench/taskpool/dummy.py,sha256=wG4GWLs38I9hX271oBRmMJxjpCe2YSJfBeIDaL2PJC4,1783
390
+ fusion_bench/taskpool/base_pool.py,sha256=bscjOzl-6ex3YlhUCFhhpEh6T7LYepZP-X-2NQCRCTg,4331
391
+ fusion_bench/taskpool/dummy.py,sha256=6lm_wAVn0J6ibHS5vrgZmMvEt07s30RJVFLVkpxcPe8,6008
386
392
  fusion_bench/taskpool/gpt2_text_classification.py,sha256=PCNdc2SNGUFGxJ0snmwrnjTdSwmDt9fs7Pe0eDjdvaw,6091
387
- fusion_bench/taskpool/nyuv2_taskpool.py,sha256=Y-TI-rzh9udCjX3FJ11ZbIG7CGrjDccGc-Ch1Ug6cRY,2059
393
+ fusion_bench/taskpool/nyuv2_taskpool.py,sha256=xR2DOyE9nUg-jlshZnvyVwCOOAhbE7-AObrQ2LbHAKk,3405
388
394
  fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBigwkDDdP2EHDwhG9WI,276
389
395
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
390
396
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
391
397
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
392
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=_Ef0MFKcDQV4kmQp1wmFMiOj6j8TFFLeq8IkFLuLrEw,16176
398
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=99F8w_e4-UnoeDkSjo0z_8Wstx6e635h0IqSdtfT7ms,16460
393
399
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
400
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
395
401
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
396
402
  fusion_bench/taskpool/llama/reward_model.py,sha256=ZpRSX4esBAuE0MdTjPHjqS2TnvGb6P8arOGxBeXnq6Y,5028
397
403
  fusion_bench/taskpool/llama/test_generation.py,sha256=kJ_5GruG12FsuJHDh_S7pbQgwEojTqhGpA_wVNH5KPc,6675
398
404
  fusion_bench/taskpool/lm_eval_harness/__init__.py,sha256=_usNxe4z9avClSWjwHMxoznnI_UQFMuo7uOEJhP8jMk,81
399
- fusion_bench/taskpool/lm_eval_harness/taskpool.py,sha256=j3zQqI5cD97NLeipu_cXtE3v4aPIpj_UYvf_YCQR_b0,3279
405
+ fusion_bench/taskpool/lm_eval_harness/taskpool.py,sha256=LwCb7IyafUl0GroDYOJ8DgIcRW-oOJ8EoBI9gMeq46s,7413
400
406
  fusion_bench/taskpool/openclip_vision/__init__.py,sha256=02p77Mb1JE7trrv2HtIku5X667WY5LZ2zVuyL3uIcyo,59
401
407
  fusion_bench/taskpool/openclip_vision/openclip_taskpool.py,sha256=PtD_Y9CWzPI3WEil_RuXtCh8ImPKcSHtZTqfybmsGdg,6875
402
408
  fusion_bench/tasks/__init__.py,sha256=Z_ePIp4Xizkj78QopLg1dZkJAN_IF73MkbR_nkfHQ9Y,52
@@ -435,13 +441,13 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
435
441
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
436
442
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
437
443
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
438
- fusion_bench/utils/__init__.py,sha256=AqB_EY6pGa1pB2BgcRTJM-Ui5IWrisnWA3E--OCz7CA,628
444
+ fusion_bench/utils/__init__.py,sha256=wNAfpP-u_-8HGbLaBoHT_wriU_cNvY4M_UXdBv2kXhc,695
439
445
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
440
446
  fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
441
- fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
442
- fusion_bench/utils/devices.py,sha256=DeCV7UwvWmaYrvmwcZf6e8lZciXAYJ4qERraDZouiUU,8305
447
+ fusion_bench/utils/data.py,sha256=aalB3kGbZUF-PZ_IaAhcXanRKhS-RNMT5mUrEBb4R3E,6722
448
+ fusion_bench/utils/devices.py,sha256=6AkGcs3flt0FSo9yfEREuehoTrgcc65gkwpTWQy8XsI,9546
443
449
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
444
- fusion_bench/utils/dtype.py,sha256=qtsDFfm5XTuxsjvVg-orpWvbhebCvyivzzZbLg-xiaA,4327
450
+ fusion_bench/utils/dtype.py,sha256=z6UlPGF9dzG4Ik8rXGf59PJk_RKzG6Trp8O6wcBS9PU,4360
445
451
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
446
452
  fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,617
447
453
