fusion-bench 0.2.21__py3-none-any.whl → 0.2.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. fusion_bench/__init__.py +21 -2
  2. fusion_bench/constants/__init__.py +1 -0
  3. fusion_bench/constants/runtime.py +57 -0
  4. fusion_bench/method/__init__.py +8 -2
  5. fusion_bench/method/bitdelta/__init__.py +1 -0
  6. fusion_bench/method/classification/clip_finetune.py +1 -1
  7. fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -4
  8. fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +2 -2
  9. fusion_bench/method/linear/simple_average_for_llama.py +16 -11
  10. fusion_bench/method/simple_average.py +7 -7
  11. fusion_bench/method/smile_upscaling/causal_lm_upscaling.py +371 -0
  12. fusion_bench/method/smile_upscaling/projected_energy.py +1 -2
  13. fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +5 -1
  14. fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +40 -31
  15. fusion_bench/method/smile_upscaling/smile_upscaling.py +1 -1
  16. fusion_bench/method/we_moe/__init__.py +1 -0
  17. fusion_bench/method/we_moe/entropy_loss.py +25 -0
  18. fusion_bench/method/we_moe/flan_t5_we_moe.py +331 -0
  19. fusion_bench/method/we_moe/utils.py +15 -0
  20. fusion_bench/method/weighted_average/llama.py +1 -1
  21. fusion_bench/mixins/clip_classification.py +11 -42
  22. fusion_bench/mixins/serialization.py +18 -8
  23. fusion_bench/modelpool/causal_lm/causal_lm.py +32 -33
  24. fusion_bench/models/__init__.py +5 -0
  25. fusion_bench/models/hf_utils.py +65 -87
  26. fusion_bench/models/model_card_templates/default.md +46 -0
  27. fusion_bench/models/modeling_smile_llama/__init__.py +7 -0
  28. fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +1 -8
  29. fusion_bench/models/modeling_smile_mistral/__init__.py +1 -1
  30. fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +1 -5
  31. fusion_bench/programs/fabric_fusion_program.py +29 -60
  32. fusion_bench/scripts/cli.py +34 -1
  33. fusion_bench/taskpool/clip_vision/taskpool.py +9 -4
  34. fusion_bench/utils/__init__.py +1 -0
  35. fusion_bench/utils/cache_utils.py +101 -1
  36. fusion_bench/utils/fabric.py +2 -2
  37. fusion_bench/utils/lazy_imports.py +23 -0
  38. fusion_bench/utils/lazy_state_dict.py +38 -3
  39. fusion_bench/utils/modelscope.py +3 -3
  40. fusion_bench/utils/path.py +56 -0
  41. fusion_bench/utils/pylogger.py +1 -1
  42. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/METADATA +1 -23
  43. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/RECORD +53 -45
  44. fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -1
  45. fusion_bench_config/method/linear/simple_average_for_llama.yaml +3 -2
  46. fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +21 -0
  47. fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +1 -1
  48. fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml +20 -0
  49. fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +1 -1
  50. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/WHEEL +0 -0
  51. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/entry_points.txt +0 -0
  52. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/licenses/LICENSE +0 -0
  53. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- fusion_bench/__init__.py,sha256=gCq_Qbn3GPgla5zUCz05tIbTIEE39fymKZu3Y14NuXw,1978
1
+ fusion_bench/__init__.py,sha256=uxXbA9vhNx-RYG6Io9CaFuPEVWe2DjnomSzNY1aABIM,2391
2
2
  fusion_bench/__main__.py,sha256=weUjxpP3ULnDgUxCehdbmoCM9cqfkhDhGB85tAF5qoE,81
3
3
  fusion_bench/_get_started/__init__.py,sha256=Ht6OK6Luei2kdY9jRZzRQfzBlm3Yfm64BkXxpzeRg9Q,40
4
4
  fusion_bench/_get_started/greeting_program.py,sha256=wvVsPa7Djwx5Z5spAI6F9Kvv9KwfNkjIgJVH8oXR3Bo,1233
@@ -13,10 +13,11 @@ fusion_bench/compat/taskpool/__init__.py,sha256=LHCRs7vrWMTtMfrqFRMmnNiSZnnZ7tZy
13
13
  fusion_bench/compat/taskpool/base_pool.py,sha256=1AIZBxqUJgshq0Xo3Yo9es4b-8X8ksN1mFHxSOqnDsA,3307
14
14
  fusion_bench/compat/taskpool/clip_image_classification.py,sha256=ZYZsbsE-fPzm6yafA0p-6wcDwVGryLmtXXtuEXeQbTY,7425
15
15
  fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py,sha256=JsdAE72V1C1eDcA1WCa0PIcSDTrGPclNKFDQ9G-hYts,5786
16
- fusion_bench/constants/__init__.py,sha256=pmDUo71iaJBp_E8qgb2qCx1hRN5DKIZfcJILRuWOiz4,157
16
+ fusion_bench/constants/__init__.py,sha256=Kgd1ex7odRVAlWAoKfi5iB4IMahndgJYJXqknH8R3vA,195
17
17
  fusion_bench/constants/banner.py,sha256=fuIO36ETKlS6a3wbwZn-rA2OswSCfOYyyhZ0Fnal1s4,1656
18
18
  fusion_bench/constants/clip_vision.py,sha256=qOHlYZYSOqpOO4-cfwUUhbv7qyr5IuUAW3yWjqjbJBo,1430
19
19
  fusion_bench/constants/paths.py,sha256=1xLaZ2J3B3d0bo2ndubawaOjiFMJDAK6TjF685HlCM0,719
20
+ fusion_bench/constants/runtime.py,sha256=UWhUwjfXgaHkcyxSqkkrcmrMVZ_HxR4VVfUz_ewnw4M,1838
20
21
  fusion_bench/dataset/__init__.py,sha256=OJiYmcqz0Vm5O7mE4PB5QFJeL_KjrsseQTRsQATGTm4,1050
21
22
  fusion_bench/dataset/clip_dataset.py,sha256=hLL7NyzOIt0gNT1kzjrexFISbj-B0KdlgtyGf6K8NjI,3143
