freealg 0.7.17__py3-none-any.whl → 0.7.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- freealg/__init__.py +8 -6
- freealg/__version__.py +1 -1
- freealg/_algebraic_form/_branch_points.py +18 -18
- freealg/_algebraic_form/_continuation_algebraic.py +13 -13
- freealg/_algebraic_form/_cusp.py +15 -15
- freealg/_algebraic_form/_cusp_wrap.py +6 -6
- freealg/_algebraic_form/_decompress.py +16 -16
- freealg/_algebraic_form/_decompress4.py +31 -31
- freealg/_algebraic_form/_decompress5.py +23 -23
- freealg/_algebraic_form/_decompress6.py +13 -13
- freealg/_algebraic_form/_decompress7.py +15 -15
- freealg/_algebraic_form/_decompress8.py +17 -17
- freealg/_algebraic_form/_decompress9.py +18 -18
- freealg/_algebraic_form/_decompress_new.py +17 -17
- freealg/_algebraic_form/_decompress_new_2.py +57 -57
- freealg/_algebraic_form/_decompress_util.py +10 -10
- freealg/_algebraic_form/_decompressible.py +292 -0
- freealg/_algebraic_form/_edge.py +10 -10
- freealg/_algebraic_form/_homotopy4.py +9 -9
- freealg/_algebraic_form/_homotopy5.py +9 -9
- freealg/_algebraic_form/_support.py +19 -19
- freealg/_algebraic_form/algebraic_form.py +262 -468
- freealg/_base_form.py +401 -0
- freealg/_free_form/__init__.py +1 -4
- freealg/_free_form/_density_util.py +1 -1
- freealg/_free_form/_plot_util.py +3 -511
- freealg/_free_form/free_form.py +8 -367
- freealg/_util.py +59 -11
- freealg/distributions/__init__.py +2 -1
- freealg/distributions/_base_distribution.py +163 -0
- freealg/distributions/_chiral_block.py +137 -11
- freealg/distributions/_compound_poisson.py +141 -47
- freealg/distributions/_deformed_marchenko_pastur.py +138 -33
- freealg/distributions/_deformed_wigner.py +98 -9
- freealg/distributions/_fuss_catalan.py +269 -0
- freealg/distributions/_kesten_mckay.py +4 -130
- freealg/distributions/_marchenko_pastur.py +8 -196
- freealg/distributions/_meixner.py +4 -130
- freealg/distributions/_wachter.py +4 -130
- freealg/distributions/_wigner.py +10 -127
- freealg/visualization/__init__.py +2 -2
- freealg/visualization/{_rgb_hsv.py → _domain_coloring.py} +37 -29
- freealg/visualization/_plot_util.py +513 -0
- {freealg-0.7.17.dist-info → freealg-0.7.18.dist-info}/METADATA +1 -1
- freealg-0.7.18.dist-info/RECORD +74 -0
- freealg-0.7.17.dist-info/RECORD +0 -69
- /freealg/{_free_form/_sample.py → _sample.py} +0 -0
- /freealg/{_free_form/_support.py → _support.py} +0 -0
- {freealg-0.7.17.dist-info → freealg-0.7.18.dist-info}/WHEEL +0 -0
- {freealg-0.7.17.dist-info → freealg-0.7.18.dist-info}/licenses/AUTHORS.txt +0 -0
- {freealg-0.7.17.dist-info → freealg-0.7.18.dist-info}/licenses/LICENSE.txt +0 -0
