fusion-bench 0.2.22__py3-none-any.whl → 0.2.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. fusion_bench/__init__.py +4 -0
  2. fusion_bench/compat/method/__init__.py +5 -2
  3. fusion_bench/compat/method/base_algorithm.py +3 -2
  4. fusion_bench/compat/modelpool/base_pool.py +3 -3
  5. fusion_bench/compat/taskpool/clip_image_classification.py +1 -1
  6. fusion_bench/dataset/gpt2_glue.py +1 -1
  7. fusion_bench/method/__init__.py +12 -2
  8. fusion_bench/method/analysis/task_vector_cos_similarity.py +95 -12
  9. fusion_bench/method/analysis/task_vector_violin_plot.py +160 -52
  10. fusion_bench/method/bitdelta/bitdelta.py +7 -23
  11. fusion_bench/method/ensemble.py +17 -2
  12. fusion_bench/method/expert_sparsity/mixtral/dynamic_skipping.py +2 -0
  13. fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py +2 -0
  14. fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py +2 -0
  15. fusion_bench/method/linear/__init__.py +6 -2
  16. fusion_bench/method/linear/{simple_average_for_llama.py → simple_average_for_causallm.py} +8 -4
  17. fusion_bench/method/linear/{task_arithmetic_for_llama.py → task_arithmetic_for_causallm.py} +22 -12
  18. fusion_bench/method/linear/ties_merging_for_causallm.py +70 -0
  19. fusion_bench/method/model_stock/__init__.py +1 -0
  20. fusion_bench/method/model_stock/model_stock.py +309 -0
  21. fusion_bench/method/regmean/clip_regmean.py +3 -6
  22. fusion_bench/method/regmean/regmean.py +27 -56
  23. fusion_bench/method/regmean/utils.py +56 -0
  24. fusion_bench/method/regmean_plusplus/regmean_plusplus.py +21 -60
  25. fusion_bench/method/simple_average.py +2 -2
  26. fusion_bench/method/slerp/__init__.py +1 -1
  27. fusion_bench/method/slerp/slerp.py +110 -14
  28. fusion_bench/method/task_arithmetic/task_arithmetic.py +35 -10
  29. fusion_bench/method/ties_merging/ties_merging.py +22 -6
  30. fusion_bench/method/we_moe/flan_t5_we_moe.py +9 -20
  31. fusion_bench/method/wudi/__init__.py +1 -0
  32. fusion_bench/method/wudi/wudi.py +105 -0
  33. fusion_bench/mixins/clip_classification.py +26 -6
  34. fusion_bench/mixins/lightning_fabric.py +4 -0
  35. fusion_bench/mixins/serialization.py +40 -83
  36. fusion_bench/modelpool/base_pool.py +1 -1
  37. fusion_bench/modelpool/causal_lm/causal_lm.py +285 -44
  38. fusion_bench/modelpool/seq2seq_lm/modelpool.py +146 -0
  39. fusion_bench/models/hf_clip.py +4 -0
  40. fusion_bench/models/hf_utils.py +10 -4
  41. fusion_bench/models/linearized/vision_model.py +6 -6
  42. fusion_bench/models/model_card_templates/default.md +8 -1
  43. fusion_bench/models/modeling_smile_mistral/__init__.py +1 -0
  44. fusion_bench/models/we_moe.py +8 -8
  45. fusion_bench/models/wrappers/ensemble.py +136 -7
  46. fusion_bench/scripts/cli.py +2 -2
  47. fusion_bench/taskpool/base_pool.py +99 -17
  48. fusion_bench/taskpool/clip_vision/taskpool.py +12 -5
  49. fusion_bench/taskpool/dummy.py +101 -13
  50. fusion_bench/taskpool/lm_eval_harness/taskpool.py +80 -0
  51. fusion_bench/taskpool/nyuv2_taskpool.py +28 -0
  52. fusion_bench/utils/__init__.py +1 -0
  53. fusion_bench/utils/data.py +6 -4
  54. fusion_bench/utils/devices.py +36 -11
  55. fusion_bench/utils/dtype.py +3 -2
  56. fusion_bench/utils/lazy_state_dict.py +85 -19
  57. fusion_bench/utils/packages.py +3 -3
  58. fusion_bench/utils/parameters.py +0 -2
  59. fusion_bench/utils/rich_utils.py +7 -3
  60. fusion_bench/utils/timer.py +92 -10
  61. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/METADATA +10 -3
  62. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/RECORD +77 -64
  63. fusion_bench_config/_get_started/llm_slerp.yaml +12 -0
  64. fusion_bench_config/method/ensemble/simple_ensemble.yaml +1 -0
  65. fusion_bench_config/method/linear/{simple_average_for_llama.yaml → simple_average_for_causallm.yaml} +1 -1
  66. fusion_bench_config/method/linear/task_arithmetic_for_causallm.yaml +4 -0
  67. fusion_bench_config/method/linear/ties_merging_for_causallm.yaml +13 -0
  68. fusion_bench_config/method/model_stock/model_stock.yaml +12 -0
  69. fusion_bench_config/method/slerp/slerp_lm.yaml +4 -0
  70. fusion_bench_config/method/wudi/wudi.yaml +4 -0
  71. fusion_bench_config/modelpool/CausalLMPool/{Qwen2.5-1.5B_math_and_coder.yaml → Qwen2.5-1.5B_math_and_code.yaml} +1 -2
  72. fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_three_models.yaml +11 -0
  73. fusion_bench_config/modelpool/CausalLMPool/llama-7b_3-models_v1.yaml +11 -0
  74. fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +0 -4
  75. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/WHEEL +0 -0
  76. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/entry_points.txt +0 -0
  77. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/licenses/LICENSE +0 -0
  78. {fusion_bench-0.2.22.dist-info → fusion_bench-0.2.24.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,10 @@
1
1
  """
2
- This is the dummy task pool that is used for debugging purposes.
2
+ Dummy task pool implementation for debugging and testing purposes.
3
+
4
+ This module provides a minimal task pool implementation that can be used for
5
+ debugging model fusion workflows, testing infrastructure, and validating model
6
+ architectures without running expensive evaluation procedures. It's particularly
7
+ useful during development and prototyping phases.
3
8
  """
4
9
 