22
23
  fusion_bench/dataset/fer2013.py,sha256=Lub_xVhHfqaiPprvOsDVspJNioh1FjSrkhn3gL_UXDA,404
@@ -47,12 +48,12 @@ fusion_bench/dataset/llama/stanford_shp.py,sha256=6ueXKnFXIBBobacU1h5WxGLZrSOtBk
47
48
  fusion_bench/dataset/llama/ultrachat.py,sha256=Go7WvrDAYnm184fdazHGRYLbSY6Xd7jrESyQeUJtOww,1736
48
49
  fusion_bench/dataset/llama/wikitext.py,sha256=9ZHR-nMfXRumd3o-PIj3n7B83YlVeqpGkZ2zJs2B-9Y,2883
49
50
  fusion_bench/dataset/llama/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- fusion_bench/method/__init__.py,sha256=DjIpEj6lI7JIO0qIPsIBfq77ro34r0d-bSJap1k69Rc,8450
51
+ fusion_bench/method/__init__.py,sha256=qY7eYLbOJTxyKXRqa5yUG3m1uZO9xqU0YwXczXitBH4,8572
51
52
  fusion_bench/method/base_algorithm.py,sha256=OnKSNPQ_nIdIWxryyblW_sko7uoEBN4lGh-eLkJ4kh4,9004
52
53
  fusion_bench/method/dummy.py,sha256=hb1y6LR_geRZ5eRgGwt5zJUcHYorCeIbs5i76CvurUc,1031
53
54
  fusion_bench/method/ensemble.py,sha256=oGiTJUderoPP0Opd7nHwC6h3VBmGTQ5inuG3wb6F4-A,3097
54
55
  fusion_bench/method/model_recombination.py,sha256=b2ku5wCrWd1QSZscIra4KlhLDxt04JjU30ItMNvpZ6g,5268
55
- fusion_bench/method/simple_average.py,sha256=IcdI8b1OpSjJxLlHIAKe9IrG1gU3UtPIOB66yqQA2Lw,5385
56
+ fusion_bench/method/simple_average.py,sha256=fLd14_0218JKyXmwe5M6kgumfD60u2ZVnm3B7PBX-Uc,5508
56
57
  fusion_bench/method/ada_svd/__init__.py,sha256=4XzQbbvE9HI3NtEmEFvo8iC3ds_85vJXe7P7qJfL7kk,77
57
58
  fusion_bench/method/ada_svd/clip_vision.py,sha256=XvXgIdlShAREMsubRgphyycGrhWqSnuVBo6S9bNYSd0,12581
58
59
  fusion_bench/method/adamerging/__init__.py,sha256=nt0saBT_3bqghk-pINQ-XCWm9UWwSZllu4R1sDuAJAA,376
@@ -69,14 +70,14 @@ fusion_bench/method/adamerging/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-
69
70
  fusion_bench/method/analysis/__init__.py,sha256=EQzOCShS0hF958drq1yg2oSVsS0hvBznPxtTAWB9SGY,122
70
71
  fusion_bench/method/analysis/task_vector_cos_similarity.py,sha256=pL-XsWTo258yZTEsER_6KXS7JePneVNEHN_nv8Db0qo,5468
71
72
  fusion_bench/method/analysis/task_vector_violin_plot.py,sha256=ie8hPl6QsVz9MQ6C2OEpzIBxQnmVKNf1FPc5bThmQGM,7606
72
- fusion_bench/method/bitdelta/__init__.py,sha256=2rGHWIcuP8y22I0pUajEzUDB30UeRueXwX7lSjDIAw4,104
73
+ fusion_bench/method/bitdelta/__init__.py,sha256=s4T39gVHShECcJe6mCzQbQzhRkTjDiczW7LTrldbpJo,105
73
74
  fusion_bench/method/bitdelta/bitdelta.py,sha256=HtzlRS0zCU4-joNyQIUIOkrsXeBtDgZGyfUBMfx4biw,4949
74
75
  fusion_bench/method/bitdelta/bitdelta_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
76
  fusion_bench/method/bitdelta/bitdelta_utils/binary_gemm_kernel.py,sha256=zC0w5cwr-o8cE63kpBzHUA3S0FeJPX-Xf3mIS5ziIos,15546
76
77
  fusion_bench/method/bitdelta/bitdelta_utils/data.py,sha256=LGEgv8o8glyyLLYh6Ur5h_sulxPFmy6i-xi-Ap1G-Wc,1052
77
78
  fusion_bench/method/bitdelta/bitdelta_utils/diff.py,sha256=o3ib5sgGDYLgnL8YTfX0YDc4Md6W9_gb03jzftTn5s4,4075
78
79
  fusion_bench/method/classification/__init__.py,sha256=emB06UOMDHK5pfQ1WuvLG9Fm0aEEtZxSjpVw8fVE0fM,167
79
- fusion_bench/method/classification/clip_finetune.py,sha256=DlV1isp8vz6jwXNYQ6zbblAoUfnssL-WBpDeaXI5BVw,15727
80
+ fusion_bench/method/classification/clip_finetune.py,sha256=QNOw9O-BTOVOsW7lzRu8L-UfbiBpsT_8tS6i6BpbVyA,15726
80
81
  fusion_bench/method/classification/continual_clip_finetune.py,sha256=OLhZKS-6aCnafevZkZYcNMKTWDDj3DATB27eZl_i8EY,11530
81
82
  fusion_bench/method/concrete_subspace/__init__.py,sha256=jJoFcjnQe-jvccsm9DuCXna378m9XBT9vV1fEZbdfR0,464
82
83
  fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py,sha256=UkLOkaa_Dzlb4Q5ES69Y9GV1bodTnD7DzZFreykt65s,24706
@@ -106,9 +107,9 @@ fusion_bench/method/expert_sparsity/mixtral/layer_wise_pruning.py,sha256=GJVIose
106
107
  fusion_bench/method/expert_sparsity/mixtral/progressive_pruning.py,sha256=-0qWYkvHqKouJynn-kT907JQtiMLChtppOTL4SUYR9M,5090
107
108
  fusion_bench/method/expert_sparsity/utils/calibration_data.py,sha256=r2yZtT3ZYC0frwSpNetiyDOSzHiUZS3oaIPRfb4tjaE,5459
108
109
  fusion_bench/method/fisher_merging/__init__.py,sha256=KWsjrtxKkPYwcUA5rB_6UNIqvesqk2NJw5AY_1ztLVE,225
109
- fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=VRWA0zlHY1bvrJseaNVehExclVlSdH38xkKsXFVIacc,7633
110
+ fusion_bench/method/fisher_merging/clip_fisher_merging.py,sha256=bWoP3iM2TyY116UcdXNIrvYjHtiOvtIf7kuiFTyfIas,7343
110
111
  fusion_bench/method/fisher_merging/fisher_merging.py,sha256=8JIg02aN7KGG7ChEKeZBGYJMy8g6Lpbn0Q9G0uL6DQg,20425
111
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=VobWhFyaPtlMl5RTNtnVA7KCpwMCsw27yBUQ9SkdVoE,7360
112
+ fusion_bench/method/fisher_merging/gpt2_fisher_merging.py,sha256=2OdiBAXT3FGzxyeQcDIII29AUMjGZkkxZ_LSqq71t3k,7330
112
113
  fusion_bench/method/fw_merging/__init__.py,sha256=JyF4BIafap83MI8wHJhOX1VRC2J7Olj4ApirPuEkrJI,90
113
114
  fusion_bench/method/fw_merging/fw_hard.py,sha256=uJeVddyUgWMuTKzOTbrXDC2p3Jul5zWPAzcNfvvg8ro,17163
114
115
  fusion_bench/method/fw_merging/fw_soft.py,sha256=rmwwcEtJOqotxDqS9Vs2YVtwxYK--fwkYUk6yp3R528,20729
