foscat 2025.5.2__py3-none-any.whl → 2025.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/BkTorch.py +11 -12
- foscat/CNN.py +31 -30
- foscat/FoCUS.py +784 -780
- foscat/GCNN.py +48 -150
- foscat/Softmax.py +1 -0
- foscat/alm.py +2 -2
- foscat/heal_NN.py +451 -0
- foscat/scat_cov.py +186 -155
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/METADATA +1 -1
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/RECORD +13 -12
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/WHEEL +0 -0
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/licenses/LICENSE +0 -0
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/top_level.txt +0 -0
foscat/heal_NN.py
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
1
|
+
import pickle
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
import foscat.scat_cov as sc
|
|
6
|
+
|
|
7
|
+
class CNN:
|
|
8
|
+
|
|
9
|
+
def __init__(
|
|
10
|
+
self,
|
|
11
|
+
nparam=1,
|
|
12
|
+
KERNELSZ=3,
|
|
13
|
+
NORIENT=4,
|
|
14
|
+
chanlist=[],
|
|
15
|
+
in_nside=1,
|
|
16
|
+
n_chan_in=1,
|
|
17
|
+
SEED=1234,
|
|
18
|
+
add_undersample_data=False,
|
|
19
|
+
all_type='float32',
|
|
20
|
+
filename=None,
|
|
21
|
+
scat_operator=None,
|
|
22
|
+
BACKEND='tensorflow'
|
|
23
|
+
):
|
|
24
|
+
|
|
25
|
+
if filename is not None:
|
|
26
|
+
outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
|
|
27
|
+
self.scat_operator = sc.funct(KERNELSZ=outlist[3],
|
|
28
|
+
NORIENT= outlist[9],
|
|
29
|
+
all_type=outlist[7])
|
|
30
|
+
self.KERNELSZ = self.scat_operator.KERNELSZ
|
|
31
|
+
self.all_type = self.scat_operator.all_type
|
|
32
|
+
self.npar = outlist[2]
|
|
33
|
+
self.nscale = outlist[5]
|
|
34
|
+
self.chanlist = outlist[0]
|
|
35
|
+
self.in_nside = outlist[4]
|
|
36
|
+
self.nbatch = outlist[1]
|
|
37
|
+
self.n_chan_in = outlist[8]
|
|
38
|
+
self.NORIENT = outlist[9]
|
|
39
|
+
self.x = self.scat_operator.backend.bk_cast(outlist[6])
|
|
40
|
+
self.out_nside = self.in_nside // (2**(self.nscale+1))
|
|
41
|
+
else:
|
|
42
|
+
self.add_undersample_data=add_undersample_data
|
|
43
|
+
self.nscale = len(chanlist)-1
|
|
44
|
+
self.npar = nparam
|
|
45
|
+
self.n_chan_in = n_chan_in
|
|
46
|
+
if scat_operator is None:
|
|
47
|
+
self.scat_operator = sc.funct(
|
|
48
|
+
KERNELSZ=KERNELSZ,
|
|
49
|
+
NORIENT=NORIENT,
|
|
50
|
+
all_type=all_type)
|
|
51
|
+
else:
|
|
52
|
+
self.scat_operator = scat_operator
|
|
53
|
+
|
|
54
|
+
self.chanlist = chanlist
|
|
55
|
+
self.KERNELSZ = self.scat_operator.KERNELSZ
|
|
56
|
+
