foscat 2025.5.2__py3-none-any.whl → 2025.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/BkTorch.py +11 -12
- foscat/CNN.py +31 -30
- foscat/FoCUS.py +784 -780
- foscat/GCNN.py +48 -150
- foscat/Softmax.py +1 -0
- foscat/alm.py +2 -2
- foscat/heal_NN.py +451 -0
- foscat/scat_cov.py +186 -155
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/METADATA +1 -1
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/RECORD +13 -12
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/WHEEL +0 -0
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/licenses/LICENSE +0 -0
- {foscat-2025.5.2.dist-info → foscat-2025.6.3.dist-info}/top_level.txt +0 -0
foscat/FoCUS.py
CHANGED
|
@@ -10,32 +10,32 @@ TMPFILE_VERSION = "V5_0"
|
|
|
10
10
|
|
|
11
11
|
class FoCUS:
|
|
12
12
|
def __init__(
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
13
|
+
self,
|
|
14
|
+
NORIENT=4,
|
|
15
|
+
LAMBDA=1.2,
|
|
16
|
+
KERNELSZ=3,
|
|
17
|
+
slope=1.0,
|
|
18
|
+
all_type="float32",
|
|
19
|
+
nstep_max=20,
|
|
20
|
+
padding="SAME",
|
|
21
|
+
gpupos=0,
|
|
22
|
+
mask_thres=None,
|
|
23
|
+
mask_norm=False,
|
|
24
|
+
isMPI=False,
|
|
25
|
+
TEMPLATE_PATH="data",
|
|
26
|
+
BACKEND="torch",
|
|
27
|
+
use_2D=False,
|
|
28
|
+
use_1D=False,
|
|
29
|
+
return_data=False,
|
|
30
|
+
JmaxDelta=0,
|
|
31
|
+
DODIV=False,
|
|
32
|
+
InitWave=None,
|
|
33
|
+
silent=True,
|
|
34
|
+
mpi_size=1,
|
|
35
|
+
mpi_rank=0
|
|
36
36
|
):
|
|
37
37
|
|
|
38
|
-
self.__version__ = "2025.
|
|
38
|
+
self.__version__ = "2025.06.3"
|
|
39
39
|
# P00 coeff for normalization for scat_cov
|
|
40
40
|
self.TMPFILE_VERSION = TMPFILE_VERSION
|
|
41
41
|
self.P1_dic = None
|
|
@@ -176,6 +176,9 @@ class FoCUS:
|
|
|
176
176
|
self.Y_CNN = {}
|
|
177
177
|
self.Z_CNN = {}
|
|
178
178
|
|
|
179
|
+
self.Idx_CNN = {}
|
|
180
|
+
self.Idx_WCNN = {}
|
|
181
|
+
|
|
179
182
|
self.filters_set = {}
|
|
180
183
|
self.edge_masks = {}
|
|
181
184
|
|
|
@@ -366,39 +369,8 @@ class FoCUS:
|
|
|
366
369
|
self.pix_interp_val = {}
|
|
367
370
|
self.weight_interp_val = {}
|
|
368
371
|
self.ring2nest = {}
|
|
369
|
-
self.nest2R = {}
|
|
370
|
-
self.nest2R1 = {}
|
|
371
|
-
self.nest2R2 = {}
|
|
372
|
-
self.nest2R3 = {}
|
|
373
|
-
self.nest2R4 = {}
|
|
374
|
-
self.inv_nest2R = {}
|
|
375
|
-
self.remove_border = {}
|
|
376
|
-
|
|
377
372
|
self.ampnorm = {}
|
|
378
373
|
|
|
379
|
-
for i in range(nstep_max):
|
|
380
|
-
lout = 2**i
|
|
381
|
-
self.pix_interp_val[lout] = {}
|
|
382
|
-
self.weight_interp_val[lout] = {}
|
|
383
|
-
for j in range(nstep_max):
|
|
384
|
-
lout2 = 2**j
|
|
385
|
-
self.pix_interp_val[lout][lout2] = None
|
|
386
|
-
self.weight_interp_val[lout][lout2] = None
|
|
387
|
-
self.ring2nest[lout] = None
|
|
388
|
-
self.Idx_Neighbours[lout] = None
|
|
389
|
-
self.nest2R[lout] = None
|
|
390
|
-
self.nest2R1[lout] = None
|
|
391
|
-
self.nest2R2[lout] = None
|
|
392
|
-
self.nest2R3[lout] = None
|
|
393
|
-
self.nest2R4[lout] = None
|
|
394
|
-
self.inv_nest2R[lout] = None
|
|
395
|
-
self.remove_border[lout] = None
|
|
396
|
-
self.ww_CNN_Transpose[lout] = None
|
|
397
|
-
self.ww_CNN[lout] = None
|
|
398
|
-
self.X_CNN[lout] = None
|
|
399
|
-
self.Y_CNN[lout] = None
|
|
400
|
-
self.Z_CNN[lout] = None