- {freealg-0.7.17.dist-info → freealg-0.7.18.dist-info}/top_level.txt +0 -0
freealg/__init__.py
CHANGED
|
@@ -6,15 +6,17 @@
|
|
|
6
6
|
# under the terms of the license found in the LICENSE.txt file in the root
|
|
7
7
|
# directory of this source tree.
|
|
8
8
|
|
|
9
|
-
from ._free_form import FreeForm, eigvalsh, cond, norm, trace, slogdet,
|
|
10
|
-
|
|
11
|
-
from ._algebraic_form import AlgebraicForm, decompress_newton
|
|
9
|
+
from ._free_form import FreeForm, eigvalsh, cond, norm, trace, slogdet, kde
|
|
10
|
+
from ._algebraic_form import AlgebraicForm
|
|
12
11
|
from ._geometric_form import GeometricForm
|
|
13
12
|
from . import visualization
|
|
14
13
|
from . import distributions
|
|
14
|
+
from ._sample import sample
|
|
15
|
+
from ._support import supp
|
|
16
|
+
from ._util import submatrix
|
|
15
17
|
|
|
16
|
-
__all__ = ['FreeForm', '
|
|
17
|
-
'
|
|
18
|
-
'
|
|
18
|
+
__all__ = ['FreeForm', 'AlgebraicForm', 'GeometricForm', 'distributions',
|
|
19
|
+
'visualization', 'eigvalsh', 'cond', 'norm', 'trace', 'slogdet',
|
|
20
|
+
'supp', 'sample', 'submatrix', 'kde']
|
|
19
21
|
|
|
20
22
|
from .__version__ import __version__ # noqa: F401 E402
|
freealg/__version__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.7.
|
|
1
|
+
__version__ = "0.7.18"
|
|
@@ -13,7 +13,7 @@
|
|
|
13
13
|
|
|
14
14
|
import numpy
|
|
15
15
|
|
|
16
|
-
__all__ = ['
|
|
16
|
+
__all__ = ['estimate_branch_points']
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
# =========
|
|
@@ -154,19 +154,19 @@ def _det_bareiss_poly(M, tol):
|
|
|
154
154
|
# resultant discriminant
|
|
155
155
|
# ======================
|
|
156
156
|
|
|
157
|
-
def _resultant_discriminant(
|
|
157
|
+
def _resultant_discriminant(coeffs, tol):
|
|
158
158
|
"""
|
|
159
159
|
Numerically compute Disc_m(P)(z) as a polynomial in z (ascending coeffs),
|
|
160
160
|
via Sylvester determinant evaluation on a circle + interpolation.
|
|
161
161
|
|
|
162
|
-
|
|
162
|
+
coeffs[i,j] is coeff of z^i m^j, shape (deg_z+1, s+1).
|
|
163
163
|
"""
|
|
164
164
|
|
|
165
165
|
import numpy
|
|
166
166
|
|
|
167
|
-
|
|
168
|
-
deg_z =
|
|
169
|
-
s =
|
|
167
|
+
coeffs = numpy.asarray(coeffs, dtype=numpy.complex128)
|
|
168
|
+
deg_z = coeffs.shape[0] - 1
|
|
169
|
+
s = coeffs.shape[1] - 1
|
|
170
170
|
if s < 1 or deg_z < 0:
|
|
171
171
|
return numpy.zeros(1, dtype=numpy.complex128)
|
|
172
172
|
|
|
@@ -180,7 +180,7 @@ def _resultant_discriminant(a_coeffs, tol):
|
|
|
180
180
|
# m^(s-k)
|
|
181
181
|
p_asc = numpy.zeros(s + 1, dtype=numpy.complex128)
|
|
182
182
|
for j in range(s + 1):
|
|
183
|
-
p_asc[j] = numpy.polyval(
|
|
183
|
+
p_asc[j] = numpy.polyval(coeffs[:, j][::-1], z) # a_j(z)
|
|
184
184
|
p_desc = p_asc[::-1]
|
|
185
185
|
|
|
186
186
|
# Q(m) = dP/dm, descending
|
|
@@ -207,8 +207,8 @@ def _resultant_discriminant(a_coeffs, tol):
