fusion-bench 0.2.21__py3-none-any.whl → 0.2.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. fusion_bench/__init__.py +21 -2
  2. fusion_bench/constants/__init__.py +1 -0
  3. fusion_bench/constants/runtime.py +57 -0
  4. fusion_bench/method/__init__.py +8 -2
  5. fusion_bench/method/bitdelta/__init__.py +1 -0
  6. fusion_bench/method/classification/clip_finetune.py +1 -1
  7. fusion_bench/method/fisher_merging/clip_fisher_merging.py +0 -4
  8. fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +2 -2
  9. fusion_bench/method/linear/simple_average_for_llama.py +16 -11
  10. fusion_bench/method/simple_average.py +7 -7
  11. fusion_bench/method/smile_upscaling/causal_lm_upscaling.py +371 -0
  12. fusion_bench/method/smile_upscaling/projected_energy.py +1 -2
  13. fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +5 -1
  14. fusion_bench/method/smile_upscaling/smile_qwen2_upscaling.py +40 -31
  15. fusion_bench/method/smile_upscaling/smile_upscaling.py +1 -1
  16. fusion_bench/method/we_moe/__init__.py +1 -0
  17. fusion_bench/method/we_moe/entropy_loss.py +25 -0
  18. fusion_bench/method/we_moe/flan_t5_we_moe.py +331 -0
  19. fusion_bench/method/we_moe/utils.py +15 -0
  20. fusion_bench/method/weighted_average/llama.py +1 -1
  21. fusion_bench/mixins/clip_classification.py +11 -42
  22. fusion_bench/mixins/serialization.py +18 -8
  23. fusion_bench/modelpool/causal_lm/causal_lm.py +32 -33
  24. fusion_bench/models/__init__.py +5 -0
  25. fusion_bench/models/hf_utils.py +65 -87
  26. fusion_bench/models/model_card_templates/default.md +46 -0
  27. fusion_bench/models/modeling_smile_llama/__init__.py +7 -0
  28. fusion_bench/models/modeling_smile_llama/modeling_smile_llama.py +1 -8
  29. fusion_bench/models/modeling_smile_mistral/__init__.py +1 -1
  30. fusion_bench/models/modeling_smile_qwen2/modeling_smile_qwen2.py +1 -5
  31. fusion_bench/programs/fabric_fusion_program.py +29 -60
  32. fusion_bench/scripts/cli.py +34 -1
  33. fusion_bench/taskpool/clip_vision/taskpool.py +9 -4
  34. fusion_bench/utils/__init__.py +1 -0
  35. fusion_bench/utils/cache_utils.py +101 -1
  36. fusion_bench/utils/fabric.py +2 -2
  37. fusion_bench/utils/lazy_imports.py +23 -0
  38. fusion_bench/utils/lazy_state_dict.py +38 -3
  39. fusion_bench/utils/modelscope.py +3 -3
  40. fusion_bench/utils/path.py +56 -0
  41. fusion_bench/utils/pylogger.py +1 -1
  42. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/METADATA +1 -23
  43. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/RECORD +53 -45
  44. fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +0 -1
  45. fusion_bench_config/method/linear/simple_average_for_llama.yaml +3 -2
  46. fusion_bench_config/method/smile_upscaling/causal_lm_upscaling.yaml +21 -0
  47. fusion_bench_config/method/smile_upscaling/smile_qwen2_upscaling.yaml +1 -1
  48. fusion_bench_config/method/wemoe/flan_t5_weight_ensembling_moe.yaml +20 -0
  49. fusion_bench_config/modelpool/CausalLMPool/Qwen2.5-1.5B_math_and_coder.yaml +1 -1
  50. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/WHEEL +0 -0
  51. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/entry_points.txt +0 -0
  52. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/licenses/LICENSE +0 -0
  53. {fusion_bench-0.2.21.dist-info → fusion_bench-0.2.22.dist-info}/top_level.txt +0 -0
@@ -12,9 +12,9 @@ import os
12
12
  import hydra
13
13
  from omegaconf import DictConfig, OmegaConf
14
14
 