|
|
401
|
-
|
|
402
374
|
self.loss = {}
|
|
403
375
|
|
|
404
376
|
def get_type(self):
|
|
@@ -500,210 +472,26 @@ class FoCUS:
|
|
|
500
472
|
return indices, weights, xc, yc, zc
|
|
501
473
|
|
|
502
474
|
# ---------------------------------------------−---------
|
|
503
|
-
def calc_orientation(self, im): # im is [Ndata,12*Nside**2]
|
|
504
|
-
nside = int(np.sqrt(im.shape[1] // 12))
|
|
505
|
-
l_kernel = self.KERNELSZ * self.KERNELSZ
|
|
506
|
-
norient = 32
|
|
507
|
-
w = np.zeros([l_kernel, 1, 2 * norient])
|
|
508
|
-
ca = np.cos(np.arange(norient) / norient * np.pi)
|
|
509
|
-
sa = np.sin(np.arange(norient) / norient * np.pi)
|
|
510
|
-
stat = np.zeros([12 * nside**2, norient])
|
|
511
|
-
|
|
512
|
-
if self.ww_CNN[nside] is None:
|
|
513
|
-
self.init_CNN_index(nside, transpose=False)
|
|
514
|
-
|
|
515
|
-
y = self.Y_CNN[nside]
|
|
516
|
-
z = self.Z_CNN[nside]
|
|
517
|
-
|
|
518
|
-
for k in range(norient):
|
|
519
|
-
w[:, 0, k] = np.exp(-0.5 * nside**2 * ((y) ** 2 + (z) ** 2)) * np.cos(
|
|
520
|
-
nside * (y * ca[k] + z * sa[k]) * np.pi / 2
|
|
521
|
-
)
|
|
522
|
-
w[:, 0, k + norient] = np.exp(
|
|
523
|
-
-0.5 * nside**2 * ((y) ** 2 + (z) ** 2)
|
|
524
|
-
) * np.sin(nside * (y * ca[k] + z * sa[k]) * np.pi / 2)
|
|
525
|
-
w[:, 0, k] = w[:, 0, k] - np.mean(w[:, 0, k])
|
|
526
|
-
w[:, 0, k + norient] = w[:, 0, k] - np.mean(w[:, 0, k + norient])
|
|
527
|
-
|
|
528
|
-
for k in range(im.shape[0]):
|
|
529
|
-
tmp = im[k].reshape(12 * nside**2, 1)
|
|
530
|
-
im2 = self.healpix_layer(tmp, w)
|
|
531
|
-
stat = stat + im2[:, 0:norient] ** 2 + im2[:, norient:] ** 2
|
|
532
|
-
|
|
533
|
-
rotation = (np.argmax(stat, 1)).astype("float") / 32.0 * 180.0
|
|
534
|
-
|
|
535
|
-
indices, weights, x, y, z = self.calc_indices_convol(
|
|
536
|
-
nside, 9, rotation=rotation
|
|
537
|
-
)
|
|
538
|
-
|
|
539
|
-
return indices, weights
|
|
540
|
-
|
|
541
|
-
def init_CNN_index(self, nside, transpose=False):
|
|
542
|
-
l_kernel = int(self.KERNELSZ * self.KERNELSZ)
|
|
543
|
-
try:
|
|
544
|
-
indices = np.load(
|
|
545
|
-
"%s/FOSCAT_%s_I%d_%d_%d_CNNV3.npy"
|
|
546
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside)
|
|
547
|
-
)
|
|
548
|
-
weights = np.load(
|
|
549
|
-
"%s/FOSCAT_%s_W%d_%d_%d_CNNV3.npy"
|
|
550
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside)
|
|
551
|
-
)
|
|
552
|
-
xc = np.load(
|
|
553
|
-
"%s/FOSCAT_%s_X%d_%d_%d_CNNV3.npy"
|
|
554
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside)
|
|
555
|
-
)
|
|
556
|
-
yc = np.load(
|
|
557
|
-
"%s/FOSCAT_%s_Y%d_%d_%d_CNNV3.npy"
|
|
558
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside)
|
|
559
|
-
)
|
|
560
|
-
zc = np.load(
|
|
561
|
-
"%s/FOSCAT_%s_Z%d_%d_%d_CNNV3.npy"
|
|
562
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside)
|
|
563
|
-
)
|
|
564
|
-
except:
|
|
565
|
-
indices, weights, xc, yc, zc = self.calc_indices_convol(nside, l_kernel)
|
|
566
|
-
np.save(
|
|
567
|
-
"%s/FOSCAT_%s_I%d_%d_%d_CNNV3.npy"
|
|
568
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside),
|
|
569
|
-
indices,
|
|
570
|
-
)
|
|
571
|
-
np.save(
|
|
572
|
-
"%s/FOSCAT_%s_W%d_%d_%d_CNNV3.npy"
|
|
573
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside),
|
|
574
|