@@ -131,7 +132,7 @@ fusion_bench/method/linear/__init__.py,sha256=ChfkoOEAb-rUKwpowFPel-a1hRfS8gCrbn
131
132
  fusion_bench/method/linear/expo.py,sha256=N7XnBTC0Nz_4gRs1f9TL9g-j-Lku5TF0lAjGKhZHwOw,3990
132
133
  fusion_bench/method/linear/linear_interpolation.py,sha256=Y01HPMBb7TaCjEBsbC6gqQyHvY1SRpwPyPPLxvYrL0s,2223
133
134
  fusion_bench/method/linear/llama_expo.py,sha256=ccECjhAqcFmzOIDyZ7e_aPzTM2Kj8u2D8TJytyz18YM,8476
134
- fusion_bench/method/linear/simple_average_for_llama.py,sha256=Sow-NOiMz_HSBjKm-BjV7cuL8xbgKXNlb70DSW_XXVI,2951
135
+ fusion_bench/method/linear/simple_average_for_llama.py,sha256=5psacdQiqtUK_lwYZcXp9kgIU3MFGk6G1JatxeMUjE8,3339
135
136
  fusion_bench/method/linear/task_arithmetic_for_llama.py,sha256=4SZpiTD7OzhWUXtcdK3PYdXbBGyDqiZd7oZOQ0lraN0,1963
136
137
  fusion_bench/method/lm_finetune/__init__.py,sha256=IFGAqXujX3Fabzl_tC6zZyOyPFJfVziL0qFtj5MVxj0,149
137
138
  fusion_bench/method/lm_finetune/bradley_terry_rm.py,sha256=1nvjOMABuEISyYaTRrFiwHLWvSTgHT8pEzTYBTLBRUg,18779
@@ -200,12 +201,13 @@ fusion_bench/method/slerp/__init__.py,sha256=Wgl9gg01Xou6jyZeBRD98kRnB_dAADDaPqR
200
201
  fusion_bench/method/slerp/slerp.py,sha256=cc3JSBLu1DTKIPGxXXobomHntvFLKWsAr-B2YsjhfaI,3536
201
202
  fusion_bench/method/slerp/slerp_utils.py,sha256=vksRo6n7FqY7By9aqbwTL4XV3BjcU_GrUl_r85Kpfjc,3504
202
203
  fusion_bench/method/smile_upscaling/__init__.py,sha256=6ZpUSHUFVsT1U7V3TIDWBFqcHte7SjHW0wp6CAE8NVg,165
204
+ fusion_bench/method/smile_upscaling/causal_lm_upscaling.py,sha256=PN7n3YLptEYtrSItOU0TwNjpmw5c1p4k05ZNA5Tx8XE,13995
203
205
  fusion_bench/method/smile_upscaling/error_accumulation.py,sha256=AubhUl5ZNXqndXkNuU3zIHEFhO6LC5EZFB46pbipcis,6165
204
- fusion_bench/method/smile_upscaling/projected_energy.py,sha256=iPF4iNnqnN3ZV-3In8Fo7fPjdfOjrXCI6nlzy9MTbVU,4646
206
+ fusion_bench/method/smile_upscaling/projected_energy.py,sha256=ZYbWfHCizVG9RCSCs_GEjE8-BkFmP8YYyzEOfBDM6Ac,4645
205
207
  fusion_bench/method/smile_upscaling/singular_projection_merging.py,sha256=0neZS9oZnl64wu1xb9ruGB7lbhYXyy4zj8l3E1QYRGQ,6670
206
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py,sha256=T1M4hTRgIfDhy4zSccREPLajgMcdnohr0NtdWXtPzmA,8802
207
- fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py,sha256=R7zAb7H_AHKVEGf2b7Fmmg_qVorcT9fdBAQXHxuN4pw,8960
208
- fusion_bench/method/smile_upscaling/smile_upscaling.py,sha256=sfqIZhz7gO8LvA8cF6Lma9Evu1t9m6pcQaSKpmfeIiI,9312
208
+ fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py,sha256=jcya2jTEU5rzzrK7FjYCAMSY0yEmGIeIPpbUhFimJIE,8866
209
+ fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py,sha256=IbXV5A3Wrlqj1rANKBxzPPbgrtRt9JtiIgGxUfUF-90,9209
210
+ fusion_bench/method/smile_upscaling/smile_upscaling.py,sha256=pGpEBN1FKCsj0PnFfR4IqCWw_qVLj7VOB76iaSaNLFk,9312
209
211
  fusion_bench/method/sparse_we_moe/__init__.py,sha256=V5VOpLwn6ZpsM09TmwFhhlJwMTBFXF7NE1-gW1MlAfc,133
210
212
  fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py,sha256=J8iVYks-SQ93dqh6FUQACvSmM364QHlVBYMKOCPbHrU,10288
211
213
  fusion_bench/method/sparse_we_moe/sparse_we_moe.py,sha256=6OYgj_D_4xTtqy_guA7whQu76LQ7gv-U2cIZkXe7bIg,10479
@@ -231,11 +233,14 @@ fusion_bench/method/ties_merging/ties_merging_utils.py,sha256=EZyltS9hUM8NmcvXjA
231
233
  fusion_bench/method/trust_region/__init__.py,sha256=4ao0E-jTlmTQPArbFWD_dFn_4yve3urNIuSMT8JtRIM,91
232
234
  fusion_bench/method/trust_region/clip_task_arithmetic.py,sha256=SWP7sRMiXzkDZ3KdNht3zqjaTcAtB4wpnnd8KYbcKZI,7441
233
235
  fusion_bench/method/trust_region/utils.py,sha256=iUNEY43mE0WZBsKAmttHwSvNpijzBzVhTpSycWoxvn8,1981
234
- fusion_bench/method/we_moe/__init__.py,sha256=Sb4YIR54-_ppUXDj5jN90PEqBO3kdL6O5-67v71q4Xs,78
236
+ fusion_bench/method/we_moe/__init__.py,sha256=w3HIl1hj1C-o1_iLlOXbSc-BXPMRafeoq3HXl1x9Voc,141
235
237
  fusion_bench/method/we_moe/clip_we_moe.py,sha256=JsDTNOy6fwCctyj5RuP9FKjBkXpOEG_GMfr_6H6oFNk,5667
238
+ fusion_bench/method/we_moe/entropy_loss.py,sha256=ZeVe0Hq1PaMfppLqDbB0MOscZUZRNh4CALrvt8pmQC0,736
239
+ fusion_bench/method/we_moe/flan_t5_we_moe.py,sha256=PfAaMsy-C5otOE-k8iXgE0oK1Ct6KKys2lAVMk33iC0,11738
240
+ fusion_bench/method/we_moe/utils.py,sha256=Yq8ovlpLJY-5MkSmpoB-_EMYG8cr6eyO-WUZTxKxMTI,432
236
241
  fusion_bench/method/we_moe/we_moe.py,sha256=_QtmD04oFh7aLhmPq8EYchYB7BIN9ZFWOeysSx7kJmo,8372
237
242
  fusion_bench/method/weighted_average/__init__.py,sha256=bLxIuuB72hH05J_Spz4MZbiLpYL39iwgVIQa_QeQpIk,118
238
- fusion_bench/method/weighted_average/llama.py,sha256=wV8jSlOFZ91OftEpTz5WYCYv8Mj25Q6EObE5XsCPYbs,3731
243
+ fusion_bench/method/weighted_average/llama.py,sha256=vvxXp8v98kvXfHi7fYupnIrOVoA3tp08lmV2jDri_BY,3731
239
244
  fusion_bench/method/weighted_average/weighted_average.py,sha256=E4byEA2VfXozu7S_gnYVvwI3qg8AFWaSeNRHGbs2Tno,3340
240
245
  fusion_bench/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
241
246