15
+ from fusion_bench.constants import PROJECT_ROOT_PATH
15
16
  from fusion_bench.programs import BaseHydraProgram
16
17
  from fusion_bench.utils import instantiate
17
- from fusion_bench.constants import PROJECT_ROOT_PATH
18
18
 
19
19
  log = logging.getLogger(__name__)
20
20
 
@@ -34,6 +34,39 @@ def _get_default_config_path():
34
34
  version_base=None,
35
35
  )
36
36
  def main(cfg: DictConfig) -> None:
37
+ """
38
+ Main entry point for the FusionBench command-line interface.
39
+
40
+ This function serves as the primary entry point for the `fusion_bench` CLI command.
41
+ It is decorated with Hydra's main decorator to handle configuration management,
42
+ command-line argument parsing, and configuration file loading.
43
+
44
+ The function performs the following operations:
45
+ 1. Resolves any interpolations in the configuration using OmegaConf
46
+ 2. Instantiates the appropriate program class based on the configuration
47
+ 3. Executes the program's run method to perform the fusion task
48
+
49
+ Args:
50
+ cfg (DictConfig): The Hydra configuration object containing all settings
51
+ for the fusion task. This includes method configuration, model pool
52
+ configuration, task pool configuration, and other runtime parameters.
53
+ The configuration is automatically loaded by Hydra from the specified
54
+ config files and command-line overrides.
55
+
56
+ Returns:
57
+ None: This function doesn't return a value but executes the fusion
58
+ program which may save results, log outputs, or perform other
59
+ side effects as configured.
60
+
61
+ Example:
62
+ This function is typically called automatically when running:
63
+ ```bash
64
+ fusion_bench method=... modelpool=... taskpool=...
65
+ ```
66
+
67
+ The Hydra decorator handles parsing these command-line arguments and
68
+ loading the corresponding configuration files to populate the cfg parameter.
69
+ """
37
70
  OmegaConf.resolve(cfg)
38
71
  program: BaseHydraProgram = instantiate(cfg)
39
72
  program.run()
@@ -27,8 +27,9 @@ from tqdm.autonotebook import tqdm
27
27
  from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
28
28
  from transformers.models.clip.modeling_clip import CLIPVisionTransformer
29
29
 
30
+ from fusion_bench import RuntimeConstants
30
31
  from fusion_bench.dataset import CLIPDataset
31
- from fusion_bench.mixins import LightningFabricMixin
32
+ from fusion_bench.mixins import HydraConfigMixin, LightningFabricMixin
32
33
  from fusion_bench.models.hf_clip import HFCLIPClassifier
33
34
  from fusion_bench.taskpool import BaseTaskPool
34
35
  from fusion_bench.tasks.clip_classification import get_classnames_and_templates
@@ -86,8 +87,9 @@ class LayerWiseFeatureSaver:
86
87
 
87
88
 
88
89
  class CLIPVisionModelTaskPool(
89
- BaseTaskPool,
90
+ HydraConfigMixin,
90
91
  LightningFabricMixin,
92
+ BaseTaskPool,
91
93
  ):
92
94
  """
93
95
  This class is used to define the image classification task for CLIP models.
@@ -131,7 +133,7 @@ class CLIPVisionModelTaskPool(
131
133
  layer_wise_feature_save_path: Optional[str] = None,
132
134
  layer_wise_feature_first_token_only: bool = True,
133
135
  layer_wise_feature_max_num: Optional[int] = None,
134
- fast_dev_run: bool = False,
136
+ fast_dev_run: Optional[bool] = None,
135
137
  **kwargs,
136
138
  ):
137
139
  """
@@ -153,7 +155,10 @@ class CLIPVisionModelTaskPool(
153
155
  self.layer_wise_feature_first_token_only = layer_wise_feature_first_token_only
154
156
  self.layer_wise_feature_max_num = layer_wise_feature_max_num
155
157
 