-
weights,
|
|
575
|
-
)
|
|
576
|
-
np.save(
|
|
577
|
-
"%s/FOSCAT_%s_X%d_%d_%d_CNNV3.npy"
|
|
578
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside),
|
|
579
|
-
xc,
|
|
580
|
-
)
|
|
581
|
-
np.save(
|
|
582
|
-
"%s/FOSCAT_%s_Y%d_%d_%d_CNNV3.npy"
|
|
583
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside),
|
|
584
|
-
yc,
|
|
585
|
-
)
|
|
586
|
-
np.save(
|
|
587
|
-
"%s/FOSCAT_%s_Z%d_%d_%d_CNNV3.npy"
|
|
588
|
-
% (self.TEMPLATE_PATH, TMPFILE_VERSION, l_kernel, self.NORIENT, nside),
|
|
589
|
-
zc,
|
|
590
|
-
)
|
|
591
|
-
if not self.silent:
|
|
592
|
-
print(
|
|
593
|
-
"Write %s/FOSCAT_%s_W%d_%d_%d_CNNV2.npy"
|
|
594
|
-
% (
|
|
595
|
-
self.TEMPLATE_PATH,
|
|
596
|
-
TMPFILE_VERSION,
|
|
597
|
-
l_kernel,
|
|
598
|
-
self.NORIENT,
|
|
599
|
-
nside,
|
|
600
|
-
)
|
|
601
|
-
)
|
|
602
|
-
|
|
603
|
-
self.X_CNN[nside] = xc
|
|
604
|
-
self.Y_CNN[nside] = yc
|
|
605
|
-
self.Z_CNN[nside] = zc
|
|
606
|
-
self.ww_CNN[nside] = self.backend.bk_SparseTensor(
|
|
607
|
-
indices, weights, [12 * nside * nside * l_kernel, 12 * nside * nside]
|
|
608
|
-
)
|
|
609
|
-
|
|
610
|
-
# ---------------------------------------------−---------
|
|
611
|
-
def healpix_layer_coord(self, im, axis=0):
|
|
612
|
-
nside = int(np.sqrt(im.shape[axis] // 12))
|
|
613
|
-
if self.ww_CNN[nside] is None:
|
|
614
|
-
self.init_CNN_index(nside)
|
|
615
|
-
return self.X_CNN[nside], self.Y_CNN[nside], self.Z_CNN[nside]
|
|
616
|
-
|
|
617
475
|
# ---------------------------------------------−---------
|
|
618
|
-
def
|
|
619
|
-
|
|
620
|
-
|
|
621
|
-
|
|
622
|
-
if not self.silent:
|
|
623
|
-
print("Weights channels should be equal to the input image channels")
|
|
624
|
-
return -1
|
|
625
|
-
if axis == 1:
|
|
626
|
-
results = []
|
|
627
|
-
|
|
628
|
-
for k in range(im.shape[0]):
|
|
629
|
-
|
|
630
|
-
tmp = self.healpix_layer(
|
|
631
|
-
im[k], ww, indices=indices, weights=weights, axis=0
|
|
632
|
-
)
|
|
633
|
-
tmp = self.backend.bk_reshape(
|
|
634
|
-
self.up_grade(tmp, 2 * nside), [12 * 4 * nside**2, ww.shape[2]]
|
|
635
|
-
)
|
|
636
|
-
|
|
637
|
-
results.append(tmp)
|
|
638
|
-
|
|
639
|
-
return self.backend.bk_stack(results, axis=0)
|
|
640
|
-
else:
|
|
641
|
-
tmp = self.healpix_layer(
|
|
642
|
-
im, ww, indices=indices, weights=weights, axis=axis
|
|
643
|
-
)
|
|
644
|
-
|
|
645
|
-
return self.up_grade(tmp, 2 * nside)
|
|
646
|
-
|
|
647
|
-
# ---------------------------------------------−---------
|
|
648
|
-
# ---------------------------------------------−---------
|
|
649
|
-
def healpix_layer(self, im, ww, indices=None, weights=None, axis=0):
|
|
650
|
-
nside = int(np.sqrt(im.shape[axis] // 12))
|
|
651
|
-
l_kernel = self.KERNELSZ * self.KERNELSZ
|
|
652
|
-
|
|
653
|
-
if im.shape[1 + axis] != ww.shape[1]:
|
|
654
|
-
if not self.silent:
|
|
655
|
-
print("Weights channels should be equal to the input image channels")
|
|
656
|
-
return -1
|
|
657
|
-
|
|
476
|
+
def healpix_layer(self, im, ww, indices=None, weights=None):
|
|
477
|
+
#ww [N_i,NORIENT,KERNELSZ*KERNELSZ//2,N_o,NORIENT]
|
|
478
|
+
#im [N_batch,N_i, NORIENT,N]
|
|
479
|
+
nside=int(np.sqrt(im.shape[-1]//12))
|
|
658
480
|
if indices is None:
|
|
659
|
-
if self.
|
|
660
|
-
self.