self.NORIENT = self.scat_operator.NORIENT
|
|
57
|
+
self.all_type = self.scat_operator.all_type
|
|
58
|
+
self.in_nside = in_nside
|
|
59
|
+
self.out_nside = self.in_nside // (2**(self.nscale+1))
|
|
60
|
+
self.backend = self.scat_operator.backend
|
|
61
|
+
np.random.seed(SEED)
|
|
62
|
+
self.x = self.scat_operator.backend.bk_cast(
|
|
63
|
+
np.random.rand(self.get_number_of_weights())
|
|
64
|
+
)
|
|
65
|
+
self.mpi_size = self.scat_operator.mpi_size
|
|
66
|
+
self.mpi_rank = self.scat_operator.mpi_rank
|
|
67
|
+
self.BACKEND = BACKEND
|
|
68
|
+
self.gpupos = self.scat_operator.gpupos
|
|
69
|
+
self.ngpu = self.scat_operator.ngpu
|
|
70
|
+
self.gpulist = self.scat_operator.gpulist
|
|
71
|
+
|
|
72
|
+
def save(self, filename):
|
|
73
|
+
|
|
74
|
+
outlist = [
|
|
75
|
+
self.chanlist,
|
|
76
|
+
self.nbatch,
|
|
77
|
+
self.npar,
|
|
78
|
+
self.KERNELSZ,
|
|
79
|
+
self.in_nside,
|
|
80
|
+
self.nscale,
|
|
81
|
+
self.get_weights().numpy(),
|
|
82
|
+
self.all_type,
|
|
83
|
+
self.n_chan_in,
|
|
84
|
+
self.NORIENT,
|
|
85
|
+
]
|
|
86
|
+
|
|
87
|
+
myout = open("%s.pkl" % (filename), "wb")
|
|
88
|
+
pickle.dump(outlist, myout)
|
|
89
|
+
myout.close()
|
|
90
|
+
|
|
91
|
+
def get_number_of_weights(self):
|
|
92
|
+
totnchan = 0
|
|
93
|
+
for i in range(self.nscale):
|
|
94
|
+
totnchan = totnchan + (self.chanlist[i]+int(self.add_undersample_data)* self.n_chan_in) * self.chanlist[i + 1]
|
|
95
|
+
return (
|
|
96
|
+
self.npar * 12 * self.out_nside**2 * (self.chanlist[self.nscale]+int(self.add_undersample_data)* self.n_chan_in)*self.NORIENT
|
|
97
|
+
+ totnchan * self.KERNELSZ * (self.KERNELSZ//2+1)*self.NORIENT*self.NORIENT
|
|
98
|
+
+ self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
def set_weights(self, x):
|
|
102
|
+
self.x = x
|
|
103
|
+
|
|
104
|
+
def get_weights(self):
|
|
105
|
+
return self.x
|
|
106
|
+
|
|
107
|
+
def init_wave(self):
|
|
108
|
+
w0=np.zeros([self.n_chan_in, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[0], self.NORIENT])
|
|
109
|
+
if self.KERNELSZ==3:
|
|
110
|
+
w0[:,0]=-0.2
|
|
111
|
+
w0[:,1]=-0.5
|
|
112
|
+
w0[:,2]=-0.2
|
|
113
|
+
w0[:,3]=0.2
|
|
114
|
+
w0[:,4]=0.5
|
|
115
|
+
w0[:,5]=0.2
|
|
116
|
+
if self.KERNELSZ==5:
|
|
117
|
+
w0[:,0]=-0.1
|
|
118
|
+
w0[:,1]=-0.2
|
|
119
|
+
w0[:,2]=-0.5
|
|
120
|
+
w0[:,3]=-0.2
|
|
121
|
+
w0[:,4]=-0.1
|
|
122
|
+
w0[:,10]=0.1
|
|
123
|
+
w0[:,11]=0.2
|
|
124
|
+
w0[:,12]=0.5
|
|
125
|
+
w0[:,13]=0.2
|
|
126
|
+
w0[:,14]=0.1
|
|
127
|
+
|
|
128
|
+