5
10
  from typing import Optional
@@ -14,14 +19,41 @@ from fusion_bench.utils.parameters import count_parameters, print_parameters
14
19
 
15
20
 
16
21
  def get_model_summary(model: nn.Module) -> dict:
17
- """
18
- Generate a report for the given model.
22
+ """Generate a comprehensive summary report for a PyTorch model.
23
+
24
+ Analyzes the given model to extract key information about its architecture,
25
+ parameter count, and training characteristics. This function is useful for
26
+ model introspection and comparative analysis during model fusion workflows.
27
+
28
+ The summary includes both trainable and total parameter counts, which helps
29
+ in understanding model complexity and memory requirements. The trainable
30
+ percentage is particularly useful for identifying models with frozen layers
31
+ or parameter-efficient fine-tuning setups.
19
32
 
20
33
  Args:
21
- model: The model to generate the report for.
34
+ model: The PyTorch model to analyze. Can be any nn.Module instance
35
+ including complex models, fusion models, or pre-trained models.
22
36
 
23
37
  Returns:
24
- dict: The generated report.
38
+ dict: A structured report containing model information:
39
+ - model_info: Dictionary with parameter statistics
40
+ - trainable_params: Number of trainable parameters
41
+ - all_params: Total number of parameters (trainable + frozen)
42
+ - trainable_percentage: Ratio of trainable to total parameters
43
+
44
+ Example:
45
+ ```python
46
+ >>> model = MyModel()
47
+ >>> summary = get_model_summary(model)
48
+ >>> print(summary)
49
+ {
50
+ "model_info": {
51
+ "trainable_params": 1234567,
52
+ "all_params": 1234567,
53
+ "trainable_percentage": 1.0
54
+ }
55
+ }
56
+ ```
25
57
  """
26
58
  report = {}
27
59
  training_params, all_params = count_parameters(model)
@@ -34,21 +66,77 @@ def get_model_summary(model: nn.Module) -> dict:
34
66
 
35
67
 
36
68
  class DummyTaskPool(BaseTaskPool):
69
+ """A lightweight task pool implementation for debugging and development workflows.
70
+
71
+ This dummy task pool provides a minimal evaluation interface that focuses on
72
+ model introspection rather than task-specific performance evaluation. It's
73
+ designed for development scenarios where you need to test model fusion
74
+ pipelines, validate architectures, or debug workflows without the overhead
75
+ of running actual evaluation tasks.
76
+
77
+ The task pool is particularly useful when:
78
+ - You want to verify model fusion works correctly
79
+ - You need to check parameter counts after fusion
80
+ - You're developing new fusion algorithms
81
+ - You want to test infrastructure without expensive evaluations
82
+
83
+ Example:
84
+ ```python
85
+ >>> taskpool = DummyTaskPool(model_save_path="/tmp/fused_model")
86
+ >>> results = taskpool.evaluate(fused_model)
87
+ >>> print(f"Model has {results['model_info']['trainable_params']} parameters")
88
+ ```
37
89
  """
38
- This is a dummy task pool used for debugging purposes. It inherits from the base TaskPool class.
39
- """
40
90
 