|
|
661
|
-
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
|
|
665
|
-
|
|
666
|
-
|
|
667
|
-
|
|
668
|
-
|
|
669
|
-
|
|
670
|
-
|
|
671
|
-
|
|
672
|
-
|
|
673
|
-
if axis == 1:
|
|
674
|
-
results = []
|
|
675
|
-
|
|
676
|
-
for k in range(im.shape[0]):
|
|
677
|
-
|
|
678
|
-
tmp = self.backend.bk_sparse_dense_matmul(mat, im[k])
|
|
679
|
-
|
|
680
|
-
density = self.backend.bk_reshape(
|
|
681
|
-
tmp, [12 * nside * nside, l_kernel * im.shape[1 + axis]]
|
|
682
|
-
)
|
|
683
|
-
|
|
684
|
-
density = self.backend.bk_matmul(
|
|
685
|
-
density,
|
|
686
|
-
self.backend.bk_reshape(
|
|
687
|
-
ww, [l_kernel * im.shape[1 + axis], ww.shape[2]]
|
|
688
|
-
),
|
|
689
|
-
)
|
|
690
|
-
|
|
691
|
-
results.append(
|
|
692
|
-
self.backend.bk_reshape(density, [12 * nside**2, ww.shape[2]])
|
|
693
|
-
)
|
|
694
|
-
|
|
695
|
-
return self.backend.bk_stack(results, axis=0)
|
|
696
|
-
else:
|
|
697
|
-
tmp = self.backend.bk_sparse_dense_matmul(mat, im)
|
|
698
|
-
|
|
699
|
-
density = self.backend.bk_reshape(
|
|
700
|
-
tmp, [12 * nside * nside, l_kernel * im.shape[1]]
|
|
701
|
-
)
|
|
702
|
-
|
|
703
|
-
return self.backend.bk_matmul(
|
|
704
|
-
density,
|
|
705
|
-
self.backend.bk_reshape(ww, [l_kernel * im.shape[1], ww.shape[2]]),
|
|
706
|
-
)
|
|
481
|
+
if (nside,self.NORIENT,self.KERNELSZ) not in self.ww_CNN:
|
|
482
|
+
self.init_index_cnn(nside,self.NORIENT)
|
|
483
|
+
indices = self.Idx_CNN[(nside,self.NORIENT,self.KERNELSZ)]
|
|
484
|
+
mat = self.Idx_WCNN[(nside,self.NORIENT,self.KERNELSZ)]
|
|
485
|
+
|
|
486
|
+
wim = self.backend.bk_gather(im,indices.flatten(),axis=3) #[N_batch,N_i,NORIENT,K*(K+1),N_o,NORIENT,N,N_w]
|
|
487
|
+
|
|
488
|
+
wim = self.backend.bk_reshape(wim,[im.shape[0],im.shape[1],im.shape[2]]+list(indices.shape))*mat[None,...]
|
|
489
|
+
#win is [N_batch,N_i, NORIENT,K*(K+1),1, NORIENT,N,N_w]
|
|
490
|
+
#ww is [1, N_i, NORIENT,K*(K+1),N_o,NORIENT]
|
|
491
|
+
wim = self.backend.bk_reduce_sum(wim[:,:,:,:,None]*ww[None,:,:,:,:,:,None,None],[1,2,3])
|
|
492
|
+
|
|
493
|
+
wim = self.backend.bk_reduce_sum(wim,-1)
|
|
494
|
+
return self.backend.bk_reshape(wim,[im.shape[0],ww.shape[3],ww.shape[4],im.shape[-1]])
|
|
707
495
|
|
|
708
496
|
# ---------------------------------------------−---------
|
|
709
497
|
|
|
@@ -724,7 +512,7 @@ class FoCUS:
|
|
|
724
512
|
def toring(self, image, axis=0):
|
|
725
513
|
lout = int(np.sqrt(image.shape[axis] // 12))
|
|
726
514
|
|
|
727
|
-
if self.ring2nest
|
|
515
|
+
if lout not in self.ring2nest:
|
|
728
516
|
self.ring2nest[lout] = hp.ring2nest(lout, np.arange(12 * lout**2))
|
|
729
517
|
|
|
730
518
|
return image.numpy()[self.ring2nest[lout]]
|
|
@@ -820,30 +608,10 @@ class FoCUS:
|
|
|
820
608
|
if cell_ids is not None:
|
|
821
609
|
sim, new_cell_ids = self.backend.binned_mean(im, cell_ids)
|
|
822
610
|
return sim, new_cell_ids
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
|
|
826
|
-
|
|
827
|
-
if axis > 0:
|
|
828
|
-
oshape[0:axis] = shape[0:axis]
|
|
829
|
-
oshape[axis] = 12 * lout * lout // 4
|
|
830
|
-
oshape[axis + 1] = 4
|
|
831
|
-
if len(shape) > axis:
|
|
832
|
-
oshape[axis + 2 :] = shape[axis + 1 :]
|
|
833
|
-
else:
|
|
834
|
-
if axis > 0:
|
|
835
|
-
oshape = shape[0:axis] + [12 * lout * lout // 4, 4]