|
|
|
207
207
|
# Sample points on a circle; scale radius using coefficient magnitude
|
|
208
208
|
# (simple heuristic) (This only affects conditioning of interpolation, not
|
|
209
209
|
# correctness.)
|
|
210
|
-
scale = float(numpy.max(numpy.abs(
|
|
211
|
-
if numpy.max(numpy.abs(
|
|
210
|
+
scale = float(numpy.max(numpy.abs(coeffs))) \
|
|
211
|
+
if numpy.max(numpy.abs(coeffs)) > 0 else 1.0
|
|
212
212
|
R = 1.0 + 0.1 * scale
|
|
213
213
|
|
|
214
214
|
N = D + 1
|
|
@@ -228,7 +228,7 @@ def _resultant_discriminant(a_coeffs, tol):
|
|
|
228
228
|
c = numpy.zeros(1, dtype=numpy.complex128)
|
|
229
229
|
|
|
230
230
|
# If numerics leave small imag, kill it (disc should be real-coeff if
|
|
231
|
-
#
|
|
231
|
+
# coeffs real)
|
|
232
232
|
if numpy.linalg.norm(c.imag) <= \
|
|
233
233
|
1e3 * tol * max(1.0, numpy.linalg.norm(c.real)):
|
|
234
234
|
c = c.real.astype(numpy.float64)
|
|
@@ -236,11 +236,11 @@ def _resultant_discriminant(a_coeffs, tol):
|
|
|
236
236
|
return c
|
|
237
237
|
|
|
238
238
|
|
|
239
|
-
#
|
|
240
|
-
#
|
|
241
|
-
#
|
|
239
|
+
# ======================
|
|
240
|
+
# estimate branch points
|
|
241
|
+
# ======================
|
|
242
242
|
|
|
243
|
-
def
|
|
243
|
+
def estimate_branch_points(coeffs, tol=1e-12, real_tol=None):
|
|
244
244
|
"""
|
|
245
245
|
Compute global branch points of the affine curve P(z,m)=0 by
|
|
246
246
|
z-roots of Disc_m(P)(z) = Res_m(P, dP/dm).
|
|
@@ -252,8 +252,8 @@ def compute_branch_points(a_coeffs, tol=1e-12, real_tol=None):
|
|
|
252
252
|
info : dict
|
|
253
253
|
"""
|
|
254
254
|
|
|
255
|
-
|
|
256
|
-
s =
|
|
255
|
+
coeffs = numpy.asarray(coeffs, dtype=float)
|
|
256
|
+
s = coeffs.shape[1] - 1
|
|
257
257
|
if s < 1:
|
|
258
258
|
if real_tol is None:
|
|
259
259
|
real_tol = 1e3 * tol
|
|
@@ -269,11 +269,11 @@ def compute_branch_points(a_coeffs, tol=1e-12, real_tol=None):
|
|
|
269
269
|
if real_tol is None:
|
|
270
270
|
real_tol = 1e3 * tol
|
|
271
271
|
|
|
272
|
-
a_s = _poly_trim(
|
|
272
|
+
a_s = _poly_trim(coeffs[:, s], tol)
|
|
273
273
|
a_s_zero = numpy.roots(a_s[::-1]) if a_s.size > 1 else \
|
|
274
274
|
numpy.array([], dtype=complex)
|
|
275
275
|
|
|
276
|
-
disc = _resultant_discriminant(
|
|
276
|
+
disc = _resultant_discriminant(coeffs, tol)
|
|
277
277
|
if disc.size <= 1:
|
|
278
278
|
z_bp = numpy.array([], dtype=complex)
|
|
279
279
|
else:
|
|
@@ -301,7 +301,7 @@ def fit_polynomial_relation(z, m, s, deg_z, ridge_lambda=0.0, weights=None,
|
|
|
301
301
|
# sanity check stieltjes branch
|
|
302
302
|
# =============================
|
|
303
303
|
|
|
304
|
-
def sanity_check_stieltjes_branch(
|
|
304
|
+
def sanity_check_stieltjes_branch(coeffs, x_min, x_max, eta=0.1,
|
|
305
305
|
n_x=64, y0=None, max_bad_frac=0.05):
|
|
306
306
|
"""
|
|
307
307
|
Quick sanity check: does P(z,m)=0 admit a continuously trackable root with
|
|
@@ -322,7 +322,7 @@ def sanity_check_stieltjes_branch(a_coeffs, x_min, x_max, eta=0.1,
|
|
|
322
322
|
z0 = 1j * y0
|
|
323
323
|
m0_target = -1.0 / z0
|
|
324
324
|
|
|
325
|
-
c0 = _poly_coef_in_m(numpy.array([z0]),
|
|
325
|
+
c0 = _poly_coef_in_m(numpy.array([z0]), coeffs)[0]