  fusion_bench/metrics/continual_learning/__init__.py,sha256=f-mkv4SpXTq5kiQVHbe2g0IPf4yLFgu1Dw7g2DOK6T4,57
@@ -251,13 +256,13 @@ fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py,sha256=-ZaD84E
251
256
  fusion_bench/metrics/text_to_image_generation/compressibility.py,sha256=x4dNTFnAN4naChBDZBO-jUghnHAyobRVOupctKYRg1w,1656
252
257
  fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py,sha256=aSWzl8k7z80Cirg5qdfkPsp3sMFEv_PjA1NJv3PPWXY,3115
253
258
  fusion_bench/mixins/__init__.py,sha256=yjRvcB9Mn-c0g8tXmoBf2Dn8gyc-Na6dyhc4r674asM,1213
254
- fusion_bench/mixins/clip_classification.py,sha256=dQta5DBNjbvLnfJz3gMGhvlFqCUeqVErnjtmHVf8dKw,10186
259
+ fusion_bench/mixins/clip_classification.py,sha256=VJdeOGbaWryT8TQZ1GKMxuKMCccGLXedkMKDKUxK_2M,8498
255
260
  fusion_bench/mixins/fabric_training.py,sha256=ZmycEhCaNCgVi5oM9m0q6msxgk3quowmFvDAcvskFrg,13017
256
261
  fusion_bench/mixins/hydra_config.py,sha256=rfT-XPUKV_U3nvuTVsKLmSmEiieoSIsbhxE5_-E0er0,5508
257
262
  fusion_bench/mixins/lightning_fabric.py,sha256=ns9H_dkSDD8jJ7GL4YcAypewUcy9mzbX3Xy0bBcyGVY,7403
258
263
  fusion_bench/mixins/openclip_classification.py,sha256=O45HzgLXNvlQr5RVpfIGsYdIQ0tY5g_68KB0MTqsZWU,290
259
264
  fusion_bench/mixins/rich_live.py,sha256=j7wNgrgwfdpl6nCXZGF_2DLtNq2aqCb_52Qhe9QSltc,495
260
- fusion_bench/mixins/serialization.py,sha256=2YjGXvuJBengdgvs7fOhPQ32OMC1VggU2Ysv3o21Bjc,14352
265
+ fusion_bench/mixins/serialization.py,sha256=VZxHzCozvG3VwlAv9WF1td3RHowyDSGjJhjaRoT5DeQ,14672
261
266
  fusion_bench/mixins/simple_profiler.py,sha256=czWMl6p9PoxbQ5A8Uifwleaq5QPGEn0qMc8MXu9dSZM,2200
262
267
  fusion_bench/mixins/optim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
263
268
  fusion_bench/mixins/optim/adamw_with_warmup.py,sha256=qTnRl8GVVIfaplOFBHnJFuZUbxPZRWRGHGNzm_EDhDE,1421
@@ -269,7 +274,7 @@ fusion_bench/modelpool/huggingface_gpt2_classification.py,sha256=j8nicVwtoLXY4RP
269
274
  fusion_bench/modelpool/lazy_state_dict_pool.py,sha256=HtEA85rqSCHfsIddI5sKDcZf5kSuHNwrb8fF1TUSTr0,652
270
275
  fusion_bench/modelpool/nyuv2_modelpool.py,sha256=btuXmYxwfjI6MnGakhoOf53Iyb9fxYH20CavGTrTcnA,1375
271
276
  fusion_bench/modelpool/causal_lm/__init__.py,sha256=F432-aDIgAbUITj4GNZS9dgUKKhaDMCbTeHB-9MecaQ,99
272
- fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=tT8lfQbrHc_j8MYu5NWi_akWBhapt1wkTuJKoqWiMJI,8499
277
+ fusion_bench/modelpool/causal_lm/causal_lm.py,sha256=GXJDDjLkhv6psBGAPk3Wh6zfq0Li1KogNHEN2wETFng,8305
273
278
  fusion_bench/modelpool/clip_vision/__init__.py,sha256=3b9gN2bWUsoA1EmpitnIMnIlX7nklxbkn4WJ0QJtS2c,43
274
279
  fusion_bench/modelpool/clip_vision/modelpool.py,sha256=e5t9olRMOj_SyGVy-gqn7RwC5FAqxNsJDongWIv2KFY,7108
275
280
  fusion_bench/modelpool/openclip_vision/__init__.py,sha256=QDmAitKqUwRygN9QncdS_kGWZdfTKL4uUifC8xh9c10,47
@@ -279,9 +284,9 @@ fusion_bench/modelpool/seq2seq_lm/modelpool.py,sha256=IjLHi8qycWOA4Ul9jnqR48evgV
279
284
  fusion_bench/modelpool/seq_classification_lm/__init__.py,sha256=_VB9nlR_gm6IEXNMsNR3VnzFiCpxNGuAGF39rZ9DpBA,129
280
285
  fusion_bench/modelpool/seq_classification_lm/reward_model.py,sha256=NKf-eoei1GdU4ojKSpN5_kQwax4uUEStnlKyh8qOrNg,540
281
286
  fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py,sha256=t9wXHFwa7V2XC3ajxt4_bSsxMTDKW4nebvdxhG7VeLM,3435
282
- fusion_bench/models/__init__.py,sha256=nOFMSaAtSEz5U2IGUFxP6DrOKksA11azSxpRO6AENSs,146
287
+ fusion_bench/models/__init__.py,sha256=LeLQw2Yphu4QKZxjws_7MCM50XvFP1rTrvJ_2SR5zIA,271
283
288
  fusion_bench/models/hf_clip.py,sha256=056UHeSjKKDYXg-o7CC2zsx4fC9R6IBkPGI8IFhWTNw,7291
284
- fusion_bench/models/hf_utils.py,sha256=q13vFDc0l1f0cUvM1kunD3eTRJPJQg0BLMe_vXlbFz0,5677
289
+ fusion_bench/models/hf_utils.py,sha256=3vyt8_2_ZWQIWCBX9Yi5CW99lOl4SnmVIil7FyS2w9k,5312
285
290
  fusion_bench/models/parameter_dict.py,sha256=HCkTJCz23pYN1_Hhegx8gglOtrnzVKJPMeg9_rUhe18,3630
286
291
  fusion_bench/models/rankone_moe.py,sha256=aY8IDM-ct7qKYH8ukBUsa_VDkDgGNtCqyNtNKlDTUTc,12046
287
292
  fusion_bench/models/separate_io.py,sha256=5AJlCxkHdVVffITnIRlF3ZIaKLRWDhJESVQN1lX-ZhU,3835
@@ -310,6 +315,7 @@ fusion_bench/models/llama/model_utils/mod.py,sha256=xzNOgTRfOK9q8kml4Q2nmSOl23f3
310
315
  fusion_bench/models/llama/model_utils/visual.py,sha256=wpqWqEASyA7WhJLCfC26h0Cdn5CXnwC1qPJUlSXggo4,8310
311
316
  fusion_bench/models/masks/__init__.py,sha256=vXG6jrBkDbPsnrX6nMEYAW1rQuGEWDgdjID7cKzXvrs,69
312
317
  fusion_bench/models/masks/mask_model.py,sha256=YXNZ_CGp6VPshZH__Znh6Z07BqOK53G-Ltc1LVy1E3I,5502
318
+ fusion_bench/models/model_card_templates/default.md,sha256=Abd8tUhdZU-B5jwc7N6Gm0zLGNkfx6fr7MAL03VtFDg,885
313
319
  fusion_bench/models/modeling_deepseek_v2/__init__.py,sha256=trXrhtKb_gIxXVo7wSZ-il5sLJtDTiNZezRrEt3M8zM,505
314
320
  fusion_bench/models/modeling_deepseek_v2/configuration_deepseek.py,sha256=TblFOCfNwaXUnXnD-sxFhSn5Df-_yy2LMcrth-sBPFI,10301
315
321