156
- self.fast_dev_run = fast_dev_run
158
+ if self.fast_dev_run is None:
159
+ self.fast_dev_run = RuntimeConstants().debug
160
+ else:
161
+ self.fast_dev_run = fast_dev_run
157
162
  super().__init__(**kwargs)
158
163
 
159
164
  def setup(self):
@@ -18,4 +18,5 @@ from .lazy_state_dict import LazyStateDict
18
18
  from .misc import *
19
19
  from .packages import import_object
20
20
  from .parameters import *
21
+ from .pylogger import get_rankzero_logger
21
22
  from .timer import timeit_context
@@ -1,15 +1,30 @@
1
1
  import logging
2
2
  import os
3
3
  import pickle
4
+ import warnings
4
5
  from functools import wraps
5
6
  from pathlib import Path
6
7
  from typing import Any, Callable, Union
7
8
 
8
- __all__ = ["cache_to_disk"]
9
+ from joblib import Memory
10
+
11
+ __all__ = ["cache_to_disk", "cache_with_joblib", "set_default_cache_dir"]
9
12
 
10
13
 
11
14
  log = logging.getLogger(__name__)
12
15
 
16
+ DEFAULT_CACHE_DIR = Path.cwd() / "outputs" / "cache"
17
+
18
+
19
+ def set_default_cache_dir(path: str | Path):
20
+ global DEFAULT_CACHE_DIR
21
+ if path is None:
22
+ return
23
+
24
+ if isinstance(path, str):
25
+ path = Path(path)
26
+ DEFAULT_CACHE_DIR = path
27
+
13
28
 
14
29
  def cache_to_disk(file_path: Union[str, Path]) -> Callable:
15
30
  """
@@ -17,6 +32,11 @@ def cache_to_disk(file_path: Union[str, Path]) -> Callable:
17
32
  the result is loaded from the file. Otherwise, the function is executed and
18
33
  the result is saved to the file.
19
34
 
35
+ !!! warning "deprecated"
36
+ This function is deprecated. Use `cache_with_joblib` instead for better
37
+ caching capabilities including automatic cache invalidation, better object
38
+ handling, and memory efficiency.
39
+
20
40
  ## Example usage
21
41
 