|
|
326
326
|
r0 = numpy.roots(c0[::-1])
|
|
327
327
|
if r0.size == 0:
|
|
328
328
|
return {'ok': False, 'frac_bad': 1.0, 'n_test': 0, 'n_bad': 0}
|
|
@@ -337,7 +337,7 @@ def sanity_check_stieltjes_branch(a_coeffs, x_min, x_max, eta=0.1,
|
|
|
337
337
|
n_ok = 0
|
|
338
338
|
|
|
339
339
|
for z in zs:
|
|
340
|
-
c = _poly_coef_in_m(numpy.array([z]),
|
|
340
|
+
c = _poly_coef_in_m(numpy.array([z]), coeffs)[0]
|
|
341
341
|
r = numpy.roots(c[::-1])
|
|
342
342
|
if r.size == 0 or not numpy.all(numpy.isfinite(r)):
|
|
343
343
|
n_bad += 1
|
|
@@ -372,12 +372,12 @@ def sanity_check_stieltjes_branch(a_coeffs, x_min, x_max, eta=0.1,
|
|
|
372
372
|
# eval P
|
|
373
373
|
# ======
|
|
374
374
|
|
|
375
|
-
def eval_P(z, m,
|
|
375
|
+
def eval_P(z, m, coeffs):
|
|
376
376
|
|
|
377
377
|
z = numpy.asarray(z, dtype=complex)
|
|
378
378
|
m = numpy.asarray(m, dtype=complex)
|
|
379
|
-
deg_z = int(
|
|
380
|
-
s = int(
|
|
379
|
+
deg_z = int(coeffs.shape[0] - 1)
|
|
380
|
+
s = int(coeffs.shape[1] - 1)
|
|
381
381
|
|
|
382
382
|
shp = numpy.broadcast(z, m).shape
|
|
383
383
|
zz = numpy.broadcast_to(z, shp).ravel()
|
|
@@ -388,7 +388,7 @@ def eval_P(z, m, a_coeffs):
|
|
|
388
388
|
|
|
389
389
|
P = numpy.zeros(zz.size, dtype=complex)
|
|
390
390
|
for j in range(s + 1):
|
|
391
|
-
aj = zp @
|
|
391
|
+
aj = zp @ coeffs[:, j]
|
|
392
392
|
P = P + aj * mp[:, j]
|
|
393
393
|
|
|
394
394
|
return P.reshape(shp)
|
|
@@ -398,16 +398,16 @@ def eval_P(z, m, a_coeffs):
|
|
|
398
398
|
# poly coef in m
|
|
399
399
|
# ==============
|
|
400
400
|
|
|
401
|
-
def _poly_coef_in_m(z,
|
|
401
|
+
def _poly_coef_in_m(z, coeffs):
|
|
402
402
|
|
|
403
403
|
z = numpy.asarray(z, dtype=complex).ravel()
|
|
404
|
-
deg_z = int(
|
|
405
|
-
s = int(
|
|
404
|
+
deg_z = int(coeffs.shape[0] - 1)
|
|
405
|
+
s = int(coeffs.shape[1] - 1)
|
|
406
406
|
zp = powers(z, deg_z)
|
|
407
407
|
|
|
408
408
|
c = numpy.empty((z.size, s + 1), dtype=complex)
|
|
409
409
|
for j in range(s + 1):
|
|
410
|
-
c[:, j] = zp @
|
|
410
|
+
c[:, j] = zp @ coeffs[:, j]
|
|
411
411
|
return c
|
|
412
412
|
|
|
413
413
|
|
|
@@ -489,10 +489,10 @@ def _roots_cubic(c0, c1, c2, c3):
|
|
|
489
489
|
# eval roots
|
|
490
490
|
# ==========
|
|
491
491
|
|
|
492
|
-
def eval_roots(z,
|
|
492
|
+
def eval_roots(z, coeffs):
|
|
493
493
|
|
|
494
494
|
z = numpy.asarray(z, dtype=complex).ravel()
|
|
495
|
-
c = _poly_coef_in_m(z,
|
|
495
|
+
c = _poly_coef_in_m(z, coeffs)
|
|
496
496
|
|
|
497
497
|
s = int(c.shape[1] - 1)
|
|
498
498
|
if s == 1:
|
freealg/_algebraic_form/_cusp.py
CHANGED
|
@@ -95,7 +95,7 @@ def _newton_3x3(F, x0, max_iter=60, tol=1e-12, bounds=None, max_step=None):
|
|
|
95
95
|
__all__ = ["solve_cusp"]
|
|
96
96
|
|
|
97
97
|
|
|
98
|
-
def _second_partials_fd(zeta, y,
|
|
98
|
+
def _second_partials_fd(zeta, y, coeffs, eps_z=None, eps_y=None):
|
|
99
99
|
zeta = float(zeta)
|
|
100
100
|
y = float(y)
|
|
101
101
|
|
|
@@ -104,13 +104,13 @@ def _second_partials_fd(zeta, y, a_coeffs, eps_z=None, eps_y=None):
|
|
|
104
104
|
if eps_y is None:
|
|
105
105
|
eps_y = 1e-7 * (1.0 + abs(y))
|
|
106
106
|
|
|