  fusion_bench/models/modeling_deepseek_v2/modeling_deepseek.py,sha256=PtfkfPrfmQVoLiVhgqlp5toJAnCinPWfeZYeJJtWWBs,78676
@@ -324,17 +330,17 @@ fusion_bench/models/modeling_smile_gemma2/__init__.py,sha256=HJOKetdKzLwXCad3DeP
324
330
  fusion_bench/models/modeling_smile_gemma2/configuration_smile_gemma2.py,sha256=TkBT-RCCc2lddJl1mGCe4tL8nxZEXT_1jV5VQ7YUAtI,585
325
331
  fusion_bench/models/modeling_smile_gemma2/modeling_smile_gemma2.py,sha256=qmxcyqxrR5eaxXoP2NFG3dMVW-c_2Kyxdv4tqoNF8FI,39774
326
332
  fusion_bench/models/modeling_smile_gemma2/register.py,sha256=fmJv6Tjjsy2Z_Wx2m2zBnY4b3D38tEZwOa32AKvzizQ,817
327
- fusion_bench/models/modeling_smile_llama/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
333
+ fusion_bench/models/modeling_smile_llama/__init__.py,sha256=gnA-KPzl6C6g9a7_retDA5Dzmr4l6apCebv8I90jaxM,193
328
334
  fusion_bench/models/modeling_smile_llama/configuration_smile_llama.py,sha256=9_f8PlvFS0Ex6uCn8siWwiqU3yy5dlXKz0UDgLuQVPY,546
329
- fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py,sha256=6bMvyVZifG67pUEYdd8j8vazguZl9yAkKvIfPbqKgO8,27552
335
+ fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py,sha256=7d6mCHWVli5GR26znbFthamlhmec77iRuYx_3HsD5vs,27282
330
336
  fusion_bench/models/modeling_smile_llama/register.py,sha256=oQ35dFhCmrkZZQt-8SuTi8sg9f2MJno9Om83bMTqYUc,378
331
- fusion_bench/models/modeling_smile_mistral/__init__.py,sha256=-0zXPUF3gfaJ0HdXJlvMZs8E8qy57-BePjEzmPpD560,175
337
+ fusion_bench/models/modeling_smile_mistral/__init__.py,sha256=nJdiks1TJWIFr8sCSTrMqxzFOTCvx6KgDBXDpogzWfQ,175
332
338
  fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py,sha256=yt1-JBlkJmlJw7dvB4_V8M0gy5ihD8isDxcmwyW85d4,633
333
339
  fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py,sha256=5cN1M_XhcFCoJb8yvO1KCwHD_UH__hJg_X2D9C85R34,33128
334
340
  fusion_bench/models/modeling_smile_mistral/register.py,sha256=7nSJC4FveUi78rp53Ps6TcPGedHZ79cikYM5GIfEZfw,400
335
341
  fusion_bench/models/modeling_smile_qwen2/__init__.py,sha256=nmoMLVQu8N0EYe85mXGmvjZWDttd8I66O9XocLSwUqo,242
336
342
  fusion_bench/models/modeling_smile_qwen2/configuration_smile_qwen2.py,sha256=aekcpLcUGo4e7GkOtaxKClpIU5byyY-LQNDb-sMeyNc,621
337
- fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py,sha256=G9F9chn-cVtTvW8M4g-cqv2dI37c6cbEdGbaLIOTAQs,36997
343
+ fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py,sha256=zRkmQP0-dh9A-woFgiT9wOR6nzAtwsiD_QmNSq-NLgE,36889
338
344
  fusion_bench/models/modeling_smile_qwen2/register.py,sha256=wnKrpprP1KCruswOQcrrIJSUWYbaPHKIaduvPjF_SV4,378
339
345
  fusion_bench/models/nyuv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
346
  fusion_bench/models/nyuv2/aspp.py,sha256=Nl-Kx9YmGp0BNpDedo9cYbynOwI4SUyILWN2VgiPDIc,2495
@@ -366,9 +372,9 @@ fusion_bench/optim/lr_scheduler/utils/__init__.py,sha256=GfZk9VYL3cFE1Qy2xQpGc1G
366
372
  fusion_bench/optim/lr_scheduler/utils/visualization.py,sha256=Ea1n9ElNizAe0iUnjynyfteuZunv2-UBMN_NfEU2imA,3490
367
373
  fusion_bench/programs/__init__.py,sha256=oGoRp2TMI6ELxyfkeTg2h27hZJEDz9x31AsmvwvNvJw,508
368
374
  fusion_bench/programs/base_program.py,sha256=Bl_bv8SawEUc-GBTtZFMoii0y-r-0hOXBAJkQFexWCU,3475
369
- fusion_bench/programs/fabric_fusion_program.py,sha256=BzJ64igUjd5w6cJcMqus7dGKGK74DetDIztOoNcjCwc,14306
375
+ fusion_bench/programs/fabric_fusion_program.py,sha256=jt0_tlg37a2jBl2YikaC0N71Gmr4J340wkKAekyT180,12453
370
376
  fusion_bench/scripts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
371
- fusion_bench/scripts/cli.py,sha256=P_k_iYQD3rw-YOMh2vO7_GwIemQzU-QBDPPm_kZUW6Q,1222
377
+ fusion_bench/scripts/cli.py,sha256=VwcwqY--kGDEGI1RoTQ5X32FaKducdRUKf2CZRXcfCM,2739
372
378
  fusion_bench/scripts/imgui.py,sha256=r9Glbfbwu3JCsX9TKQFwcHarvwA_G7ff0jWBUPW1S1U,7613
373
379
  fusion_bench/scripts/nyuv2_mtl_train.py,sha256=W1C45R9NdF4O-UjCx1bUxRTdFE0-FlRpwJHZ5gY18rI,3602
374
380
  fusion_bench/scripts/webui.py,sha256=ryA-2leSnHcYA88tTAYzJGDhiljbi0vl1Fibejzndlw,14398
@@ -383,7 +389,7 @@ fusion_bench/taskpool/clip_vision/__init__.py,sha256=ItdyWYy2A5xQKzh1dXi9kbQTBig
383
389
  fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py,sha256=t_lmo8W-ZgLLOiBnF5CWfaLbKwz3EXfO8gCavI34qQY,3733
384
390
  fusion_bench/taskpool/clip_vision/clip_smile_taskpool.py,sha256=UdI7npI53LjPV2B19tHymhbma6WYcZIvzhqaSyZKkSQ,4762
385
391
  fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py,sha256=8lZIG6tWpctYzme0Q_n6QcGnn9MeDmP3UX8nEv4_a9Q,4232
386
- fusion_bench/taskpool/clip_vision/taskpool.py,sha256=WkD6qFAsSOk3_gXfG_7o3wyRAGy72Ocg9ANGgxonnCM,15972
392
+ fusion_bench/taskpool/clip_vision/taskpool.py,sha256=_Ef0MFKcDQV4kmQp1wmFMiOj6j8TFFLeq8IkFLuLrEw,16176
387
393
  fusion_bench/taskpool/clip_vision/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
388
394
  fusion_bench/taskpool/clip_vision/utils/routing_analysis_utils.py,sha256=LY9wxWCm_4X7Ii0ZkMxhtbevz6OxS3Bkqz0puXhuRqM,2393
389
395
  fusion_bench/taskpool/llama/__init__.py,sha256=iB4ESMgnsl0m-z0YtRdPZiwGGv96-86R8pbSnkdet8Q,57