41
- def __init__(self, model_save_path: Optional[str] = None):
42
- super().__init__()
91
+ def __init__(self, model_save_path: Optional[str] = None, **kwargs):
92
+ """Initialize the dummy task pool with optional model saving capability.
93
+
94
+ Args:
95
+ model_save_path: Optional path where the evaluated model should be saved.
96
+ If provided, the model will be serialized and saved to this location
97
+ after evaluation using the separate_save utility. If None, no model
98
+ saving will be performed.
99
+
100
+ Example:
101
+ ```python
102
+ >>> # Create taskpool without saving
103
+ >>> taskpool = DummyTaskPool()
104
+
105
+ >>> # Create taskpool with model saving
106
+ >>> taskpool = DummyTaskPool(model_save_path="/path/to/save/model.pth")
107
+ ```
108
+ """
109
+ super().__init__(**kwargs)
43
110
  self.model_save_path = model_save_path
44
111
 
45
112
  def evaluate(self, model):
46
- """
47
- Evaluate the given model.
48
- This method does nothing but print the parameters of the model in a human-readable format.
113
+ """Perform lightweight evaluation and analysis of the given model.
114
+
115
+ This method provides a minimal evaluation that focuses on model introspection
116
+ rather than task-specific performance metrics. It performs parameter analysis,
117
+ optionally saves the model, and returns a summary report.
118
+
119
+ The evaluation process includes:
120
+ 1. Printing human-readable parameter information (rank-zero only)
121
+ 2. Optionally saving the model if a save path was configured
122
+ 3. Generating and returning a model summary report
49
123
 
50
124
  Args:
51
- model: The model to evaluate.
125
+ model: The model to evaluate. Can be any PyTorch nn.Module including
126
+ fusion models, pre-trained models, or custom architectures.
127
+
128
+ Returns:
129
+ dict: A model summary report containing parameter statistics and
130
+ architecture information. See get_model_summary() for detailed
131
+ format specification.
132
+
133
+ Example:
134
+ ```python
135
+ >>> taskpool = DummyTaskPool(model_save_path="/tmp/model.pth")
136
+ >>> model = torch.nn.Linear(10, 5)
137
+ >>> results = taskpool.evaluate(model)
138
+ >>> print(f"Trainable params: {results['model_info']['trainable_params']}")
139
+ ```
52
140
  """
53
141
  if rank_zero_only.rank == 0:
54
142
  print_parameters(model, is_human_readable=True)
@@ -16,6 +16,47 @@ log = logging.getLogger(__name__)
16
16
 
17
17
 
18
18
  class LMEvalHarnessTaskPool(BaseTaskPool, LightningFabricMixin):
19
+ """A task pool implementation that interfaces with the LM Evaluation Harness framework.
20
+
21
+ This class provides a wrapper around the LM Evaluation Harness (lm-eval) library,
22
+ enabling evaluation of language models on various standardized benchmarks and tasks.
23
+ It inherits from BaseTaskPool and LightningFabricMixin to provide distributed
24
+ computing capabilities through PyTorch Lightning Fabric.
25
+
26
+ The task pool supports evaluation on multiple tasks simultaneously and provides
27
+ flexible configuration options for batch processing, output formatting, and
28
+ logging. It automatically handles model setup and wrapping for distributed
29
+ evaluation when using Lightning Fabric.
30
+
31
+ Args:
32
+ tasks: A single task name or list of task names to evaluate on.
33
+ Examples: "hellaswag", ["arc_easy", "arc_challenge", "hellaswag"]
34
+ apply_chat_template: Whether to apply chat template formatting to inputs.
35
+ Useful for instruction-tuned or chat models.
36
+ include_path: Path to additional task definitions or custom tasks.
37
+ batch_size: Number of samples to process in each batch. Larger values
38
+ may improve throughput but require more memory.
39
+ metadata: Additional metadata to include in evaluation results.
40
+ verbosity: Logging verbosity level for the evaluation process.
41
+ output_path: Custom path for saving evaluation results. If None,
42
+ results are saved to the default log directory.
43
+ log_samples: Whether to log individual sample predictions and targets.
44
+ Useful for debugging but increases output size significantly.
45
+ _usage_: Internal usage tracking string.
46
+ _version_: Internal version tracking string.
47
+ **kwargs: Additional arguments passed to the LM Evaluation Harness.
48
+
49
+ Example:
50
+ ```python
51
+ >>> taskpool = LMEvalHarnessTaskPool(
52
+ ... tasks=["arc_easy", "hellaswag"],
53
+ ... batch_size=8,
54
+ ... verbosity="INFO"
55
+ ... )
56
+ >>> results = taskpool.evaluate(model)
57
+ ```
58
+ """
59
+
19
60
  def __init__(
20
61
  self,
21
62
  tasks: Union[str, List[str]],
@@ -44,6 +85,45 @@ class LMEvalHarnessTaskPool(BaseTaskPool, LightningFabricMixin):
44
85
  self.log_samples = log_samples
45
86
 