107
|
-
_, Pz_p, Py_p = eval_P_partials(zeta + eps_z, y,
|
|
108
|
-
_, Pz_m, Py_m = eval_P_partials(zeta - eps_z, y,
|
|
107
|
+
_, Pz_p, Py_p = eval_P_partials(zeta + eps_z, y, coeffs)
|
|
108
|
+
_, Pz_m, Py_m = eval_P_partials(zeta - eps_z, y, coeffs)
|
|
109
109
|
Pzz = (Pz_p - Pz_m) / (2.0 * eps_z)
|
|
110
110
|
Pzy1 = (Py_p - Py_m) / (2.0 * eps_z)
|
|
111
111
|
|
|
112
|
-
_, Pz_p, Py_p = eval_P_partials(zeta, y + eps_y,
|
|
113
|
-
_, Pz_m, Py_m = eval_P_partials(zeta, y - eps_y,
|
|
112
|
+
_, Pz_p, Py_p = eval_P_partials(zeta, y + eps_y, coeffs)
|
|
113
|
+
_, Pz_m, Py_m = eval_P_partials(zeta, y - eps_y, coeffs)
|
|
114
114
|
Pzy2 = (Pz_p - Pz_m) / (2.0 * eps_y)
|
|
115
115
|
Pyy = (Py_p - Py_m) / (2.0 * eps_y)
|
|
116
116
|
|
|
@@ -118,11 +118,11 @@ def _second_partials_fd(zeta, y, a_coeffs, eps_z=None, eps_y=None):
|
|
|
118
118
|
return float(Pzz), float(Pzy), float(Pyy)
|
|
119
119
|
|
|
120
120
|
|
|
121
|
-
def _cusp_F_real(zeta, y, s,
|
|
121
|
+
def _cusp_F_real(zeta, y, s, coeffs):
|
|
122
122
|
# tau = 1 + exp(s) => c = tau-1 = exp(s) > 0
|
|
123
123
|
c = float(numpy.exp(float(s)))
|
|
124
124
|
|
|
125
|
-
P, Pz, Py = eval_P_partials(float(zeta), float(y),
|
|
125
|
+
P, Pz, Py = eval_P_partials(float(zeta), float(y), coeffs)
|
|
126
126
|
P = float(numpy.real(P))
|
|
127
127
|
Pz = float(numpy.real(Pz))
|
|
128
128
|
Py = float(numpy.real(Py))
|
|
@@ -130,7 +130,7 @@ def _cusp_F_real(zeta, y, s, a_coeffs):
|
|
|
130
130
|
F1 = P
|
|
131
131
|
F2 = (y * y) * Py - c * Pz
|
|
132
132
|
|
|
133
|
-
Pzz, Pzy, Pyy = _second_partials_fd(zeta, y,
|
|
133
|
+
Pzz, Pzy, Pyy = _second_partials_fd(zeta, y, coeffs)
|
|
134
134
|
F3 = y * (Pzz * (Py * Py) - 2.0 * Pzy * Pz * Py + Pyy * (Pz * Pz)) + \
|
|
135
135
|
2.0 * (Pz * Pz) * Py
|
|
136
136
|
|
|
@@ -141,8 +141,8 @@ def _cusp_F_real(zeta, y, s, a_coeffs):
|
|
|
141
141
|
# poly coeffs in y
|
|
142
142
|
# ================
|
|
143
143
|
|
|
144
|
-
def _poly_coeffs_in_y(
|
|
145
|
-
a = numpy.asarray(
|
|
144
|
+
def _poly_coeffs_in_y(coeffs, zeta):
|
|
145
|
+
a = numpy.asarray(coeffs)
|
|
146
146
|
deg_z = a.shape[0] - 1
|
|
147
147
|
deg_y = a.shape[1] - 1
|
|
148
148
|
z_pows = numpy.power(zeta, numpy.arange(deg_z + 1, dtype=numpy.int64))
|
|
@@ -156,9 +156,9 @@ def _poly_coeffs_in_y(a_coeffs, zeta):
|
|
|
156
156
|
# pick realish root y
|
|
157
157
|
# ===================
|
|
158
158
|
|
|
159
|
-
def _pick_realish_root_y(
|
|
159
|
+
def _pick_realish_root_y(coeffs, zeta):
|
|
160
160
|
|
|
161
|
-
c_asc = _poly_coeffs_in_y(
|
|
161
|
+
c_asc = _poly_coeffs_in_y(coeffs, zeta)
|
|
162
162
|
c_desc = c_asc[::-1] # descending for numpy.roots
|
|
163
163
|
|
|
164
164
|
k = 0
|
|
@@ -179,7 +179,7 @@ def _pick_realish_root_y(a_coeffs, zeta):
|
|
|
179
179
|
# ==========
|
|
180
180
|
|
|
181
181
|
def solve_cusp(
|
|
182
|
-
|
|
182
|
+
coeffs,
|
|
183
183
|
t_init,
|
|
184
184
|
zeta_init,
|
|
185
185
|
y_init=None,
|
|
@@ -191,11 +191,11 @@ def solve_cusp(
|
|
|
191
191
|
Exact-derivative cusp solve for (zeta, y, t) with unknowns (zeta, y, s),
|
|
192
192
|
where tau = 1 + exp(s), t = log(tau), x = zeta - (tau-1)/y.