a=2*np.sqrt(6/(12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT*self.npar))
|
|
129
|
+
x=(np.random.rand(self.get_number_of_weights())-0.5)*a
|
|
130
|
+
|
|
131
|
+
w0=w0.flatten()
|
|
132
|
+
x[0:w0.shape[0]]=w0
|
|
133
|
+
nn = self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
|
|
134
|
+
|
|
135
|
+
for k in range(self.nscale):
|
|
136
|
+
ww = np.zeros([self.chanlist[k], self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1], self.NORIENT])
|
|
137
|
+
|
|
138
|
+
if self.KERNELSZ==3:
|
|
139
|
+
ww[:,:,0]=-0.2
|
|
140
|
+
ww[:,:,1]=-0.5
|
|
141
|
+
ww[:,:,2]=-0.2
|
|
142
|
+
ww[:,:,3]=0.2
|
|
143
|
+
ww[:,:,4]=0.5
|
|
144
|
+
ww[:,:,5]=0.2
|
|
145
|
+
if self.KERNELSZ==5:
|
|
146
|
+
ww[:,:,0]=-0.1
|
|
147
|
+
ww[:,:,1]=-0.2
|
|
148
|
+
ww[:,:,2]=-0.5
|
|
149
|
+
ww[:,:,3]=-0.2
|
|
150
|
+
ww[:,:,4]=-0.1
|
|
151
|
+
ww[:,:,10]=0.1
|
|
152
|
+
ww[:,:,11]=0.2
|
|
153
|
+
ww[:,:,12]=0.5
|
|
154
|
+
ww[:,:,13]=0.2
|
|
155
|
+
ww[:,:,14]=0.1
|
|
156
|
+
x[nn : nn + self.KERNELSZ
|
|
157
|
+
* (self.KERNELSZ//2+1)
|
|
158
|
+
* self.NORIENT*self.NORIENT
|
|
159
|
+
* self.chanlist[k]
|
|
160
|
+
* self.chanlist[k + 1]
|
|
161
|
+
]=ww.flatten()
|
|
162
|
+
|
|
163
|
+
nn = nn + (self.KERNELSZ * (self.KERNELSZ//2+1)
|
|
164
|
+
* self.NORIENT*self.NORIENT
|
|
165
|
+
* self.chanlist[k]
|
|
166
|
+
* self.chanlist[k + 1])
|
|
167
|
+
|
|
168
|
+
self.x = self.scat_operator.backend.bk_cast(x)
|
|
169
|
+
|
|
170
|
+
def calc_matrix_first_layer(self,noise_map):
|
|
171
|
+
# Décalage circulaire par matrice de permutation
|
|
172
|
+
def circ_shift_matrix(N,k):
|
|
173
|
+
return np.roll(np.eye(N), shift=-k, axis=1)
|
|
174
|
+
|
|
175
|
+
im=self.scat_operator.convol(noise_map)
|
|
176
|
+
mm=np.mean(abs(im.cpu().numpy()),0)
|
|
177
|
+
Norient=mm.shape[1]
|
|
178
|
+
xx=np.cos(np.arange(Norient)/Norient*2*np.pi)
|
|
179
|
+
yy=np.sin(np.arange(Norient)/Norient*2*np.pi)
|
|
180
|
+
|
|
181
|
+
a=np.sum(mm*xx[None,:,None],1)
|
|
182
|
+
b=np.sum(mm*yy[None,:,None],1)
|
|
183
|
+
o=np.fmod(Norient*np.arctan2(-b,a)/(2*np.pi)+Norient,Norient)
|
|
184
|
+
xx=np.arange(Norient)
|
|
185
|
+
alpha = o[:,None,:]-xx[None,:,None]
|
|
186
|
+
beta = np.fmod(1+o[:,None,:]-xx[None,:,None],Norient)
|
|
187
|
+
alpha=(1-alpha)*(alpha<1)*(alpha>0)+beta*(beta<1)*(beta>0)
|
|
188
|
+
|
|
189
|
+
m=np.zeros([mm.shape[0],4,4,mm.shape[2]])
|
|
190
|
+
for k in range(4):
|
|
191
|
+
m[:,k,:,:]=np.roll(alpha,k,1)
|
|
192
|
+
m=np.mean(m,0)
|
|
193
|
+
return self.scat_operator.backend.bk_cast(m[None,None,...])