|
|
836
|
-
else:
|
|
837
|
-
oshape = [12 * lout * lout // 4, 4]
|
|
838
|
-
if len(shape) > axis:
|
|
839
|
-
oshape = oshape + shape[axis + 1 :]
|
|
840
|
-
|
|
841
|
-
return (
|
|
842
|
-
self.backend.bk_reduce_mean(
|
|
843
|
-
self.backend.bk_reshape(im, oshape), axis=axis + 1
|
|
844
|
-
),
|
|
845
|
-
None,
|
|
846
|
-
)
|
|
611
|
+
|
|
612
|
+
return self.backend.bk_reduce_mean(
|
|
613
|
+
self.backend.bk_reshape(im, shape[0:-1]+[shape[-1]//4,4]), axis=-1
|
|
614
|
+
),None
|
|
847
615
|
|
|
848
616
|
# --------------------------------------------------------
|
|
849
617
|
def up_grade(self, im, nout, axis=0, nouty=None):
|
|
@@ -954,9 +722,9 @@ class FoCUS:
|
|
|
954
722
|
|
|
955
723
|
else:
|
|
956
724
|
|
|
957
|
-
lout = int(np.sqrt(im.shape[
|
|
725
|
+
lout = int(np.sqrt(im.shape[-1] // 12))
|
|
958
726
|
|
|
959
|
-
if
|
|
727
|
+
if (lout,nout) not in self.pix_interp_val:
|
|
960
728
|
if not self.silent:
|
|
961
729
|
print("compute lout nout", lout, nout)
|
|
962
730
|
th, ph = hp.pix2ang(
|
|
@@ -975,104 +743,51 @@ class FoCUS:
|
|
|
975
743
|
t = t + np.repeat(np.arange(12 * nout * nout) * 4, 4)
|
|
976
744
|
p = p.flatten()[t]
|
|
977
745
|
w = w.flatten()[t]
|
|
978
|
-
indice[:,
|
|
979
|
-
indice[:,
|
|
746
|
+
indice[:, 1] = np.repeat(np.arange(12 * nout**2), 4)
|
|
747
|
+
indice[:, 0] = p
|
|
980
748
|
|
|
981
|
-
self.pix_interp_val[lout
|
|
982
|
-
self.weight_interp_val[lout
|
|
749
|
+
self.pix_interp_val[(lout,nout)] = 1
|
|
750
|
+
self.weight_interp_val[(lout,nout)] = self.backend.bk_SparseTensor(
|
|
983
751
|
self.backend.bk_constant(indice),
|
|
984
752
|
self.backend.bk_constant(self.backend.bk_cast(w.flatten())),
|
|
985
|
-
dense_shape=[12 *
|
|
753
|
+
dense_shape=[12 * lout**2,12 * nout**2],
|
|
986
754
|
)
|
|
987
755
|
|
|
988
756
|
if lout == nout:
|
|
989
757
|
imout = im
|
|
990
758
|
else:
|
|
991
|
-
|
|
759
|
+
# work only on the last column
|
|
760
|
+
|
|
992
761
|
ishape = list(im.shape)
|
|
993
|
-
odata = 1
|
|
994
|
-
for k in range(axis + 1, len(ishape)):
|
|
995
|
-
odata = odata * ishape[k]
|
|
996
762
|
|
|
997
763
|
ndata = 1
|
|
998
|
-
for k in range(
|
|
764
|
+
for k in range(len(ishape)-1):
|
|
999
765
|
ndata = ndata * ishape[k]
|
|
1000
766
|
tim = self.backend.bk_reshape(
|
|
1001
|
-
self.backend.bk_cast(im), [ndata, 12 * lout**2
|
|
767
|
+
self.backend.bk_cast(im), [ndata, 12 * lout**2]
|
|
1002
768
|
)
|
|
1003
769
|
if tim.dtype == self.all_cbk_type:
|
|
1004
|
-
rr = self.backend.
|
|
1005
|
-
|
|
1006
|
-
self.weight_interp_val[lout
|
|
1007
|
-
|
|
1008
|
-
|
|
1009
|
-
|
|
1010
|
-
|
|
1011
|
-
|
|
1012
|
-
self.backend.bk_sparse_dense_matmul(
|
|
1013
|
-
self.weight_interp_val[lout][nout],
|
|
1014
|
-
self.backend.bk_imag(tim[0]),
|
|
1015
|
-
),
|
|
1016
|
-
[1, 12 * nout**2, odata],
|
|
1017
|
-
)
|
|
770
|
+
rr = self.backend.bk_sparse_dense_matmul(
|
|
771
|
+
self.backend.bk_real(tim),
|
|
772
|
+
self.weight_interp_val[(lout,nout)],
|
|
773
|
+
)
|
|
774
|
+
ii = self.backend.bk_sparse_dense_matmul(
|
|
775
|
+
self.backend.bk_real(tim),
|
|
776
|
+
self.weight_interp_val[(lout,nout)],
|
|
777
|
+
)
|
|
1018
778
|
imout = self.backend.bk_complex(rr, ii)
|
|
1019
779
|
else:
|
|
1020
|
-
imout = self.backend.