22
42
  ```python
@@ -32,6 +52,13 @@ def cache_to_disk(file_path: Union[str, Path]) -> Callable:
32
52
  Returns:
33
53
  Callable: The decorated function.
34
54
  """
55
+ warnings.warn(
56
+ "cache_to_disk is deprecated. Use cache_with_joblib instead for better "
57
+ "caching capabilities including automatic cache invalidation, better object "
58
+ "handling, and memory efficiency.",
59
+ DeprecationWarning,
60
+ stacklevel=2,
61
+ )
35
62
  if isinstance(file_path, str):
36
63
  file_path = Path(file_path)
37
64
  assert isinstance(file_path, Path)
@@ -56,3 +83,76 @@ def cache_to_disk(file_path: Union[str, Path]) -> Callable:
56
83
  return wrapper
57
84
 
58
85
  return decorator
86
+
87
+
88
+ def cache_with_joblib(
89
+ cache_dir: Union[str, Path] = None,
90
+ verbose: int = 0,
91
+ ) -> Callable:
92
+ """
93
+ A decorator to cache the result of a function using joblib.Memory. This provides
94
+ more advanced caching capabilities compared to cache_to_disk, including:
95
+ - Automatic cache invalidation when function arguments change
96
+ - Better handling of numpy arrays and other complex objects
97
+ - Memory-efficient storage
98
+ - Optional verbose output for cache hits/misses
99
+
100
+ ## Example usage
101
+
102
+ ```python
103
+ @cache_with_joblib("./cache", verbose=1)
104
+ def expensive_computation(x: int, y: str) -> Any:
105
+ # Function implementation
106
+ return complex_result
107
+
108
+ # Or with default settings:
109
+ @cache_with_joblib()
110
+ def another_function(x: int) -> int:
111
+ return x * 2
112
+ ```
113
+
114
+ Args:
115
+ cache_dir (Union[str, Path]): The directory where cache files should be stored.
116
+ If `None`, a default directory `outputs/cache` will be used.
117
+ verbose (int): Verbosity level for joblib.Memory (0=silent, 1=basic, 2++=verbose).
118
+
119
+ Returns:
120
+ Callable: A decorator function that can be applied to functions.
121
+ """
122
+
123
+ if cache_dir is None:
124
+ cache_dir = DEFAULT_CACHE_DIR
125
+
126
+ if isinstance(cache_dir, str):
127
+ cache_dir = Path(cache_dir)
128
+ assert isinstance(cache_dir, Path)
129
+
130
+ # Create the cache directory if it doesn't exist
131
+ cache_dir.mkdir(parents=True, exist_ok=True)
132
+
133
+ # Create a Memory object for this function
134
+ memory = Memory(location=cache_dir, verbose=verbose)
135
+
136
+ def decorator(func: Callable) -> Callable:
137
+ nonlocal memory
138
+
139
+ # Create the cached version of the function
140
+ cached_func = memory.cache(func)
141
+
142
+ @wraps(func)
143
+ def wrapper(*args: Any, **kwargs: Any) -> Any:
144
+ return cached_func(*args, **kwargs)
145
+
146
+ # Expose useful methods from joblib.Memory
147
+ if not (
148
+ hasattr(cached_func, "clear")
149
+ or hasattr(cached_func, "call")
150
+ or hasattr(cached_func, "check_call_in_cache")
151
+ ):
152
+ wrapper.clear = cached_func.clear
153
+ wrapper.call = cached_func.call
154
+ wrapper.check_call_in_cache = cached_func.check_call_in_cache
155
+
156
+ return wrapper
157
+
158
+ return decorator
@@ -3,9 +3,9 @@ from typing import Optional
3
3
 
4
4
  import lightning as L
5
5
 
6
- from fusion_bench.utils.pylogger import getRankZeroLogger
6
+ from fusion_bench.utils.pylogger import get_rankzero_logger
7
7
 
8
- log = getRankZeroLogger(__name__)
8
+ log = get_rankzero_logger(__name__)
9
9
 
10
10
 
11
11
  def seed_everything_by_time(fabric: Optional[L.Fabric] = None):
@@ -72,3 +72,26 @@ class LazyImporter(ModuleType):
72
72
 
73
73
  def __reduce__(self):
74
74
  return (self.__class__, (self._name, self.__file__, self._import_structure))
75
+
76
+
77
+ class LazyModule(ModuleType):
78
+ """Module wrapper for lazy import.
79
+ Adapted from Optuna: https://github.com/optuna/optuna/blob/1f92d496b0c4656645384e31539e4ee74992ff55/optuna/__init__.py
80
+
81
+ This class wraps specified module and lazily import it when they are actually accessed.