|
|
194
|
+
|
|
195
|
+
def eval(self, in_im,
|
|
196
|
+
indices=None,
|
|
197
|
+
weights=None,
|
|
198
|
+
out_map=False,
|
|
199
|
+
first_layer_rot=None,
|
|
200
|
+
activation='relu'):
|
|
201
|
+
|
|
202
|
+
x = self.x
|
|
203
|
+
ww = self.backend.bk_reshape(
|
|
204
|
+
x[0 : self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT],
|
|
205
|
+
[self.n_chan_in, 1 , self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[0], self.NORIENT],
|
|
206
|
+
)
|
|
207
|
+
nn = self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
|
|
208
|
+
|
|
209
|
+
im = self.scat_operator.healpix_layer(in_im[:,:,None,:], ww)
|
|
210
|
+
|
|
211
|
+
if first_layer_rot is not None:
|
|
212
|
+
im = self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,1,im.shape[3]])
|
|
213
|
+
im = self.backend.bk_reduce_sum(im*first_layer_rot,2)
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
if activation=='relu':
|
|
217
|
+
im = self.backend.bk_relu(im)
|
|
218
|
+
elif activation=='abs':
|
|
219
|
+
im = self.backend.bk_abs(im)
|
|
220
|
+
|
|
221
|
+
im = self.backend.bk_reduce_sum(self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]//4,4]),4)
|
|
222
|
+
|
|
223
|
+
if self.add_undersample_data:
|
|
224
|
+
l_im=self.backend.bk_repeat(self.backend.bk_reshape(in_im,[in_im.shape[0],in_im.shape[1],1,in_im.shape[2]]),self.NORIENT,2)
|
|
225
|
+
l_im=self.backend.bk_reduce_sum(
|
|
226
|
+
self.backend.bk_reshape(l_im,[in_im.shape[0],in_im.shape[1],self.NORIENT,l_im.shape[3]//4,4]), 4)
|
|
227
|
+
im=self.backend.bk_concat([im,l_im],1)
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
if out_map:
|
|
231
|
+
return im
|
|
232
|
+
|
|
233
|
+
for k in range(self.nscale):
|
|
234
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
235
|
+
x[
|
|
236
|
+
nn : nn
|
|
237
|
+
+ self.KERNELSZ
|
|
238
|
+
* (self.KERNELSZ//2+1)
|
|
239
|
+
* self.NORIENT*self.NORIENT
|
|
240
|
+
* (self.chanlist[k]+int(self.add_undersample_data)* self.n_chan_in)
|
|
241
|
+
* self.chanlist[k + 1]
|
|
242
|
+
],
|
|
243
|
+
[self.chanlist[k]+int(self.add_undersample_data)* self.n_chan_in,
|
|
244
|
+
self.NORIENT,
|
|
245
|
+
self.KERNELSZ * (self.KERNELSZ//2+1),
|
|
246
|
+
self.chanlist[k + 1],
|
|
247
|
+
self.NORIENT],
|
|
248
|
+
)
|
|
249
|
+
nn = (
|
|
250
|
+
nn
|
|
251
|
+
+ self.KERNELSZ
|
|
252
|
+
* (self.KERNELSZ//2+1)
|
|
253
|
+
* self.NORIENT*self.NORIENT
|
|
254
|
+
* (self.chanlist[k]+int(self.add_undersample_data)* self.n_chan_in)
|
|
255
|
+
* self.chanlist[k + 1]
|
|
256
|
+
)
|
|
257
|
+
if indices is None:
|
|
258
|
+
im = self.scat_operator.healpix_layer(im, ww)
|
|
259
|
+
else:
|
|
260
|
+
im = self.scat_operator.healpix_layer(
|
|
261
|
+
im, ww, indices=indices[k], weights=weights[k]
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
if activation=='relu':
|
|
265
|
+
im = self.backend.bk_relu(im)
|
|
266
|
+
elif activation=='abs':
|
|
267
|
+
im = self.backend.bk_abs(im)
|
|
268
|
+
im = self.backend.bk_reduce_sum(self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]//4,4]),4)
|
|
269
|
+
|
|
270
|
+
if self.add_undersample_data:
|
|
271
|
+
l_im=self.backend.bk_reduce_sum(
|
|
272
|
+
self.backend.bk_reshape(l_im,[l_im.shape[0],l_im.shape[1],self.NORIENT,l_im.shape[3]//4,4]), 4)
|
|
273
|
+