|
|
1021
|
-
|
|
1022
|
-
|
|
1023
|
-
),
|
|
1024
|
-
[1, 12 * nout**2, odata],
|
|
780
|
+
imout = self.backend.bk_sparse_dense_matmul(
|
|
781
|
+
tim,
|
|
782
|
+
self.weight_interp_val[(lout,nout)],
|
|
1025
783
|
)
|
|
1026
784
|
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
rr = self.backend.bk_reshape(
|
|
1030
|
-
self.backend.bk_sparse_dense_matmul(
|
|
1031
|
-
self.weight_interp_val[lout][nout],
|
|
1032
|
-
self.backend.bk_real(tim[k]),
|
|
1033
|
-
),
|
|
1034
|
-
[1, 12 * nout**2, odata],
|
|
1035
|
-
)
|
|
1036
|
-
ii = self.backend.bk_reshape(
|
|
1037
|
-
self.backend.bk_sparse_dense_matmul(
|
|
1038
|
-
self.weight_interp_val[lout][nout],
|
|
1039
|
-
self.backend.bk_imag(tim[k]),
|
|
1040
|
-
),
|
|
1041
|
-
[1, 12 * nout**2, odata],
|
|
1042
|
-
)
|
|
1043
|
-
imout = self.backend.bk_concat(
|
|
1044
|
-
[imout, self.backend.bk_complex(rr, ii)], 0
|
|
1045
|
-
)
|
|
1046
|
-
else:
|
|
1047
|
-
imout = self.backend.bk_concat(
|
|
1048
|
-
[
|
|
1049
|
-
imout,
|
|
1050
|
-
self.backend.bk_reshape(
|
|
1051
|
-
self.backend.bk_sparse_dense_matmul(
|
|
1052
|
-
self.weight_interp_val[lout][nout], tim[k]
|
|
1053
|
-
),
|
|
1054
|
-
[1, 12 * nout**2, odata],
|
|
1055
|
-
),
|
|
1056
|
-
],
|
|
1057
|
-
0,
|
|
1058
|
-
)
|
|
1059
|
-
|
|
1060
|
-
if axis == 0:
|
|
1061
|
-
if len(ishape) == 1:
|
|
1062
|
-
return self.backend.bk_reshape(imout, [12 * nout**2])
|
|
1063
|
-
else:
|
|
1064
|
-
return self.backend.bk_reshape(
|
|
1065
|
-
imout, [12 * nout**2] + ishape[axis + 1 :]
|
|
1066
|
-
)
|
|
785
|
+
if len(ishape) == 1:
|
|
786
|
+
return self.backend.bk_reshape(imout, [12 * nout**2])
|
|
1067
787
|
else:
|
|
1068
|
-
|
|
1069
|
-
|
|
1070
|
-
|
|
1071
|
-
)
|
|
1072
|
-
else:
|
|
1073
|
-
return self.backend.bk_reshape(
|
|
1074
|
-
imout, ishape[0:axis] + [12 * nout**2] + ishape[axis + 1 :]
|
|
1075
|
-
)
|
|
788
|
+
return self.backend.bk_reshape(
|
|
789
|
+
imout, ishape[0:axis-1]+[12 * nout**2]
|
|
790
|
+
)
|
|
1076
791
|
return imout
|
|
1077
792
|
|
|
1078
793
|
# --------------------------------------------------------
|
|
@@ -1345,7 +1060,7 @@ class FoCUS:
|
|
|
1345
1060
|
return res
|
|
1346
1061
|
|
|
1347
1062
|
# ---------------------------------------------−---------
|
|
1348
|
-
def init_index(self, nside, kernel=-1, cell_ids=None):
|
|
1063
|
+
def init_index(self, nside, kernel=-1, cell_ids=None, spin=0):
|
|
1349
1064
|
|
|
1350
1065
|
if kernel == -1:
|
|
1351
1066
|
l_kernel = self.KERNELSZ
|
|
@@ -1378,297 +1093,372 @@ class FoCUS:
|
|
|
1378
1093
|
|
|
1379
1094
|
else:
|
|
1380
1095
|
tmp = np.load(
|
|
1381
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1096
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1382
1097
|
% (
|
|
1383
1098
|
self.TEMPLATE_PATH,
|
|
1384
1099
|
TMPFILE_VERSION,
|
|
1385
1100
|
l_kernel**2,
|
|
1386
1101
|
self.NORIENT,
|
|
1387
|
-
nside, # if cell_ids computes the index
|
|
1102
|
+
nside,spin # if cell_ids computes the index
|
|
1388
1103
|
)
|
|
1389
1104
|
)
|
|
1105
|
+
|
|
1390
1106
|
except:
|
|
1391
1107
|
if not self.use_2D:
|
|
1392
|
-
|
|
1393
|
-
|
|
1394
|
-
|
|
1395
|
-
|
|
1396
|
-
|
|
1397
|
-
|
|
1398
|
-
|
|
1399
|
-
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1407
|
-
|
|
1408
|
-
|
|
1409
|
-
|
|
1410
|
-
|
|
1411
|
-
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
|
|
1416
|
-
|
|
1417
|
-
|
|
1418
|
-
|
|
1419
|
-
|
|
1420
|
-
|
|
1421
|
-
|
|
1422
|
-
|
|
1108
|
+
if spin!=0:
|
|
1109
|
+
try:
|
|
1110
|
+
tmp = np.load("%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN0.npy"% (
|
|
1111
|
+
self.TEMPLATE_PATH,
|
|
1112
|
+
self.TMPFILE_VERSION,
|
|
1113
|
+
self.KERNELSZ**2,
|
|
1114
|