82
+
83
+ Args:
84
+ name: Name of module to apply lazy import.
85
+ """
86
+
87
+ def __init__(self, name: str) -> None:
88
+ super().__init__(name)
89
+ self._name = name
90
+
91
+ def _load(self) -> ModuleType:
92
+ module = importlib.import_module(self._name)
93
+ self.__dict__.update(module.__dict__)
94
+ return module
95
+
96
+ def __getattr__(self, item: str) -> Any:
97
+ return getattr(self._load(), item)
@@ -2,7 +2,7 @@ import json
2
2
  import logging
3
3
  import os
4
4
  from copy import deepcopy
5
- from typing import TYPE_CHECKING, Dict, Iterator, List, Optional, Tuple, Type
5
+ from typing import TYPE_CHECKING, Dict, Iterator, List, Mapping, Optional, Tuple, Type
6
6
 
7
7
  import torch
8
8
  from accelerate import init_empty_weights
@@ -49,7 +49,7 @@ def resolve_checkpoint_path(
49
49
  )
50
50
 
51
51
 
52
- class LazyStateDict:
52
+ class LazyStateDict(Mapping[str, torch.Tensor]):
53
53
  """
54
54
  Dictionary-like object that lazily loads a state dict from a checkpoint path.
55
55
  """
@@ -168,12 +168,21 @@ class LazyStateDict:
168
168
  def config(self) -> "PretrainedConfig":
169
169
  return AutoConfig.from_pretrained(self._checkpoint)
170
170
 
171
+ @property
172
+ def dtype(self) -> torch.dtype:
173
+ """
174
+ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
175
+ """
176
+ first_key = next(iter(self.keys()))
177
+ first_param = self[first_key]
178
+ return first_param.dtype
179
+
171
180
  def state_dict(self, keep_vars: bool = False) -> "LazyStateDict":
172
181
  """
173
182
  Args:
174
183
  keep_vars (bool): Ignored, as LazyStateDict does not support keep_vars. Just for compatibility.
175
184
  """
176
- return self
185
+ return deepcopy(self)
177
186
 
178
187
  def _resolve_checkpoint_files(self, checkpoint: str):
179
188
  # reference: https://huggingface.co/docs/accelerate/v0.17.1/en/usage_guides/big_modeling
@@ -290,6 +299,18 @@ class LazyStateDict:
290
299
  )
291
300
  return tensor
292
301
 
302
+ def pop(self, key: str):
303
+ assert key in list(
304
+ self.keys()
305
+ ), "KeyError: Cannot pop a tensor for a key that does not exist in the LazyStateDict."
306
+ if self._state_dict_cache is not None and key in self._state_dict_cache:
307
+ if key in self._index:
308
+ self._index.pop(key)
309
+ return self._state_dict_cache.pop(key)
310
+ if key in self._index:
311
+ self._index.pop(key)
312
+ return None
313
+
293
314
  def __setitem__(self, key: str, value: torch.Tensor) -> None:
294
315
  """
295
316
  Set a tensor in the LazyStateDict. This will update the state dict cache if it is enabled.
@@ -408,3 +429,17 @@ class LazyStateDict:
408
429
  raise KeyError(f"Key {key} not found in LazyStateDict.")
409
430
  for key, value in state_dict.items():
410
431
  self[key] = value
432
+
433
+ def __getattr__(self, name: str):
434
+ if "meta_module" in self.__dict__:
435
+ meta_module = self.__dict__["meta_module"]
436
+ if meta_module is not None:
437
+ if "_parameters" in meta_module.__dict__:
438
+ if name in meta_module.__dict__["_parameters"]:
439
+ return self.get_parameter(name)
440
+ if "_modules" in meta_module.__dict__:
441
+ if name in meta_module.__dict__["_modules"]:
442
+ return self.get_submodule(name)
443
+ raise AttributeError(
444
+ f"'{type(self).__name__}' object has no attribute '{name}'"
445
+ )
@@ -26,13 +26,13 @@ try:
26
26
  from huggingface_hub import snapshot_download as huggingface_snapshot_download
27
27
  except ImportError:
28
28
 
29
- def _raise_hugggingface_not_installed_error(*args, **kwargs):
29
+ def _raise_huggingface_not_installed_error(*args, **kwargs):
30
30
  raise ImportError(
31
31
  "Hugging Face Hub is not installed. Please install it using `pip install huggingface_hub` to use Hugging Face models."
32
32
  )
33
33
 
34
- huggingface_snapshot_download = _raise_hugggingface_not_installed_error
35
- hf_hub_download = _raise_hugggingface_not_installed_error