@@ -429,27 +435,27 @@ fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py,sha256=-B1wqVGp3wZ
429
435
  fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py,sha256=sVihXHbqwi8IlDpiIxzvmDv-Ob7WKvi23GIRYbBUKOc,1833
430
436
  fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py,sha256=GhRmGmcJGF4oVgZQarsBtx8GNKrNEZUkrillNz3iBuY,13183
431
437
  fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py,sha256=mKMTXIr5o-BqS_Hvv1bbMvvjQLLeKNVw7BKS9qgQ8Dw,1890
432
- fusion_bench/utils/__init__.py,sha256=uNCwx_tEMbj_exQ-vIjWiPtdX62sPOSHZJpOdBffsmM,586
438
+ fusion_bench/utils/__init__.py,sha256=AqB_EY6pGa1pB2BgcRTJM-Ui5IWrisnWA3E--OCz7CA,628
433
439
  fusion_bench/utils/auto.py,sha256=uACQLE62_kNyhl4BGduvcbyeTE61qXpIJx3Ccl8kh68,920
434
- fusion_bench/utils/cache_utils.py,sha256=rU8x4-RFUtaCZWKd4Kft_7xgPTr1bpXnqUDMkrIdpj8,1653
440
+ fusion_bench/utils/cache_utils.py,sha256=-bTZijQgl4BuAx0VSJFD-bSDOXuq3o0NkrOaiLiyofU,4795
435
441
  fusion_bench/utils/data.py,sha256=L3aS2OwlpiXoILdPlo-j03gJh4s2LpAJw6fw9uY5G7c,6571
436
442
  fusion_bench/utils/devices.py,sha256=DeCV7UwvWmaYrvmwcZf6e8lZciXAYJ4qERraDZouiUU,8305
437
443
  fusion_bench/utils/dict.py,sha256=ZCK0CRRT_B1Z18WY_GOYcmth7k5x9Jn1k7XhAVWRu98,1379
438
444
  fusion_bench/utils/dtype.py,sha256=qtsDFfm5XTuxsjvVg-orpWvbhebCvyivzzZbLg-xiaA,4327
439
445
  fusion_bench/utils/expr.py,sha256=zwHNrtIbOMnIChU-0ZI5qLbDva8zvHbizL-4F2TwM14,2386
440
- fusion_bench/utils/fabric.py,sha256=dF0Aj8NmVir30io6WcL5gpWmbQSPlEADvw_yFxFx1sQ,613
446
+ fusion_bench/utils/fabric.py,sha256=NxquO_rVJyE2w4V3raMElNMr1-wT01QZWPuIfL2rgdQ,617
441
447
  fusion_bench/utils/functools.py,sha256=7_tYJ2WD88_2DDuOOj5aZz3cYuslYH5tsVyIgCeLtmk,1318
442
448
  fusion_bench/utils/hydra_utils.py,sha256=TklUDKDEZlg4keI-TEZiqh4gFjr9-61Rt1RMlqkoSGk,1174
443
449
  fusion_bench/utils/instantiate_utils.py,sha256=OXkfhq_o3Sgy5n3Psf-HI-dIfbK9oD2GBdfcx3gT63Q,17526
444
450
  fusion_bench/utils/json.py,sha256=sVCqbm9mmyHybiui-O57KFt_ULrjLtN2wipSo6VDvqE,2533
445
- fusion_bench/utils/lazy_imports.py,sha256=v5l9cpHXPMaz1IVBmB5oOqefYr9vA3XvP340xT7Wy18,2796
446
- fusion_bench/utils/lazy_state_dict.py,sha256=Hu8PkhbJcUikXJxWUJ7vabu2uDbnUUF6UsRS0k8i71U,16841
451
+ fusion_bench/utils/lazy_imports.py,sha256=dg4Uu8FaoEu0WGVTo5o_PbLZs3Ei_RG75Ta-Us1iPW4,3500
452
+ fusion_bench/utils/lazy_state_dict.py,sha256=prOovUIJSdI3o6epS1_lx7uQYbnsNNdwHmAd0IjXXBs,18300
447
453
  fusion_bench/utils/misc.py,sha256=93q0m-HYWkPK91Co5lll_J0Dxs6YahW2lD_X8fUAyTk,2420
448
- fusion_bench/utils/modelscope.py,sha256=CHqKpmyF_-J6rKs9sFlmTvbrzz2fLZqdxBblrH38Ess,10702
454
+ fusion_bench/utils/modelscope.py,sha256=P8fV6Eff8oP0LVGIFGbLvuk8MBteysN438djZ6ZEfE4,10699
449
455
  fusion_bench/utils/packages.py,sha256=L64paDi1SmeT3gRvRV6LaqB8AeGdzIYWIRI31qSQbSk,2110
450
456
  fusion_bench/utils/parameters.py,sha256=HTlR6nibuBzLafbGktNZNqwkGRIZzKdjqGhyPykZGPo,11790
451
- fusion_bench/utils/path.py,sha256=hRA1CPHNnTYBUmzbftH77sHvn4aTuybEK5Tth1skP-k,531
452
- fusion_bench/utils/pylogger.py,sha256=amlRsdqHpOjxmBl6f9TA8y0LaWelEWgQNcGgEGsVOIc,3333
457
+ fusion_bench/utils/path.py,sha256=qrfgar3b-6_2v032-2hTt97L6qdtG7zc3CFrGFyKSGE,2400
458
+ fusion_bench/utils/pylogger.py,sha256=r2KXTvq-j8uHdjBBoVPOgkjv4c6pyhbX6xf1JbOsF4w,3335
453
459
  fusion_bench/utils/rich_utils.py,sha256=XNPUpa1grna_C0MLQs0nY25-Kfutpj9BOEzvjoH7nR0,5849
454
460
  fusion_bench/utils/set.py,sha256=_43ZvGKJ_BK9sUslsSNhi7xEfuAQuyj3vViImnGpnCY,134
455
461
  fusion_bench/utils/state_dict_arithmetic.py,sha256=fczHDEpL2_UmxNIdvQtllXvBWBcmKpw-p6CIS_upjwI,11818
@@ -463,7 +469,7 @@ fusion_bench/utils/plot/token_notebook.py,sha256=bsntXf46Zz_RavTxNiB9c3-KvHw7LFw
463
469
  fusion_bench/utils/strenum/__init__.py,sha256=id9ORi1uXrDxhbmVxitJ1KDwLS4H3AAwFpaK5h1cQzw,8531
464
470
  fusion_bench/utils/strenum/_name_mangler.py,sha256=o11M5-bURW2RBvRTYXFQIPNeqLzburdoWLIqk8X3ydw,3397
465
471
  fusion_bench/utils/strenum/_version.py,sha256=6JQRo9LcvODbCOeVFYQb9HNJ_J9XiG_Zbn8ws2A3BV8,18466
466
- fusion_bench-0.2.21.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
472
+ fusion_bench-0.2.22.dist-info/licenses/LICENSE,sha256=nhnOJlw4CPuPVE0qvkGmxfFgHmKi-6nzXvTu8t0NUdg,1066
467
473
  fusion_bench_config/README.md,sha256=Lc8YSBJ5oxf9KV5kKDivJ9LRyGuraGQPmBbgbdVA-j4,703
468
474
  fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml,sha256=7IxLQoLRz-sRWyV8Vqc5kQcmYE_9YQz2_77pmvAkum8,1207
469
475
  fusion_bench_config/fabric_model_fusion.yaml,sha256=U8BxsaOvsg9bsEZcIpBE-feo9n9G7Y1kQDHqPVxUYAg,2601
@@ -615,7 +621,7 @@ fusion_bench_config/method/ensemble/simple_ensemble.yaml,sha256=Ih9dqifpnvxW2QfJ
615
621
  fusion_bench_config/method/ensemble/weighted_ensemble.yaml,sha256=2KD3PjFglqL7fjqhjXtOWxZ1mvmYodiNVroXsFd7EGE,261
616
622
  fusion_bench_config/method/expert_sparsity/README.md,sha256=CLE0-XblXDWCUTHPaTNtBH-YquXn-uawwTJiYrgjMaA,239
617
623