im=self.backend.bk_concat([im,l_im],1)
|
|
274
|
+
|
|
275
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
276
|
+
x[
|
|
277
|
+
nn : nn
|
|
278
|
+
+ self.npar * 12 * self.out_nside**2 * (self.chanlist[self.nscale]+int(self.add_undersample_data)* self.n_chan_in)*self.NORIENT
|
|
279
|
+
],
|
|
280
|
+
[12 * self.out_nside**2 * (self.chanlist[self.nscale]+int(self.add_undersample_data)* self.n_chan_in)*self.NORIENT, self.npar],
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
im = self.scat_operator.backend.bk_matmul(
|
|
284
|
+
self.scat_operator.backend.bk_reshape(
|
|
285
|
+
im, [im.shape[0], im.shape[1] * im.shape[2] * im.shape[3]]
|
|
286
|
+
),
|
|
287
|
+
ww,
|
|
288
|
+
)
|
|
289
|
+
#im = self.scat_operator.backend.bk_reshape(im, [self.npar])
|
|
290
|
+
#im = self.scat_operator.backend.bk_relu(im)
|
|
291
|
+
return im
|
|
292
|
+
|
|
293
|
+
class GCNN:
|
|
294
|
+
|
|
295
|
+
def __init__(
|
|
296
|
+
self,
|
|
297
|
+
nparam=1,
|
|
298
|
+
KERNELSZ=3,
|
|
299
|
+
NORIENT=4,
|
|
300
|
+
chanlist=[],
|
|
301
|
+
in_nside=1,
|
|
302
|
+
out_chan=1,
|
|
303
|
+
SEED=1234,
|
|
304
|
+
all_type='float32',
|
|
305
|
+
filename=None,
|
|
306
|
+
scat_operator=None,
|
|
307
|
+
BACKEND='tensorflow'
|
|
308
|
+
):
|
|
309
|
+
|
|
310
|
+
if filename is not None:
|
|
311
|
+
outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
|
|
312
|
+
self.scat_operator = sc.funct(KERNELSZ=outlist[3],NORIENT=outlist[8], all_type=outlist[7])
|
|
313
|
+
self.KERNELSZ = self.scat_operator.KERNELSZ
|
|
314
|
+
self.all_type = self.scat_operator.all_type
|
|
315
|
+
self.npar = outlist[2]
|
|
316
|
+
self.nscale = outlist[5]
|
|
317
|
+
self.chanlist = outlist[0]
|
|
318
|
+
self.in_nside = outlist[4]
|
|
319
|
+
self.nbatch = outlist[1]
|
|
320
|
+
self.NORIENT = outlist[8]
|
|
321
|
+
self.out_chan = outlist[9]
|
|
322
|
+
self.x = self.scat_operator.backend.bk_cast(outlist[6])
|
|
323
|
+
self.out_nside = self.in_nside // (2**self.nscale)
|
|
324
|
+
else:
|
|
325
|
+
self.nscale = len(chanlist)-1
|
|
326
|
+
self.npar = nparam
|
|
327
|
+
|
|
328
|
+
if scat_operator is None:
|
|
329
|
+
self.scat_operator = sc.funct(
|
|
330
|
+
KERNELSZ=KERNELSZ,
|
|
331
|
+
NORIENT=NORIENT,
|
|
332
|
+
all_type=all_type)
|
|
333
|
+
else:
|
|
334
|
+
self.scat_operator = scat_operator
|
|
335
|
+
|
|
336
|
+
self.chanlist = chanlist
|
|
337
|
+
self.KERNELSZ = self.scat_operator.KERNELSZ
|
|
338
|
+
self.NORIENT = self.scat_operator.NORIENT
|
|
339
|
+
self.all_type = self.scat_operator.all_type
|
|
340
|
+
self.in_nside = in_nside
|
|
341
|
+
self.out_nside = self.in_nside * (2**self.nscale)
|
|
342
|
+
self.out_chan = out_chan
|
|
343
|
+
self.backend = self.scat_operator.backend
|
|
344
|
+
np.random.seed(SEED)
|
|
345
|
+
self.x = self.scat_operator.backend.bk_cast(
|
|
346
|
+
np.random.rand(self.get_number_of_weights())
|
|
347
|
+
)
|
|
348
|
+
self.mpi_size = self.scat_operator.mpi_size
|
|
349
|
+
self.mpi_rank = self.scat_operator.mpi_rank
|
|
350
|
+
self.BACKEND = BACKEND
|
|
351
|
+
self.gpupos = self.scat_operator.gpupos
|
|
352
|
+
self.ngpu = self.scat_operator.ngpu
|
|
353
|
+
self.gpulist = self.scat_operator.gpulist
|
|
354
|
+
|
|
355
|
+
def save(self, filename):
|
|
356
|
+
|
|
357
|
+
outlist = [
|
|