46
87
  def evaluate(self, model, *command_line_args, **kwargs):
88
+ """Evaluate a language model on the configured tasks using LM Evaluation Harness.
89
+
90
+ This method wraps the model with the LM Evaluation Harness framework and
91
+ executes evaluation on all configured tasks. It automatically handles
92
+ command-line argument construction, model wrapping with Lightning Fabric
93
+ for distributed evaluation, and result logging.
94
+
95
+ The evaluation process includes:
96
+ 1. Building command-line arguments from instance configuration
97
+ 2. Setting up the LM Evaluation Harness argument parser
98
+ 3. Wrapping the model with Lightning Fabric if not already wrapped
99
+ 4. Creating an HFLM (Hugging Face Language Model) wrapper
100
+ 5. Executing the evaluation through the LM-Eval CLI interface
101
+
102
+ Args:
103
+ model: The language model to evaluate. Can be a Hugging Face model,
104
+ PyTorch model, or any model compatible with the LM Evaluation Harness.
105
+ The model will be automatically wrapped with Lightning Fabric for
106
+ distributed evaluation if not already wrapped.
107
+ *command_line_args: Additional positional command-line arguments
108
+ (currently unused but preserved for interface compatibility).
109
+ **kwargs: Additional keyword arguments that will be converted to
110
+ command-line flags and passed to the LM Evaluation Harness.
111
+ Keys will be prefixed with '--' and values converted to strings.
112
+
113
+ Returns:
114
+ None: Results are written to the configured output path and logged.
115
+
116
+ Example:
117
+ ```python
118
+ >>> taskpool = LMEvalHarnessTaskPool(tasks=["arc_easy"])
119
+ >>> taskpool.evaluate(model, limit=100, device="cuda")
120
+ ```
121
+
122
+ Note:
123
+ The method leverages the LM Evaluation Harness's command-line interface
124
+ internally, which provides standardized evaluation procedures and
125
+ ensures compatibility with the broader evaluation ecosystem.
126
+ """
47
127
  command_line_args = []
48
128
  if self.include_path is not None:
49
129
  command_line_args.extend(["--include_path", self.include_path])
@@ -15,9 +15,37 @@ log = logging.getLogger(__name__)
15
15
 
16
16
 
17
17
  class NYUv2TaskPool(TaskPool):
18
+ """Task pool for multi-task learning evaluation on the NYUv2 dataset.
19
+
20
+ This task pool provides evaluation capabilities for multi-task learning models
21
+ on the NYU Depth V2 (NYUv2) dataset, which is a popular benchmark for indoor
22
+ scene understanding. The dataset supports multiple computer vision tasks
23
+ including semantic segmentation, depth estimation, and surface normal prediction.
24
+
25
+ The task pool is designed to work with encoder-decoder architectures where
26
+ a shared encoder processes input images and task-specific decoders generate
27
+ predictions for different tasks. It integrates with PyTorch Lightning for
28
+ streamlined training and evaluation workflows.
29
+
30
+ Supported Tasks:
31
+ - Semantic segmentation
32
+ - Depth estimation
33
+ - Surface normal prediction
34
+ """
35
+
18
36
  _trainer: L.Trainer = None
19
37
 
20
38
  def __init__(self, taskpool_config: DictConfig):
39
+ """Initialize the NYUv2 task pool with configuration settings.
40
+
41
+ Args:
42
+ taskpool_config: Configuration object containing all necessary
43
+ parameters for the task pool, including:
44
+ - data_dir: Path to the directory containing NYUv2 dataset
45
+ - tasks: List of tasks to evaluate (e.g., ["semantic", "depth"])
46
+ - batch_size: Batch size for evaluation data loader
47
+ - num_workers: Number of worker processes for data loading
48
+ """
21
49
  self.config = taskpool_config
22
50
 