|
|
193
193
|
|
|
194
|
-
|
|
194
|
+
coeffs: array shape (deg_z+1, deg_y+1), P(zeta,y)=
|
|
195
195
|
sum_{i,j} a[i,j]*zeta^i*y^j
|
|
196
196
|
"""
|
|
197
197
|
|
|
198
|
-
a = numpy.asarray(
|
|
198
|
+
a = numpy.asarray(coeffs, dtype=numpy.complex128)
|
|
199
199
|
deg_z = a.shape[0] - 1
|
|
200
200
|
deg_y = a.shape[1] - 1
|
|
201
201
|
|
|
@@ -19,15 +19,15 @@ import scipy.optimize as opt
|
|
|
19
19
|
# poly coeffs in y
|
|
20
20
|
# ================
|
|
21
21
|
|
|
22
|
-
def _poly_coeffs_in_y(
|
|
22
|
+
def _poly_coeffs_in_y(coeffs, zeta):
|
|
23
23
|
"""
|
|
24
24
|
Build coefficients c_j(zeta) so that P(zeta, y) = sum_j c_j(zeta) y^j.
|
|
25
25
|
|
|
26
|
-
Assumes
|
|
26
|
+
Assumes coeffs[i, j] multiplies z^i y^j (same layout as eval_P in
|
|
27
27
|
_continuation_algebraic). Returns coefficients in ascending powers of y.
|
|
28
28
|
"""
|
|
29
29
|
|
|
30
|
-
a = numpy.asarray(
|
|
30
|
+
a = numpy.asarray(coeffs)
|
|
31
31
|
deg_z = a.shape[0] - 1
|
|
32
32
|
deg_y = a.shape[1] - 1
|
|
33
33
|
|
|
@@ -44,14 +44,14 @@ def _poly_coeffs_in_y(a_coeffs, zeta):
|
|
|
44
44
|
# pick realish root y
|
|
45
45
|
# ===================
|
|
46
46
|
|
|
47
|
-
def _pick_realish_root_y(
|
|
47
|
+
def _pick_realish_root_y(coeffs, zeta):
|
|
48
48
|
"""
|
|
49
49
|
Pick a reasonable real-ish root y of P(zeta, y)=0 to seed Newton.
|
|
50
50
|
|
|
51
51
|
Returns a float (real part of the selected root).
|
|
52
52
|
"""
|
|
53
53
|
|
|
54
|
-
c_asc = _poly_coeffs_in_y(
|
|
54
|
+
c_asc = _poly_coeffs_in_y(coeffs, zeta) # ascending in y
|
|
55
55
|
# numpy.roots wants descending order
|
|
56
56
|
c_desc = c_asc[::-1]
|
|
57
57
|
# strip leading ~0 coefficients
|
|
@@ -138,7 +138,7 @@ def cusp_wrap(self, t_grid, edge_kwargs=None, max_iter=80, tol=1e-12,
|
|
|
138
138
|
tau = float(numpy.exp(t_star))
|
|
139
139
|
c = tau - 1.0
|
|
140
140
|
|
|
141
|
-
a = numpy.asarray(self.