  fusion_bench_config/method/expert_sparsity/mixtral.yaml,sha256=maFL3LM0zfnQ1eXoNXUslSjgZmpOdUJgl_a31dYUBbc,605
618
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=rl7kfVvdo2pG-DnglQUbjzkyBqnq1FpfoSDSjFtdLwk,633
624
+ fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml,sha256=-m5uDA9hfBg_8vF3s0MnUp0JTl3MqpB4-rlPEg9CHD4,569
619
625
  fusion_bench_config/method/fisher_merging/fisher_merging.yaml,sha256=B1wrv9mhaOID4KcAUEMZNxlvY3tR3Q3UGualFslvx-Y,475
620
626
  fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml,sha256=AE7XZqRDj4__J_ipEcjPs7qTB2J3xLQyFRlq1W4iHFE,563
621
627
  fusion_bench_config/method/fw_merging/fw_hard.yaml,sha256=G6s5td3x1ZnUaELK9y726Du3XIDryTH3d21k79rbPTI,232
@@ -628,7 +634,7 @@ fusion_bench_config/method/linear/expo.yaml,sha256=St3NW6cKVRV3vCn8y0gxQ8k66VTdt
628
634
  fusion_bench_config/method/linear/linear_interpolation.yaml,sha256=chM6_HRKKcMleTeuKY3-YNI1qaMG2CfnsRwUxAlHsRw,66
629
635
  fusion_bench_config/method/linear/llama_expo.yaml,sha256=SvqamjT06BMObQ58sks5x7Wv6kGpp3-Nlw3ihbD_kSA,621
630
636
  fusion_bench_config/method/linear/llama_expo_with_dare.yaml,sha256=Pp8s2xmEg5XSvaGKtwTYx_PzcGvwRh2gPpZ6u9as4_E,383
631
- fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=QJR5qx9z4MSY2-SeoKwDSxnQSZR-Rw5dkLv3BICi_zs,280
637
+ fusion_bench_config/method/linear/simple_average_for_llama.yaml,sha256=r2Zul2GaMEEQ7NEDf8yiAgEiMDPNibU4qsJ0toD2KjQ,319
632
638
  fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml,sha256=N7cyHm6a2QwNsV9uaJp-eZmdbs9kmdRrkxtO58QQQgM,116
633
639
  fusion_bench_config/method/linear/weighted_average.yaml,sha256=uq2gHGCwVHHSa1H-hzcrSlumUTLJ50tfyiY1Mh1pFsk,186
634
640
  fusion_bench_config/method/linear/weighted_average_for_llama.yaml,sha256=se2aq6t5R1f-ZG6ubUyRr__DBe9BzXrgL81ua3DkQoM,498
@@ -657,11 +663,12 @@ fusion_bench_config/method/regmean/gpt2_regmean.yaml,sha256=n94aTboDdwSA7Tki8l_o
657
663
  fusion_bench_config/method/regmean/regmean.yaml,sha256=ZgVVLx-lHwVgjtjTl4VZUlthh8yyua87QvoJfmNHud4,101
658
664
  fusion_bench_config/method/regmean_plusplus/clip_regmean_plusplus.yaml,sha256=A034ryEwvosqyQzA3KWs7kdp-3CUnoJtCujVywV-uzA,434
659
665
  fusion_bench_config/method/slerp/slerp.yaml,sha256=xldDUULtfCdwzAkQUb0C8-TmbW7FqcAlIOsPX8p4n6w,116
666
+ fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml,sha256=skLwgu_VHShm4m0oEOkqKzcBS5Cz7J29xEj7pTaSm0k,916
660
667
  fusion_bench_config/method/smile_upscaling/error_accumulation.yaml,sha256=6Gui-OuQ3P_4TwO_syh9SWJCNeHiAQzS55aO-ByYKbQ,154
661
668
  fusion_bench_config/method/smile_upscaling/projected_energy.yaml,sha256=M_EBOC3B_pxaBO3tD6mnbXpvy6-EaegSsE-jdJs-HY0,114
662
669
  fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml,sha256=ZMn_ImRjjc2uozf7ocQIzbgvFDpBV7S-34KptbBXVGo,200
663
670
  fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml,sha256=VFMrkbO69d0wCjTQCuKysYGVe6hEwNu792g1QkhU5Mk,383
664
- fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=wN22uIam7pycLgh1srG2utw3tOx8AaTyKI1tb4CRccw,406
671
+ fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml,sha256=MfZ1u1HIJoy_csWiLzR4GLz-eiaVxo2gmNYre224yqo,433
665
672
  fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml,sha256=G88mabTTniDUtiUC9Vg3cj_sw6D05mE4_ZdyYI4Omjk,477
666
673
  fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml,sha256=L-WgNhFjcp_2tocDxZi6STVTtoaSd1v9UOQaKO_QvHM,669
667
674
  fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml,sha256=prTEFH0eu7R_CVNQ0GPWL9QsOLFcT1uM12zZdi3qcFo,636
@@ -670,6 +677,7 @@ fusion_bench_config/method/surgery/adamerging_surgery.yaml,sha256=tC0AUYbCfIpb2I
670
677
  fusion_bench_config/method/tall_mask/task_arithmetic.yaml,sha256=Ma5zk9wNzjwsh3B2FwzMXAvIWH1JTr82Az7Kq-RauQQ,114
671
678
  fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml,sha256=jgRDs2J3f6628QVMEVeW5ShmyaChvQl8Ng3AiQbNbtE,202
672
679
  fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml,sha256=-Ipc05TQbgg5VhJ_aKR_YY4dkpUbGZEd5P5teQI1CI8,196
680
+ fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml,sha256=KIKUr_Q4e9pJSVlqUFatuLp5vg8kNEsn8tOE4R77sxA,653
673
681
  fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml,sha256=mMVaFJWUZmIdhg0kVQY20i7cmgTMrOSgoSpmW7quRzc,993
674
682
  fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml,sha256=OEv5yhyUCe5lXeT2PyXC49yrHXEM7i8SZDw6IQRDtAE,620
675
683
  fusion_bench_config/model/clip-vit/README.md,sha256=-s34C9X7pxy55xSc24kbf-4ctK7UC-Wpu_JWIe9O0Ko,1382
@@ -827,7 +835,7 @@ fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_
827
835
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml,sha256=FuPWQbC9xEV5wZjuo835gOMNgbzmpK9RbjFjA_HOzqo,2476
828
836
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml,sha256=9PCkbrNnQSKTsm4eoUvVgjGd3IY7wHBC4LWj4kOdY4Y,1406
829
837
  fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml,sha256=bqnyzgwIvDtV3Fb-uLf9mdFv0NW1C392lxGsGUPLsKE,400
830
- fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml,sha256=d1mxaLrBW9qEYiDK3njX8SRyImhw8DfH1wnJSR_gjaM,255
838
+ fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml,sha256=D8HdBRGUYD-c-c38oSgzcP3fkNhBN-tVdqLnS_B-7zc,265
831
839
  fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-7B-math_and_coder.yaml,sha256=Nxk72MurqSzEyPJzGoKFbk5T2TGWBwYpH2V9Jzqt648,229
832
840
  fusion_bench_config/modelpool/CausalLMPool/deepseek-v2-lite.yaml,sha256=8gr8ZtgegSHV0GHtJBiEgdYbRe8UHhO4_y8dayxZChk,506
833
841
  fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml,sha256=oDsZkuAoh1mWUC7jZNzw8794zgX2bV5Z0esXpvbTs-c,643
@@ -913,8 +921,8 @@ fusion_bench_config/taskpool/LMEvalHarnessTaskPool/lm_eval.yaml,sha256=3q-KMuFaM
913
921
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-16_TA8.yaml,sha256=GjpiiRownrBCpl-TNwWRW2PYePbF-Cl99jlLNPrK5T4,1017
914
922
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-B-32_TA8.yaml,sha256=WwiYMQKehtJixDPnu5o3vcWe4yJksXTWRqOzm3uVWXQ,1017
915
923
  fusion_bench_config/taskpool/OpenCLIPVisionModelTaskPool/ViT-L-14_TA8.yaml,sha256=xGRt0J9joXTzWUew6DvoYprAWlPXhaVFw5AX4im5VQw,1017
916
- fusion_bench-0.2.21.dist-info/METADATA,sha256=kjXizuVpX_WeSKyoarT7N12KOV401GNUuxiv2umMQTo,23628
917
- fusion_bench-0.2.21.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
918
- fusion_bench-0.2.21.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
919
- fusion_bench-0.2.21.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
920
- fusion_bench-0.2.21.dist-info/RECORD,,
924
+ fusion_bench-0.2.22.dist-info/METADATA,sha256=NjsAXU_TQaCd_XbaX88jQg1wlvoyaHvMAWMr00zqeKA,22384
925
+ fusion_bench-0.2.22.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
926
+ fusion_bench-0.2.22.dist-info/entry_points.txt,sha256=iUQ8MCJvda7HP4vYh2n1Teoapb4G9PBVYZkAfcc5SHU,116
927
+ fusion_bench-0.2.22.dist-info/top_level.txt,sha256=BuO4TL6iHL_2yPBUX9-LlIrHRczA_BNMIFwweK0PQEI,13
928
+ fusion_bench-0.2.22.dist-info/RECORD,,
@@ -7,7 +7,6 @@ normalize_fisher_weight: true
7
7
  minimal_fisher_weight: 1e-6
8
8
  # common choices: 256, 512, 1024, 2048
9
9
  num_fisher_examples: 256
10
- zeroshot_weights_cache_dir: outputs/cache/clip_zeroshot_weights
11
10
  dataloader_kwargs:
12
11
  batch_size: 32
13
12
  num_workers: 0
@@ -1,5 +1,6 @@
1
1
  _target_: fusion_bench.method.SimpleAverageForLlama
2
2
  # set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
3
3
  # if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
4
- merge_backbone: true
5
- model_save_path: null
4
+ merge_backbone: false
5
+ model_save_path: ${path.log_dir}/checkpoint
6
+ show_pbar: true
@@ -0,0 +1,21 @@
1
+ # Generic SMILE Upscaling Configuration for CausalLM models
2
+ # Supports: Qwen2, Llama, Mistral models
3
+ # The model type will be auto-detected from the base model
4
+ _target_: fusion_bench.method.smile_upscaling.causal_lm_upscaling.SmileCausalLMUpscalingAlgorithm
5
+
6
+ # Device and computation settings
7
+ device: cuda # device to put the models on
8
+ accelerator: cuda # device to perform SVD on
9
+
10
+ # Model upscaling parameters
11
+ num_experts_per_tok: 1 # Number of experts to activate per token
12
+ rank_of_router: 8 # Rank for router weights
13
+ rank_of_expert: 64 # Rank for expert weights
14
+
15
+ # Model saving settings
16
+ model_save_path: ${path.log_dir}/checkpoint # Set to save the merged model
17
+ model_dtype: null # Optional: convert to specific dtype after merging
18
+ save_with_remote_code: true
19
+
20
+ # Optional: Explicitly specify model type instead of auto-detection
21
+ model_type: null # Options: "qwen2", "llama", "mistral", or null for auto-detection
@@ -4,7 +4,7 @@ device: cpu
4
4
  # device to perform SVD on
5
5
  accelerator: cuda
6
6
  # path to save/load the model
7
- model_path: null
7
+ model_save_path: ${path.log_dir}/checkpoint
8
8
  model_dtype: null
9
9
  # SmileMoE parameters
10
10
  num_experts_per_tok: 1
@@ -0,0 +1,20 @@
1
+ _target_: fusion_bench.method.we_moe.flan_t5_we_moe.FlanT5WeightEnsemblingMoEAlgorithm
2
+ # the path for loading the model weights, if specified, skip the test-time adaptation training
3
+ checkpoint: False
4
+ # the path for saving the model weights.
5
+ save_checkpoint: False
6
+ router_hidden_layers: 2
7
+ init_lambda: 0.3
8
+ batch_reduce: true
9
+ # learning rate
10
+ lr: 1e-4
11
+ optimizer: adam
12
+ # this is overrided by `fabric.devices` if launched from the `fusion_bench` CLI.
13
+ devices: 1
14
+ batch_size: 4
15
+ num_workers: 0
16
+ max_steps: 200
17
+ # if true, we will use the gradient accumulation across tasks to save memory
18
+ use_grad_accumulate: true
19
+ cache_dir: outputs
20
+ fast_dev_run: ${fast_dev_run}
@@ -1,7 +1,7 @@
1
1
  _target_: fusion_bench.modelpool.CausalLMPool
2
2
  _recursive_: false
3
3
 
4
- load_lazy: false
4
+ enable_lazy_loading: false
5
5
  models:
6
6
  _pretrained_: Qwen/Qwen2.5-1.5B
7
7
  math: Qwen/Qwen2.5-Math-1.5B