23
51
  def load_datasets(self):
@@ -20,3 +20,4 @@ from .packages import import_object
20
20
  from .parameters import *
21
21
  from .pylogger import get_rankzero_logger
22
22
  from .timer import timeit_context
23
+ from .type import BoolStateDictType, StateDictType, TorchModelType
@@ -1,6 +1,6 @@
1
1
  import pickle
2
2
  from pathlib import Path
3
- from typing import Literal, Optional, Union
3
+ from typing import Any, Literal, Optional, Tuple, Union
4
4
 
5
5
  import numpy as np
6
6
  import torch
@@ -37,7 +37,9 @@ class InfiniteDataLoader:
37
37
  return data
38
38
 
39
39
 
40
- def load_tensor_from_file(file_path: Union[str, Path], device=None) -> torch.Tensor:
40
+ def load_tensor_from_file(
41
+ file_path: Union[str, Path], device: Optional[Union[str, torch.device]] = None
42
+ ) -> torch.Tensor:
41
43
  """
42
44
  Loads a tensor from a file, which can be either a .pt, .pth or .np file.
43
45
  If the file is not one of these formats, it will try to load it as a pickle file.
@@ -72,7 +74,7 @@ def train_validation_split(
72
74
  validation_size: Optional[int] = None,
73
75
  random_seed: Optional[int] = None,
74
76
  return_split: Literal["all", "train", "val"] = "both",
75
- ):
77
+ ) -> Union[Tuple[Dataset, Dataset], Dataset]:
76
78
  """
77
79
  Split a dataset into a training and validation set.
78
80
 
@@ -134,7 +136,7 @@ def train_validation_test_split(
134
136
  test_fraction: float,
135
137
  random_seed: Optional[int] = None,
136
138
  return_spilt: Literal["all", "train", "val", "test"] = "all",
137
- ):
139
+ ) -> Union[Tuple[Dataset, Dataset, Dataset], Dataset]:
138
140
  """
139
141
  Split a dataset into a training, validation and test set.
140
142
 
@@ -1,7 +1,7 @@
1
1
  import gc
2
2
  import logging
3
3
  import os
4
- from typing import List, Optional, Union
4
+ from typing import Any, List, Optional, Union
5
5
 
6
6
  import torch
7
7
  from transformers.utils import (
@@ -12,6 +12,8 @@ from transformers.utils import (
12
12
  is_torch_xpu_available,
13
13
  )
14
14
 
15
+ from .type import T
16
+
15
17
  __all__ = [
16
18
  "clear_cuda_cache",
17
19
  "to_device",
@@ -37,7 +39,12 @@ def clear_cuda_cache():
37
39
  log.warning("CUDA is not available. No cache to clear.")
38
40
 
39
41
 
40
- def to_device(obj, device: Optional[torch.device], **kwargs):
42
+ def to_device(
43
+ obj: T,
44
+ device: Optional[torch.device],
45
+ copy_on_move: bool = False,
46
+ **kwargs: Any,
47
+ ) -> T:
41
48
  """
42
49
  Move a given object to the specified device.
43
50
 
@@ -47,12 +54,20 @@ def to_device(obj, device: Optional[torch.device], **kwargs):
47
54
  Args:
48
55
  obj: The object to be moved to the device. This can be a torch.Tensor, torch.nn.Module, list, tuple, or dict.
49
56
  device (torch.device): The target device to move the object to. This can be `None`.
50
- **kwargs: Additional keyword arguments to be passed to the `to` method of torch.Tensor or torch.nn.Module. For example, `non_blocking=True`, `dtype=torch.float16`.
57
+ copy_on_move (bool, optional): Whether to force a copy operation when moving tensors to a different device.
58
+ If True, tensors will be copied when moved to a different device (copy=True is passed to tensor.to()).
59
+ If False (default), tensors are moved without forcing a copy operation, allowing PyTorch to optimize
60
+ the operation. This parameter only affects torch.Tensor objects; modules and other types are unaffected.
61
+ Defaults to False.
62
+ **kwargs: Additional keyword arguments to be passed to the `to` method of torch.Tensor or torch.nn.Module.
63
+ For example, `non_blocking=True`, `dtype=torch.float16`. Note that if `copy_on_move=True`, the `copy`
64
+ keyword argument will be automatically set and should not be provided manually.
51
65
 