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
@@ -449,18 +455,18 @@ fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqk
449
455
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
450
456
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
451
457
  fusion_bench/utils/lazy_imports.py,sha256=dg4Uu8FaoEu0WGVTo5o_PbLZs3Ei_RG75Ta-Us1iPW4,3500
452
- fusion_bench/utils/lazy_state_dict.py,sha256=prOovUIJSdI3o6epS1_lx7uQYbnsNNdwHmAd0IjXXBs,18300
458
+ fusion_bench/utils/lazy_state_dict.py,sha256=srEKyctbuBW3yrVFSG7Tki_XkBwoc6eUmDXLxHXqX0o,20328
453
459
  fusion_bench/utils/misc.py,sha256=93q0m-HYWkPK91Co5lll_J0Dxs6YahW2lD_X8fUAyTk,2420
454
460
  fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
455
- fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
456
- fusion_bench/utils/parameters.py,sha256=HTlR6nibuBzLafbGktNZNqwkGRIZzKdjqGhyPykZGPo,11790
461
+ fusion_bench/utils/packages.py,sha256=wKl-qtPjA61LrdgTTusuNyvs8jfUv4mA5IwPTFWyYtA,2139
462
+ fusion_bench/utils/parameters.py,sha256=ufEDOYJwcQQxLfveK8hBAGwpu5J3LA_cTWiDgZ2zkJ0,11788
457
463
  fusion_bench/utils/path.py,sha256=qrfgar3b-6_2v032-2hTt97L6qdtG7zc3CFrGFyKSGE,2400
458
464
  fusion_bench/utils/pylogger.py,sha256=r2KXTvq-j8uHdjBBoVPOgkjv4c6pyhbX6xf1JbOsF4w,3335
459
- fusion_bench/utils/rich_utils.py,sha256=XNPUpa1grna_C0MLQs0nY25-Kfutpj9BOEzvjoH7nR0,5849
465
+ fusion_bench/utils/rich_utils.py,sha256=24RF-OHK6h9ggZ95csw_vMU8YtxYNOxlzjcH7dpuESY,5863
460
466
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
461
467
  fusion_bench/utils/state_dict_arithmetic.py,sha256=fczHDEpL2_UmxNIdvQtllXvBWBcmKpw-p6CIS_upjwI,11818
462
468
  fusion_bench/utils/tensorboard.py,sha256=9fkgNYR9LM38nPNkudcxL9TjLUseW-280M0k2nLff7o,1669
463
- fusion_bench/utils/timer.py,sha256=RC2hP8JqaibdL0FnRyUCBRf4m7CXyfn5tE16zBWZ7hg,1338
469
+ fusion_bench/utils/timer.py,sha256=adBpA_XjpCuVvL6uyCtKhAFRzk4SXsr8T8P5kQNz0x8,5012
464
470
  fusion_bench/utils/type.py,sha256=2iu8PQzSzI2KopYwg4Pay7qpq7s_LKkl6Rhj-tjG3u0,630
465
471
  fusion_bench/utils/plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
466
472
  fusion_bench/utils/plot/color_data.py,sha256=5QO2tlf-9bCKywsIZJXxl6klWb8EntXFilTas_8je5c,48260
@@ -469,7 +475,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
469
475
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
470
476
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
471
477
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
472
- fusion_bench-0.2.22.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
478
+ fusion_bench-0.2.24.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
473
479
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
474
480
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
475
481
  fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
@@ -482,6 +488,7 @@ fusion_bench_config/_get_started/clip_evaluate_single_model.yaml,sha256=Bh448Jd_
482
488
  fusion_bench_config/_get_started/clip_simple_average.yaml,sha256=MHaqUyuaLfHKMn5OPeNMpv3jCI1_zIEfsIQjonp3fow,780
483
489
  fusion_bench_config/_get_started/clip_task_arithmetic.yaml,sha256=GQ2FMeaTQ279sXbleh_iG7hop_mO867PLvj8piEWWjo,775
484
490
  fusion_bench_config/_get_started/greeting_program.yaml,sha256=zDLoWlhLsXeACSm6vBK_T1b8U7M4flZ_MpeEWv2OlCQ,137
491
+ fusion_bench_config/_get_started/llm_slerp.yaml,sha256=THtIMJ9ovXFkZe9ZvzsqZjJ962tiNpF_rfFEy378_JI,398
485
492
  fusion_bench_config/dataset/image_classification/README.md,sha256=fgxqviGhqkJ-lPihQNG7I8bn-PhU5EDFBDQnH27xEmQ,321
486
493