+
self.NORIENT,
|
|
1115
|
+
nside)
|
|
1116
|
+
)
|
|
1117
|
+
except:
|
|
1118
|
+
self.init_index(nside, kernel=kernel, spin=0)
|
|
1119
|
+
|
|
1120
|
+
tmp = np.load("%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN0.npy"% (
|
|
1121
|
+
self.TEMPLATE_PATH,
|
|
1122
|
+
self.TMPFILE_VERSION,
|
|
1123
|
+
self.KERNELSZ**2,
|
|
1124
|
+
self.NORIENT,
|
|
1125
|
+
nside)
|
|
1126
|
+
)
|
|
1127
|
+
|
|
1128
|
+
tmpw = np.load("%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN0.npy"% (
|
|
1129
|
+
self.TEMPLATE_PATH,
|
|
1130
|
+
self.TMPFILE_VERSION,
|
|
1131
|
+
self.KERNELSZ**2,
|
|
1132
|
+
self.NORIENT,
|
|
1133
|
+
nside,
|
|
1134
|
+
)
|
|
1135
|
+
)
|
|
1136
|
+
|
|
1137
|
+
nn=self.NORIENT*12*nside**2
|
|
1138
|
+
idxEB=np.concatenate([tmp,tmp,tmp,tmp],0)
|
|
1139
|
+
idxEB[tmp.shape[0]:2*tmp.shape[0],0]+=12*nside**2
|
|
1140
|
+
idxEB[3*tmp.shape[0]:,0]+=12*nside**2
|
|
1141
|
+
idxEB[2*tmp.shape[0]:,1]+=nn
|
|
1142
|
+
|
|
1143
|
+
tmpEB=np.zeros([tmpw.shape[0]*4],dtype='complex')
|
|
1144
|
+
|
|
1145
|
+
for k in range(self.NORIENT*12*nside**2):
|
|
1146
|
+
if k%(nside**2)==0:
|
|
1147
|
+
print('Init index 1/2 spin=%d Please wait %d done against %d nside=%d kernel=%d'%(spin,k//(nside**2),
|
|
1148
|
+
self.NORIENT*12,
|
|
1149
|
+
nside,
|
|
1150
|
+
self.KERNELSZ))
|
|
1151
|
+
idx=np.where(tmp[:,1]==k)[0]
|
|
1152
|
+
|
|
1153
|
+
im=np.zeros([12*nside**2])
|
|
1154
|
+
im[tmp[idx,0]]=tmpw[idx].real
|
|
1155
|
+
almR=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1156
|
+
im[tmp[idx,0]]=tmpw[idx].imag
|
|
1157
|
+
almI=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1158
|
+
|
|
1159
|
+
i,q,u=hp.alm2map_spin([almR,almR*0,0*almR],nside,spin,3*nside-1)
|
|
1160
|
+
i2,q2,u2=hp.alm2map_spin([almI,0*almI,0*almI],nside,spin,3*nside-1)
|
|
1161
|
+
|
|
1162
|
+
tmpEB[idx]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1163
|
+
tmpEB[idx+tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1164
|
+
|
|
1165
|
+
i,q,u=hp.alm2map_spin([0*almR,almR,0*almR],nside,spin,3*nside-1)
|
|
1166
|
+
i2,q2,u2=hp.alm2map_spin([0*almI,almI,0*almI],nside,spin,3*nside-1)
|
|
1167
|
+
|
|
1168
|
+
tmpEB[idx+2*tmp.shape[0]]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1169
|
+
tmpEB[idx+3*tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1170
|
+
|
|
1171
|
+
|
|
1172
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"% (self.TEMPLATE_PATH,
|
|
1173
|
+
self.TMPFILE_VERSION,
|
|
1174
|
+
self.KERNELSZ**2,
|
|
1175
|
+
self.NORIENT,
|
|
1176
|
+
nside,
|
|
1177
|
+
spin
|
|
1178
|
+
),
|
|
1179
|
+
idxEB
|
|
1180
|
+
)
|
|
1181
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"% (self.TEMPLATE_PATH,
|
|
1182
|
+
self.TMPFILE_VERSION,
|
|
1183
|
+
self.KERNELSZ**2,
|
|
1184
|
+
self.NORIENT,
|
|
1185
|
+
nside,
|
|
1186
|
+
spin,
|
|
1187
|
+
),
|
|
1188
|
+
tmpEB
|
|
1189
|
+
)
|
|
1190
|
+
tmp = np.load("%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN0.npy"%
|
|
1191
|
+
(
|
|
1192
|
+
self.TEMPLATE_PATH,
|
|
1193
|
+
self.TMPFILE_VERSION,
|
|
1194
|
+
self.KERNELSZ**2,
|
|
1195
|
+
self.NORIENT,
|
|
1196
|
+
nside,
|
|
1197
|
+
)
|
|
1198
|
+
)
|
|
1199
|
+
tmpw = np.load("%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN0.npy"%
|
|
1200
|
+
(
|
|
1201
|
+
self.TEMPLATE_PATH,
|
|
1202
|
+
self.TMPFILE_VERSION,
|
|
1203
|
+
self.KERNELSZ**2,
|
|
1204
|
+
self.NORIENT,
|
|
1205
|
+
nside,
|
|
1206
|
+
)
|
|
1207
|
+
)
|
|
1208
|
+
|
|
1209
|
+
nn=12*nside**2
|
|
1210
|
+
idxEB=np.concatenate([tmp,tmp,tmp,tmp],0)
|
|
1211
|
+
idxEB[tmp.shape[0]:2*tmp.shape[0],0]+=12*nside**2
|
|
1212
|
+
idxEB[3*tmp.shape[0]:,0]+=12*nside**2
|
|
1213
|
+
idxEB[2*tmp.shape[0]:,1]+=nn
|
|