52
66
  Returns:
53
67
  The object moved to the specified device. The type of the returned object matches the type of the input object.
54
68
 
55
69
  Examples:
70
+ ```python
56
71
  >>> tensor = torch.tensor([1, 2, 3])
57
72
  >>> to_device(tensor, torch.device('cuda'))
58
73
  tensor([1, 2, 3], device='cuda:0')
@@ -64,17 +79,26 @@ def to_device(obj, device: Optional[torch.device], **kwargs):
64
79
  >>> data = [torch.tensor([1, 2]), torch.tensor([3, 4])]
65
80
  >>> to_device(data, torch.device('cuda'))
66
81
  [tensor([1, 2], device='cuda:0'), tensor([3, 4], device='cuda:0')]
82
+
83
+ >>> # Force copy when moving to different device
84
+ >>> tensor = torch.tensor([1, 2, 3], device='cpu')
85
+ >>> copied_tensor = to_device(tensor, torch.device('cuda'), copy_on_move=True)
86
+ >>> # tensor and copied_tensor will have different memory locations
87
+ ```
67
88
  """
68
- if isinstance(obj, (torch.Tensor, torch.nn.Module)):
89
+ if isinstance(obj, torch.Tensor):
90
+ if copy_on_move:
91
+ if obj.device != torch.device(device):
92
+ kwargs["copy"] = True
93
+ return obj.to(device, **kwargs)
94
+ elif isinstance(obj, torch.nn.Module):
69
95
  return obj.to(device, **kwargs)
70
96
  elif isinstance(obj, list):
71
- return [to_device(o, device) for o in obj]
97
+ return [to_device(o, device, **kwargs) for o in obj]
72
98
  elif isinstance(obj, tuple):
73
- return tuple(to_device(o, device) for o in obj)
99
+ return tuple(to_device(o, device, **kwargs) for o in obj)
74
100
  elif isinstance(obj, dict):
75
- for key in obj:
76
- obj[key] = to_device(obj[key], device)
77
- return obj
101
+ return {key: to_device(value, device, **kwargs) for key, value in obj.items()}
78
102
  else:
79
103
  # the default behavior is to return the object as is
80
104
  return obj
@@ -102,7 +126,7 @@ def num_devices(devices: Union[int, List[int], str]) -> int:
102
126
  )
103
127
 
104
128
 
105
- def get_device(obj) -> torch.device:
129
+ def get_device(obj: Any) -> torch.device:
106
130
  """
107
131
  Get the device of a given object.
108
132
 
@@ -151,6 +175,7 @@ def get_current_device() -> torch.device:
151
175
  If not set, it defaults to "0".
152
176
 
153
177
  Example:
178
+
154
179
  >>> device = get_current_device()
155
180
  >>> print(device)
156
181
  xpu:0 # or npu:0, mps:0, cuda:0, cpu depending on availability
@@ -241,7 +266,7 @@ def cleanup_cuda():
241
266
  torch.cuda.reset_peak_memory_stats()
242
267
 
243
268
 
244
- def print_memory_usage(print_fn=print):
269
+ def print_memory_usage(print_fn=print) -> str:
245
270
  """
246
271
  Print the current GPU memory usage.
247
272
 
@@ -1,5 +1,5 @@
1
1
  import contextlib
2
- from typing import Dict, Generator, Iterable, Optional, Tuple
2
+ from typing import Dict, Generator, Iterable, Optional, Tuple, Union
3
3
 
4
4
  import torch
5
5
  from transformers.utils import (
@@ -25,7 +25,7 @@ PRECISION_STR_TO_DTYPE: Dict[str, torch.dtype] = {
25
25
  }
26
26
 
27
27
 
28
- def parse_dtype(dtype: Optional[str]):
28
+ def parse_dtype(dtype: Optional[str]) -> Optional[torch.dtype]:
29
29
  """
30
30
  Parses a string representation of a data type and returns the corresponding torch.dtype.
31
31
 
@@ -92,6 +92,7 @@ def set_default_dtype(dtype: torch.dtype) -> Generator[None, None, None]:
92
92
  ContextManager: context manager for setting default dtype.
93
93
 