34
+ huggingface_snapshot_download = _raise_huggingface_not_installed_error
35
+ hf_hub_download = _raise_huggingface_not_installed_error
36
36
 
37
37
  __all__ = [
38
38
  "load_dataset",
@@ -1,6 +1,9 @@
1
+ import logging
1
2
  import os
2
3
  from typing import List
3
4
 
5
+ log = logging.getLogger(__name__)
6
+
4
7
 
5
8
  def path_is_dir_and_not_empty(path: str):
6
9
  if path is None:
@@ -20,3 +23,56 @@ def listdir_fullpath(dir: str) -> List[str]:
20
23
  assert os.path.isdir(dir), "Argument 'dir' must be a Directory"
21
24
  names = os.listdir(dir)
22
25
  return [os.path.join(dir, name) for name in names]
26
+
27
+
28
+ def create_symlink(src_dir: str, dst_dir: str, link_name: str = None):
29
+ """
30
+ Creates a symbolic link from src_dir to dst_dir.
31
+
32
+ Args:
33
+ src_dir (str): The source directory to link to.
34
+ dst_dir (str): The destination directory where the symlink will be created.
35
+ link_name (str, optional): The name of the symlink. If None, uses the basename of src_dir.
36
+
37
+ Raises:
38
+ OSError: If the symbolic link creation fails.
39
+ ValueError: If src_dir does not exist or is not a directory.
40
+ """
41
+ if not os.path.exists(src_dir):
42
+ raise ValueError(f"Source directory does not exist: {src_dir}")
43
+
44
+ if not os.path.isdir(src_dir):
45
+ raise ValueError(f"Source path is not a directory: {src_dir}")
46
+
47
+ # Avoid creating symlink if source and destination are the same
48
+ if os.path.abspath(src_dir) == os.path.abspath(dst_dir):
49
+ log.warning(
50
+ "Source and destination directories are the same, skipping symlink creation"
51
+ )
52
+ return
53
+
54
+ # Create destination directory if it doesn't exist
55
+ os.makedirs(dst_dir, exist_ok=True)
56
+
57
+ # Determine link name
58
+ if link_name is None:
59
+ link_name = os.path.basename(src_dir)
60
+
61
+ link_path = os.path.join(dst_dir, link_name)
62
+
63
+ try:
64
+ # if the system is windows, use the `mklink` command in "CMD" to create the symlink
65
+ if os.name == "nt":
66
+ os.system(
67
+ f"mklink /J {os.path.abspath(link_path)} {os.path.abspath(src_dir)}"
68
+ )
69
+ else:
70
+ os.symlink(
71
+ src_dir,
72
+ link_path,
73
+ target_is_directory=True,
74
+ )
75
+ log.info(f"Created symbolic link: {link_path} -> {src_dir}")
76
+ except OSError as e:
77
+ log.warning(f"Failed to create symbolic link: {e}")
78
+ raise
@@ -74,7 +74,7 @@ RankZeroLogger.manager = logging.Manager(RankZeroLogger.root)
74
74
  RankZeroLogger.manager.setLoggerClass(RankZeroLogger)
75
75
 
76
76
 
77
- def getRankZeroLogger(name=None):
77
+ def get_rankzero_logger(name=None):
78
78
  """
79
79
  Return a logger with the specified name, creating it if necessary.
80
80
 
@@ -1,30 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fusion_bench
3
- Version: 0.2.21
3
+ Version: 0.2.22
4
4
  Summary: A Comprehensive Benchmark of Deep Model Fusion
5
5
  Author-email: Anke Tang <tang.anke@foxmail.com>
6
- License: MIT License
7
-
8
- Copyright (c) 2024 Anke Tang
9
-
10
- Permission is hereby granted, free of charge, to any person obtaining a copy
11
- of this software and associated documentation files (the "Software"), to deal
12
- in the Software without restriction, including without limitation the rights
13
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14
- copies of the Software, and to permit persons to whom the Software is
15
- furnished to do so, subject to the following conditions:
16
-
17
- The above copyright notice and this permission notice shall be included in all
18
- copies or substantial portions of the Software.
19
-
20
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26
- SOFTWARE.
27
-
28
6
  Project-URL: Repository, https://github.com/tanganke/fusion_bench
29
7
  Project-URL: Homepage, https://github.com/tanganke/fusion_bench
30
8
  Project-URL: Issues, https://github.com/tanganke/fusion_bench/issues