  fusion_bench_config/dataset/image_classification/test/TALL10.yaml,sha256=cBEKzMNbY19w1KrKm7ED08TSA_fSbdnPO586YqYVS5A,608
487
494
  fusion_bench_config/dataset/image_classification/test/TALL12.yaml,sha256=EmoJlzyiHPXM-kSu5p6Wkek5IIg7mc0J_LaoA1kREh0,604
@@ -617,7 +624,7 @@ fusion_bench_config/method/dare/ties_merging.yaml,sha256=7gDW4XpezrsccsbJGqqKrbX
617
624
  fusion_bench_config/method/dawe/dawe_for_clip.yaml,sha256=99P5xpp1YGvIwXGxDcxRtJMLE2FhvEFmFBQjOMEcGoc,1023
618
625
  fusion_bench_config/method/doge_ta/doge_ta.yaml,sha256=CtZI3YPMJNDy225yhOJbSiMKlsc-X5nCFzmVh0dvr-w,78
619
626
  fusion_bench_config/method/ensemble/max_model_predictor.yaml,sha256=khdpCvKMNytx4nZSgtUJFXv44MVytXu0aqUVd9TixXo,57
620
- fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=Ih9dqifpnvxW2QfJqp8Q8S8W1k7VZG9ulyPxkcuaWsw,54
627
+ fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=RKa3IgN3DfFZVmeXVIdTt0NdPVV0jFkpQz6SxLs3Kso,124
621
628
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
622
629
  fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
623
630
  fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
@@ -634,13 +641,15 @@ fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdt
634
641
  fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=chM6_HRKKcMleTeuKY3-YNI1qaMG2CfnsRwUxAlHsRw,66
635
642
  fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
636
643
  fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
637
- fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=r2Zul2GaMEEQ7NEDf8yiAgEiMDPNibU4qsJ0toD2KjQ,319
638
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml,sha256=N7cyHm6a2QwNsV9uaJp-eZmdbs9kmdRrkxtO58QQQgM,116
644
+ fusion_bench_config/method/linear/simple_average_for_causallm.yaml,sha256=qqeIr61PJEcfZclZ5vV64GCzyt-8b1zB0FDZu8DsbXQ,322
645
+ fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml,sha256=tJA0n0_XVvll4rZYVHQVqFCz8W3Bey6NjPKMIH3-P0U,142
646
+ fusion_bench_config/method/linear/ties_merging_for_causallm.yaml,sha256=1oEIdxV0OqWjDQ9V_lmXEPUayp4KbKHE2SvpCLmiKOU,489
639
647
  fusion_bench_config/method/linear/weighted_average.yaml,sha256=uq2gHGCwVHHSa1H-hzcrSlumUTLJ50tfyiY1Mh1pFsk,186
640
648
  fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t5R1f-ZG6ubUyRr__DBe9BzXrgL81ua3DkQoM,498
641
649
  fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml,sha256=QHsRfJK9K4KajsX3LBHG8cDt7ZLJWxOBnJjpHRQSB_s,1348
642
650
  fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml,sha256=c0rFqj2GV11X9RMraHXJtJ9OiMUzZtvDVsTn4tgAeco,1337
643
651
  fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml,sha256=LjGwfTiiC5iQKr62i22XopQTfSKbx9UbsDvEW-byneQ,1622
652
+ fusion_bench_config/method/model_stock/model_stock.yaml,sha256=G92eRhG_Zsgi2R2FRnMViGC9QPvo7ge-o_eI4ZZLxao,321
644
653
  fusion_bench_config/method/moe_pruner/moe_pruner.yaml,sha256=OYMYLKvLlNEht7BK9phaTEvAE1ySaVi-pvjYiT-OTGw,442
645
654
  fusion_bench_config/method/opcm/opcm.yaml,sha256=YkjAMVGFDj0xqqxA7XWNr0vmcRyxeYbV387nWe0cUbk,331
646
655
  fusion_bench_config/method/opcm/task_arithmetic.yaml,sha256=wc9Bz7K_u0feLZbhCBhAuwjeIQTSugJu0I0DCmRNY_c,326
@@ -663,6 +672,7 @@ fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o
663
672
  fusion_bench_config/method/regmean/regmean.yaml,sha256=ZgVVLx-lHwVgjtjTl4VZUlthh8yyua87QvoJfmNHud4,101
664
673
  fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=A034ryEwvosqyQzA3KWs7kdp-3CUnoJtCujVywV-uzA,434
665
674
  fusion_bench_config/method/slerp/slerp.yaml,sha256=xldDUULtfCdwzAkQUb0C8-TmbW7FqcAlIOsPX8p4n6w,116