94
94
  Example:
95
+
95
96
  >>> with set_default_dtype(torch.bfloat16):
96
97
  >>> x = torch.tensor([1, 2, 3])
97
98
  >>> x.dtype
@@ -2,7 +2,18 @@ import json
2
2
  import logging
3
3
  import os
4
4
  from copy import deepcopy
5
- from typing import TYPE_CHECKING, Dict, Iterator, List, Mapping, Optional, Tuple, Type
5
+ from typing import (
6
+ TYPE_CHECKING,
7
+ Dict,
8
+ Generic,
9
+ Iterator,
10
+ List,
11
+ Mapping,
12
+ Optional,
13
+ Tuple,
14
+ Type,
15
+ Union,
16
+ )
6
17
 
7
18
  import torch
8
19
  from accelerate import init_empty_weights
@@ -11,10 +22,12 @@ from huggingface_hub import snapshot_download
11
22
  from safetensors import safe_open
12
23
  from safetensors.torch import load_file
13
24
  from torch import nn
25
+ from torch.nn.modules.module import _IncompatibleKeys
14
26
  from transformers import AutoConfig
15
27
 
16
28
  from fusion_bench.utils.dtype import parse_dtype
17
29
  from fusion_bench.utils.packages import import_object
30
+ from fusion_bench.utils.type import TorchModelType
18
31
 
19
32
  if TYPE_CHECKING:
20
33
  from transformers import PretrainedConfig
@@ -49,7 +62,7 @@ def resolve_checkpoint_path(
49
62
  )
50
63
 
51
64
 
52
- class LazyStateDict(Mapping[str, torch.Tensor]):
65
+ class LazyStateDict(Mapping[str, torch.Tensor], Generic[TorchModelType]):
53
66
  """
54
67
  Dictionary-like object that lazily loads a state dict from a checkpoint path.
55
68
  """
@@ -63,11 +76,14 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
63
76
  _index: Optional[Dict[str, str]]
64
77
  """Mapping of parameter names to checkpoint files."""
65
78
 
79
+ meta_module: TorchModelType = None
80
+ meta_module_class: Optional[Type[TorchModelType]] = None
81
+
66
82
  def __init__(
67
83
  self,
68
84
  checkpoint: str,
69
- meta_module_class: Optional[Type[nn.Module]] = None,
70
- meta_module: Optional[nn.Module] = None,
85
+ meta_module_class: Optional[Type[TorchModelType]] = None,
86
+ meta_module: Optional[TorchModelType] = None,
71
87
  cache_state_dict: bool = False,
72
88
  torch_dtype: Optional[torch.dtype] = None,
73
89
  device: str = "cpu",
@@ -88,15 +104,19 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
88
104
  hf_proxies (Dict, optional): Proxies to use for downloading from Hugging Face Hub.
89
105
  """
90
106
  self.cache_state_dict = cache_state_dict
107
+
108
+ # Validate that both meta_module_class and meta_module are not provided
109
+ if meta_module_class is not None and meta_module is not None:
110
+ raise ValueError(
111
+ "Cannot provide both meta_module_class and meta_module, please provide only one."
112
+ )
113
+
91
114
  self.meta_module_class = meta_module_class
92
115
  if isinstance(self.meta_module_class, str):
93
116
  self.meta_module_class = import_object(self.meta_module_class)
94
117
  self.meta_module = meta_module
118
+
95
119
  if self.meta_module_class is not None:
96
- if self.meta_module is not None:
97
- raise ValueError(
98
- "Cannot provide both meta_module_class and meta_module, please provide only one."
99
- )
100
120
  with init_empty_weights():
101
121
  self.meta_module = self.meta_module_class.from_pretrained(
102
122
  checkpoint,
@@ -173,9 +193,13 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
173
193
  """
174
194
  `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
175
195
  """
196
+ if hasattr(self, "_cached_dtype"):
197
+ return self._cached_dtype
198
+
176
199
  first_key = next(iter(self.keys()))
177
200
  first_param = self[first_key]
178
- return first_param.dtype
201
+ self._cached_dtype = first_param.dtype
202
+ return self._cached_dtype
179
203
 
180
204
  def state_dict(self, keep_vars: bool = False) -> "LazyStateDict":
181
205
  """
@@ -321,9 +345,7 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
321
345
  if self._state_dict_cache is not None:
322
346
  self._state_dict_cache[key] = value
323
347
  else:
324
- log.warning(
325
- "State dict cache is disabled, setting a tensor will not update the cache."
326
- )
348
+ log.warning("State dict cache is disabled, initializing the cache.")
327
349
  self._state_dict_cache = {key: value}
328
350
 