|
|
141
|
+
a = numpy.asarray(self.coeffs, dtype=numpy.complex128)
|
|
142
142
|
deg_z = a.shape[0] - 1
|
|
143
143
|
deg_y = a.shape[1] - 1
|
|
144
144
|
|
|
@@ -62,7 +62,7 @@ def build_time_grid(sizes, n0, min_n_times=0):
|
|
|
62
62
|
|
|
63
63
|
|
|
64
64
|
|
|
65
|
-
def fd_solve_w(z, t,
|
|
65
|
+
def fd_solve_w(z, t, coeffs, w_init, max_iter=50, tol=1e-12,
|
|
66
66
|
armijo=1e-4, min_lam=1e-6, w_min=1e-14):
|
|
67
67
|
"""
|
|
68
68
|
Solve for w = m(t,z) from the implicit FD equation using damped Newton.
|
|
@@ -83,7 +83,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
83
83
|
Query point in the complex plane.
|
|
84
84
|
t : float
|
|
85
85
|
Time parameter (tau = exp(t)).
|
|
86
|
-
|
|
86
|
+
coeffs : ndarray
|
|
87
87
|
Coefficients defining P(zeta,y) in the monomial basis.
|
|
88
88
|
w_init : complex
|
|
89
89
|
Initial guess for w.
|
|
@@ -117,7 +117,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
117
117
|
.. code-block:: python
|
|
118
118
|
|
|
119
119
|
w, ok = fd_solve_w(
|
|
120
|
-
z=0.5 + 1e-6j, t=2.0,
|
|
120
|
+
z=0.5 + 1e-6j, t=2.0, coeffs=coeffs, w_init=m1_fn(0.5 + 1e-6j),
|
|
121
121
|
max_iter=50, tol=1e-12
|
|
122
122
|
)
|
|
123
123
|
"""
|
|
@@ -132,7 +132,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
132
132
|
|
|
133
133
|
for _ in range(max_iter):
|
|
134
134
|
|
|
135
|
-
a = numpy.asarray(
|
|
135
|
+
a = numpy.asarray(coeffs, dtype=numpy.complex128)
|
|
136
136
|
deg_z = a.shape[0] - 1
|
|
137
137
|
deg_m = a.shape[1] - 1
|
|
138
138
|
|
|
@@ -195,13 +195,13 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
195
195
|
w = complex(best)
|
|
196
196
|
|
|
197
197
|
# final residual check
|
|
198
|
-
F_end = eval_P_partials(z + alpha / w, tau * w,
|
|
198
|
+
F_end = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
199
199
|
return w, (abs(F_end) <= 1e3 * tol)
|
|
200
200
|
|
|
201
201
|
# -------------------
|
|
202
202
|
|
|
203
203
|
|
|
204
|
-
F_end = eval_P_partials(z + alpha / w, tau * w,
|
|
204
|
+
F_end = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
205
205
|
return w, (abs(F_end) <= 10.0 * tol)
|
|
206
206
|
|
|
207
207
|
|
|
@@ -209,7 +209,7 @@ def fd_solve_w(z, t, a_coeffs, w_init, max_iter=50, tol=1e-12,
|
|
|
209
209
|
# NEW FUNCTION
|
|
210
210
|
# ============
|
|
211
211
|
|
|
212
|
-
def fd_candidates_w(z, t,
|
|
212
|
+
def fd_candidates_w(z, t, coeffs, w_min=1e-14):
|
|
213
213
|
"""
|
|
214
214
|
Return candidate roots w solving P(z + alpha/w, tau*w)=0 with Im(w)>0 (if Im(z)>0).