675
+ fusion_bench_config/method/slerp/slerp_lm.yaml,sha256=c5OQ0zD7e0lXQyec09joHOFNxV1LMT4bHuwgk9GWskc,114
666
676
  fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=skLwgu_VHShm4m0oEOkqKzcBS5Cz7J29xEj7pTaSm0k,916
667
677
  fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=6Gui-OuQ3P_4TwO_syh9SWJCNeHiAQzS55aO-ByYKbQ,154
668
678
  fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=M_EBOC3B_pxaBO3tD6mnbXpvy6-EaegSsE-jdJs-HY0,114
@@ -680,6 +690,7 @@ fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05T
680
690
  fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
681
691
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
682
692
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
693
+ fusion_bench_config/method/wudi/wudi.yaml,sha256=3mJ6-XKHwwHALS3d503ybGM7pc1PhEK91YwwMybuzMc,76
683
694
  fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
684
695
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml,sha256=Fn7or7-5fVZNyp6fH1lkwk7mq7iVhpR3sMt6Sm7Yg6I,43
685
696
  fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml,sha256=8G2OCCDaSJkzDOMDsV08NE-Z5YWMjDsFVs1WY3OWNss,787
@@ -835,9 +846,11 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
835
846
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=FuPWQbC9xEV5wZjuo835gOMNgbzmpK9RbjFjA_HOzqo,2476
836
847
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=9PCkbrNnQSKTsm4eoUvVgjGd3IY7wHBC4LWj4kOdY4Y,1406
837
848
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=bqnyzgwIvDtV3Fb-uLf9mdFv0NW1C392lxGsGUPLsKE,400
838
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml,sha256=D8HdBRGUYD-c-c38oSgzcP3fkNhBN-tVdqLnS_B-7zc,265
849
+ fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_code.yaml,sha256=4DoMFlGabtwZXZMGWsWtkP2rlGOx_1eEPp_AyqyVln0,263
850
+ fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml,sha256=ofFFVYKHKtylxd90REMLhhP57Yqwe2AEbGuZ0mBCVz8,305
839
851
  fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml,sha256=Nxk72MurqSzEyPJzGoKFbk5T2TGWBwYpH2V9Jzqt648,229
840
852
  fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
853
+ fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml,sha256=mm7A3NilcANJBuCZMt3MMLKFm7CjBhMYWAa9TXjM_PQ,326
841
854
  fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
842
855
  fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml,sha256=FuUsBrvk3_bQiciMRlNsO5vp6AKHQM_-g-8bmU8251w,641
843
856
  fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml,sha256=H3UwSk4ChsGSrH49LuttxldFURW-4RVUtnIa0ClHKXo,802
@@ -921,8 +934,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
921
934
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
922
935
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
923
936
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
924
- fusion_bench-0.2.22.dist-info/METADATA,sha256=NjsAXU_TQaCd_XbaX88jQg1wlvoyaHvMAWMr00zqeKA,22384
925
- fusion_bench-0.2.22.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
926
- fusion_bench-0.2.22.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
927
- fusion_bench-0.2.22.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
928
- fusion_bench-0.2.22.dist-info/RECORD,,
937
+ fusion_bench-0.2.24.dist-info/METADATA,sha256=DllRpMnvVgyeqjN_YlNeo7IlqukzOjuYO_cWopOo1tA,22621
938
+ fusion_bench-0.2.24.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
939
+ fusion_bench-0.2.24.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
940