358
|
+
self.chanlist,
|
|
359
|
+
self.nbatch,
|
|
360
|
+
self.npar,
|
|
361
|
+
self.KERNELSZ,
|
|
362
|
+
self.in_nside,
|
|
363
|
+
self.nscale,
|
|
364
|
+
self.get_weights().numpy(),
|
|
365
|
+
self.all_type,
|
|
366
|
+
self.NORIENT,
|
|
367
|
+
self.out_chan
|
|
368
|
+
]
|
|
369
|
+
|
|
370
|
+
myout = open("%s.pkl" % (filename), "wb")
|
|
371
|
+
pickle.dump(outlist, myout)
|
|
372
|
+
myout.close()
|
|
373
|
+
|
|
374
|
+
def get_number_of_weights(self):
|
|
375
|
+
totnchan = 0
|
|
376
|
+
for i in range(self.nscale):
|
|
377
|
+
totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
|
|
378
|
+
return (
|
|
379
|
+
self.npar * 12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT
|
|
380
|
+
+ totnchan * self.KERNELSZ * (self.KERNELSZ//2+1)*self.NORIENT*self.NORIENT
|
|
381
|
+
+ self.chanlist[-1]*self.out_chan*self.NORIENT
|
|
382
|
+
)
|
|
383
|
+
|
|
384
|
+
def set_weights(self, x):
|
|
385
|
+
self.x = x
|
|
386
|
+
|
|
387
|
+
def get_weights(self):
|
|
388
|
+
return self.x
|
|
389
|
+
|
|
390
|
+
def eval(self, im, indices=None, weights=None):
|
|
391
|
+
|
|
392
|
+
x = self.x
|
|
393
|
+
|
|
394
|
+
ww = self.backend.bk_reshape(
|
|
395
|
+
x[0:self.npar * 12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT],
|
|
396
|
+
[self.npar,12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT],
|
|
397
|
+
)
|
|
398
|
+
|
|
399
|
+
im = self.scat_operator.backend.bk_matmul(im,ww)
|
|
400
|
+
|
|
401
|
+
im = self.backend.bk_reshape(im,[im.shape[0],self.chanlist[0],self.NORIENT,12 * self.in_nside**2])
|
|
402
|
+
|
|
403
|
+
nn = self.npar * 12 * self.in_nside**2 * self.chanlist[0]
|
|
404
|
+
|
|
405
|
+
for k in range(self.nscale):
|
|
406
|
+
|
|
407
|
+
im = self.scat_operator.backend.bk_relu(im)
|
|
408
|
+
|
|
409
|
+
im = self.backend.bk_reshape(
|
|
410
|
+
self.scat_operator.backend.bk_repeat(im,4,axis=-1),
|
|
411
|
+
[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]*4])
|
|
412
|
+
|
|
413
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
414
|
+
x[
|
|
415
|
+
nn : nn
|
|
416
|
+
+ self.KERNELSZ
|
|
417
|
+
* (self.KERNELSZ//2+1)
|
|
418
|
+
* self.NORIENT *self.NORIENT
|
|
419
|
+
* self.chanlist[k]
|
|
420
|
+
* self.chanlist[k + 1]
|
|
421
|
+
],
|
|
422
|
+
[self.chanlist[k] , self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1],self.NORIENT],
|
|
423
|
+
)
|
|
424
|
+
nn = (
|
|
425
|
+
nn
|
|
426
|
+
+ self.KERNELSZ
|
|
427
|
+
* (self.KERNELSZ//2+1)
|
|
428
|
+
* self.NORIENT *self.NORIENT
|
|
429
|
+
* self.chanlist[k]
|
|
430
|
+
* self.chanlist[k + 1]
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
if indices is None:
|
|
434
|
+
im = self.scat_operator.healpix_layer(im, ww)
|
|
435
|
+
else:
|
|
436
|
+
im = self.scat_operator.healpix_layer(
|
|
437
|
+
im, ww, indices=indices[k], weights=weights[k]
|
|
438
|
+
)
|
|
439
|
+
|
|
440
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
441
|
+
x[
|
|
442
|
+
nn : nn
|
|
443
|
+
+ self.chanlist[-1]*self.NORIENT
|
|
444
|
+
* self.out_chan
|
|
445
|
+
],
|
|
446
|
+
[1,self.chanlist[-1],self.NORIENT, self.out_chan, 1],
|
|
447
|
+
)
|
|
448
|
+
im = self.backend.bk_reduce_mean(im[:,:,:,None]*ww,[1,2])
|
|
449
|
+
#im = self.scat_operator.backend.bk_relu(im)
|
|
450
|
+
|
|
451
|
+
return im
|