|
|
215
215
|
"""
|
|
@@ -218,7 +218,7 @@ def fd_candidates_w(z, t, a_coeffs, w_min=1e-14):
|
|
|
218
218
|
alpha = 1.0 - 1.0 / tau
|
|
219
219
|
want_pos_imag = (z.imag > 0.0)
|
|
220
220
|
|
|
221
|
-
a = numpy.asarray(
|
|
221
|
+
a = numpy.asarray(coeffs, dtype=numpy.complex128)
|
|
222
222
|
deg_z = a.shape[0] - 1
|
|
223
223
|
deg_m = a.shape[1] - 1
|
|
224
224
|
|
|
@@ -256,7 +256,7 @@ def fd_candidates_w(z, t, a_coeffs, w_min=1e-14):
|
|
|
256
256
|
# residual filter (optional but helps)
|
|
257
257
|
# -------------
|
|
258
258
|
# TEST
|
|
259
|
-
# F = eval_P_partials(z + alpha / w, tau * w,
|
|
259
|
+
# F = eval_P_partials(z + alpha / w, tau * w, coeffs)[0]
|
|
260
260
|
# if abs(F) < 1e-6:
|
|
261
261
|
# cands.append(complex(w))
|
|
262
262
|
# ---------------
|
|
@@ -271,7 +271,7 @@ def fd_candidates_w(z, t, a_coeffs, w_min=1e-14):
|
|
|
271
271
|
# decompress newton
|
|
272
272
|
# =================
|
|
273
273
|
|
|
274
|
-
def decompress_newton(z_list, t_grid,
|
|
274
|
+
def decompress_newton(z_list, t_grid, coeffs, w0_list=None,
|
|
275
275
|
dt_max=0.1, sweep=True, time_rel_tol=5.0,
|
|
276
276
|
active_imag_eps=None, sweep_pad=20,
|
|
277
277
|
max_iter=50, tol=1e-12, armijo=1e-4,
|
|
@@ -285,7 +285,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
285
285
|
Query points z (typically x + 1j*eta with eta > 0), ordered along x.
|
|
286
286
|
t_grid : array_like of float
|
|
287
287
|
Strictly increasing time grid.
|
|
288
|
-
|
|
288
|
+
coeffs : ndarray
|
|
289
289
|
Coefficients defining P(zeta,y) in the monomial basis.
|
|
290
290
|
w0_list : array_like of complex
|
|
291
291
|
Initial values at t_grid[0] (typically m0(z_list) on the physical
|
|
@@ -351,14 +351,14 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
351
351
|
# def solve_with_choice(iz, w_seed):
|
|
352
352
|
# # Neighbor-seeded candidate (spatial continuity)
|
|
353
353
|
# w_a, ok_a = fd_solve_w(
|
|
354
|
-
# z_list[iz], t,
|
|
354
|
+
# z_list[iz], t, coeffs, w_seed,
|
|
355
355
|
# max_iter=max_iter, tol=tol, armijo=armijo,
|
|
356
356
|
# min_lam=min_lam, w_min=w_min
|
|
357
357
|
# )
|
|
358
358
|
#
|
|
359
359
|
# # Time-seeded candidate (time continuation)
|
|
360
360
|
# w_b, ok_b = fd_solve_w(
|
|
361
|
-
# z_list[iz], t,
|
|
361
|
+
# z_list[iz], t, coeffs, w_prev[iz],
|
|
362
362
|
# max_iter=max_iter, tol=tol, armijo=armijo,
|
|
363
363
|
# min_lam=min_lam, w_min=w_min
|
|
364
364
|
# )
|
|
@@ -387,7 +387,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
387
387
|
# TEST
|
|
388
388
|
def solve_with_choice(iz, w_seed):
|
|
389
389
|
# candidate roots at this (t,z)
|
|
390
|
-
cands = fd_candidates_w(z_list[iz], t,
|
|
390
|
+
cands = fd_candidates_w(z_list[iz], t, coeffs, w_min=w_min)
|
|
391
391
|
|
|
392
392
|
# ---------------------
|
|
393
393
|
# TEST
|
|
@@ -402,7 +402,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
402
402
|
if len(cands) == 0:
|
|
403
403
|
# fallback to your existing single-root solver
|
|
404
404
|
w, success = fd_solve_w(
|
|
405
|
-
z_list[iz], t,
|
|
405
|
+
z_list[iz], t, coeffs, w_prev[iz],
|
|
406
406
|
max_iter=max_iter, tol=tol, armijo=armijo,
|
|
407
407
|
min_lam=min_lam, w_min=w_min
|
|
408
408
|
)
|
|
@@ -452,7 +452,7 @@ def decompress_newton(z_list, t_grid, a_coeffs, w0_list=None,
|
|
|
452
452
|
# problems.
|
|
453
453
|
for iz in range(nz):
|
|
454
454
|
w, success = fd_solve_w(
|
|
455
|
-
z_list[iz], t,
|
|
455
|
+
z_list[iz], t, coeffs, w_prev[iz],
|
|
456
456
|
max_iter=max_iter, tol=tol, armijo=armijo,
|
|
457
457
|
min_lam=min_lam, w_min=w_min
|
|
458
458
|
)
|