+ fusion_bench-0.2.24.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
941
+ fusion_bench-0.2.24.dist-info/RECORD,,
@@ -0,0 +1,12 @@
1
+ _target_: fusion_bench.programs.FabricModelFusionProgram
2
+ _recursive_: false
3
+ method:
4
+ _target_: fusion_bench.method.SlerpForCausalLM
5
+ t: 0.5
6
+ modelpool:
7
+ _target_: fusion_bench.modelpool.CausalLMPool
8
+ models:
9
+ model_1: ibivibiv/alpaca-dragon-72b-v1
10
+ model_2: moreh/MoMo-72B-lora-1.8.7-DPO
11
+ tokenizer: ibivibiv/alpaca-dragon-72b-v1
12
+ enable_lazy_loading: true # load model as LazyStateDict
@@ -1 +1,2 @@
1
1
  _target_: fusion_bench.method.SimpleEnsembleAlgorithm
2
+ device_map: null # Set to null for single device, or specify mapping
@@ -1,4 +1,4 @@
1
- _target_: fusion_bench.method.SimpleAverageForLlama
1
+ _target_: fusion_bench.method.SimpleAverageForCausalLM
2
2
  # set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
3
3
  # if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
4
4
  merge_backbone: false
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.TaskArithmeticForCausalLM
2
+ scaling_factor: 0.3
3
+ merge_backbone: false
4
+ model_save_path: ${path.log_dir}/checkpoint
@@ -0,0 +1,13 @@
1
+ _target_: fusion_bench.method.TiesMergingForCausalLM
2
+ # Scaling factor $\lambda$
3
+ scaling_factor: 0.3
4
+ # Threshold for resetting values in the task vector
5
+ threshold: 20
6
+ # List of keys to remove from the state dict, default is empty
7
+ remove_keys: []
8
+ # Function to merge the models, default is sum. Options are 'sum', 'mean', and 'max'
9
+ merge_func: sum
10
+ # Whether to merge only the backbone layers
11
+ merge_backbone: false
12
+ # Path to save the merged model
13
+ model_save_path: ${path.log_dir}/checkpoint
@@ -0,0 +1,12 @@
1
+ _target_: fusion_bench.method.model_stock.ModelStock
2
+ ignore_keys:
3
+ [
4
+ "model.positional_embedding",
5
+ "model.text_projection",
6
+ "model.logit_scale",
7
+ "model.token_embedding.weight",
8
+ "model.ln_final.weight",
9
+ "model.ln_final.bias",
10
+ ]
11
+ model_save_path: ${path.log_dir}/checkpoint
12
+ model_save_kwargs: null
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.SlerpForCausalLM
2
+ t: 0.5
3
+ model_save_path: ${path.log_dir}/checkpoint
4
+ show_pbar: True
@@ -0,0 +1,4 @@
1
+ _target_: fusion_bench.method.WUDIMerging
2
+
3
+ iter_num: 400
4
+ exclude_keys: null
@@ -1,7 +1,6 @@
1
1
  _target_: fusion_bench.modelpool.CausalLMPool
2
2
  _recursive_: false
3
-
4
- enable_lazy_loading: false
3
+ enable_lazy_loading: true
5
4
  models:
6
5
  _pretrained_: Qwen/Qwen2.5-1.5B
7
6
  math: Qwen/Qwen2.5-Math-1.5B
@@ -0,0 +1,11 @@
1
+ _target_: fusion_bench.modelpool.CausalLMPool
2
+ _recursive_: false
3
+ enable_lazy_loading: true
4
+ models:
5
+ _pretrained_: Qwen/Qwen2.5-1.5B
6
+ math: Qwen/Qwen2.5-Math-1.5B
7
+ code: Qwen/Qwen2.5-Coder-1.5B
8
+ instruction: Qwen/Qwen2.5-1.5B-Instruct
9
+ model_kwargs:
10
+ torch_dtype: bfloat16
11
+ tokenizer: Qwen/Qwen2.5-1.5B
@@ -0,0 +1,11 @@
1
+ _target_: fusion_bench.modelpool.CausalLMPool
2
+ _recursive_: false
3
+ enable_lazy_loading: true
4
+ models:
5
+ _pretrained_: meta-llama/Llama-2-7b-hf
6
+ chat: meta-llama/Llama-2-7b-chat-hf
7
+ math: WizardLMTeam/WizardMath-7B-V1.0
8
+ code: codellama/CodeLlama-7b-hf
9
+ model_kwargs:
10
+ torch_dtype: bfloat16
11
+ tokenizer: meta-llama/Llama-2-7b-hf
@@ -1,4 +0,0 @@
1
- _target_: fusion_bench.method.TaskArithmeticForLlama
2
- scaling_factor: 0.3
3
- merge_backbone: true
4
- model_save_path: null