329
351
  def __contains__(self, key: str) -> bool:
@@ -339,7 +361,7 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
339
361
  self._checkpoint_files[0], key, update_cache=False
340
362
  )
341
363
  return tensor is not None
342
- except Exception:
364
+ except (KeyError, FileNotFoundError, RuntimeError, EOFError):
343
365
  return False
344
366
  return False
345
367
 
@@ -409,8 +431,8 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
409
431
  )
410
432
 
411
433
  def load_state_dict(
412
- self, state_dict: Dict[str, torch.Tensor], strict: bool = True
413
- ) -> None:
434
+ self, state_dict: Mapping[str, torch.Tensor], strict: bool = True
435
+ ) -> _IncompatibleKeys:
414
436
  """
415
437
  Load a state dict into this LazyStateDict.
416
438
  This method is only for compatibility with nn.Module and it overrides the cache of LazyStateDict.
@@ -419,16 +441,60 @@ class LazyStateDict(Mapping[str, torch.Tensor]):
419
441
  state_dict (Dict[str, torch.Tensor]): The state dict to load.
420
442
  strict (bool): Whether to enforce that all keys in the state dict are present in this LazyStateDict.
421
443
  """
444
+ if not isinstance(state_dict, Mapping):
445
+ raise TypeError(
446
+ f"Expected state_dict to be dict-like, got {type(state_dict)}."
447
+ )
448
+
449
+ missing_keys: list[str] = []
450
+ unexpected_keys: list[str] = []
451
+ error_msgs: list[str] = []
452
+
422
453
  log.warning(
423
454
  "Loading state dict into LazyStateDict is not recommended, as it may lead to unexpected behavior. "
424
455
  "Use with caution."
425
456
  )
457
+
458
+ # Check for unexpected keys in the provided state_dict
459
+ for key in state_dict:
460
+ if key not in self:
461
+ unexpected_keys.append(key)
462
+
463
+ # Check for missing keys that are expected in this LazyStateDict
464
+ for key in self.keys():
465
+ if key not in state_dict:
466
+ missing_keys.append(key)
467
+
468
+ # Handle strict mode
426
469
  if strict:
427
- for key in state_dict:
428
- if key not in self:
429
- raise KeyError(f"Key {key} not found in LazyStateDict.")
470
+ if len(unexpected_keys) > 0:
471
+ error_msgs.insert(
472
+ 0,
473
+ "Unexpected key(s) in state_dict: {}. ".format(
474
+ ", ".join(f'"{k}"' for k in unexpected_keys)
475
+ ),
476
+ )
477
+ if len(missing_keys) > 0:
478
+ error_msgs.insert(
479
+ 0,
480
+ "Missing key(s) in state_dict: {}. ".format(
481
+ ", ".join(f'"{k}"' for k in missing_keys)
482
+ ),
483
+ )
484
+
485
+ if len(error_msgs) > 0:
486
+ raise RuntimeError(
487
+ "Error(s) in loading state_dict for {}:\n\t{}".format(
488
+ self.__class__.__name__, "\n\t".join(error_msgs)
489
+ )
490
+ )
491
+
492
+ # Load the state dict values
430
493
  for key, value in state_dict.items():
431
- self[key] = value
494
+ if key in self: # Only set keys that exist in this LazyStateDict
495
+ self[key] = value
496
+
497
+ return _IncompatibleKeys(missing_keys, unexpected_keys)
432
498
 
433
499
  def __getattr__(self, name: str):
434
500
  if "meta_module" in self.__dict__:
@@ -1,7 +1,7 @@
1
1
  import importlib.metadata
2
2
  import importlib.util
3
3
  from functools import lru_cache
4
- from typing import TYPE_CHECKING
4
+ from typing import TYPE_CHECKING, Any
5
5
 
6
6
  from packaging import version
7
7
 
@@ -69,7 +69,7 @@ def is_vllm_available():
69
69
  return _is_package_available("vllm")
70
70
 
71
71
 
72
- def import_object(abs_obj_name: str):
72
+ def import_object(abs_obj_name: str) -> Any:
73
73
  """
74
74
  Imports a class from a module given the absolute class name.
75
75
 
@@ -84,7 +84,7 @@ def import_object(abs_obj_name: str):
84
84
  return getattr(module, obj_name)
85
85
 
86
86
 
87
- def compare_versions(v1, v2):
87
+ def compare_versions(v1: str, v2: str) -> int:
88
88
  """Compare two version strings.
89
89
  Returns -1 if v1 < v2, 0 if v1 == v2, 1 if v1 > v2"""
90
90