1214
|
+
|
|
1215
|
+
tmpEB=np.zeros([tmpw.shape[0]*4],dtype='complex')
|
|
1216
|
+
|
|
1217
|
+
for k in range(12*nside**2):
|
|
1218
|
+
if k%(nside**2)==0:
|
|
1219
|
+
print('Init index 2/2 spin=%d Please wait %d done against %d nside=%d kernel=%d'%(spin,k//(nside**2),
|
|
1220
|
+
12,
|
|
1221
|
+
nside,
|
|
1222
|
+
self.KERNELSZ))
|
|
1223
|
+
idx=np.where(tmp[:,1]==k)[0]
|
|
1224
|
+
|
|
1225
|
+
im=np.zeros([12*nside**2])
|
|
1226
|
+
im[tmp[idx,0]]=tmpw[idx].real
|
|
1227
|
+
almR=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1228
|
+
im[tmp[idx,0]]=tmpw[idx].imag
|
|
1229
|
+
almI=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1230
|
+
|
|
1231
|
+
i,q,u=hp.alm2map_spin([almR,almR*0,0*almR],nside,spin,3*nside-1)
|
|
1232
|
+
i2,q2,u2=hp.alm2map_spin([almI,0*almI,0*almI],nside,spin,3*nside-1)
|
|
1233
|
+
|
|
1234
|
+
tmpEB[idx]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1235
|
+
tmpEB[idx+tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1236
|
+
|
|
1237
|
+
i,q,u=hp.alm2map_spin([0*almR,almR,0*almR],nside,spin,3*nside-1)
|
|
1238
|
+
i2,q2,u2=hp.alm2map_spin([0*almI,almI,0*almI],nside,spin,3*nside-1)
|
|
1239
|
+
|
|
1240
|
+
tmpEB[idx+2*tmp.shape[0]]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1241
|
+
tmpEB[idx+3*tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1242
|
+
|
|
1243
|
+
|
|
1244
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN%d.npy"%
|
|
1245
|
+
(
|
|
1246
|
+
self.TEMPLATE_PATH,
|
|
1247
|
+
self.TMPFILE_VERSION,
|
|
1248
|
+
self.KERNELSZ**2,
|
|
1249
|
+
self.NORIENT,
|
|
1250
|
+
nside,
|
|
1251
|
+
spin,
|
|
1252
|
+
),
|
|
1253
|
+
idxEB
|
|
1254
|
+
)
|
|
1255
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN%d.npy"%
|
|
1256
|
+
(
|
|
1257
|
+
self.TEMPLATE_PATH,
|
|
1258
|
+
self.TMPFILE_VERSION,
|
|
1259
|
+
self.KERNELSZ**2,
|
|
1260
|
+
self.NORIENT,
|
|
1261
|
+
nside,
|
|
1262
|
+
spin,
|
|
1263
|
+
),
|
|
1264
|
+
tmpEB
|
|
1265
|
+
)
|
|
1423
1266
|
else:
|
|
1424
1267
|
|
|
1425
|
-
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
|
|
1429
|
-
phi = [p[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1430
|
-
thi = [t[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1268
|
+
if l_kernel == 5:
|
|
1269
|
+
pw = 0.5
|
|
1270
|
+
pw2 = 0.5
|
|
1271
|
+
threshold = 2e-4
|
|
1431
1272
|
|
|
1432
|
-
|
|
1433
|
-
|
|
1434
|
-
|
|
1435
|
-
|
|
1436
|
-
wav = np.zeros(
|
|
1437
|
-
[12 * nside * nside * 64 * self.NORIENT], dtype="complex"
|
|
1438
|
-
)
|
|
1439
|
-
wwav = np.zeros(
|
|
1440
|
-
[12 * nside * nside * 64 * self.NORIENT], dtype="float"
|
|
1441
|
-
)
|
|
1442
|
-
iv = 0
|
|
1443
|
-
iv2 = 0
|
|
1273
|
+
elif l_kernel == 3:
|
|
1274
|
+
pw = 1.0 / np.sqrt(2)
|
|
1275
|
+
pw2 = 1.0
|
|
1276
|
+
threshold = 1e-3
|
|
1444
1277
|
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
|
|
1448
|
-
|
|
1449
|
-
print(
|
|
1450
|
-
"Pre-compute nside=%6d %.2f%%"
|
|
1451
|
-
% (nside, 100 * iii / (12 * nside * nside))
|
|
1452
|
-
)
|
|
1278
|
+
elif l_kernel == 7:
|
|
1279
|
+
pw = 0.5
|
|
1280
|
+
pw2 = 0.25
|
|
1281
|
+
threshold = 4e-5
|
|
1453
1282
|
|
|
1454
1283
|
if cell_ids is not None:
|
|
1455
|
-
|
|
1456
|
-
|
|
1457
|
-
|
|
1458
|
-
)
|
|
1459
|
-
else:
|
|
1460
|
-
hidx = hp.query_disc(
|
|
1461
|
-
nside,
|
|
1462
|
-
[x[iii], y[iii], z[iii]],
|
|
1463
|
-
2 * np.pi / nside,
|
|
1464
|
-
nest=True,
|
|
1465
|
-
)
|
|
1284
|
+
if not isinstance(cell_ids, np.ndarray):
|
|
1285
|
+
cell_ids = self.backend.to_numpy(cell_ids)
|
|
1286
|
+
th, ph = hp.pix2ang(nside, cell_ids, nest=True)
|
|
1287
|
+
x, y, z = hp.pix2vec(nside, cell_ids, nest=True)
|
|
1466
1288
|
|
|
1467
|
-
|
|
1289
|
+
t, p = hp.pix2ang(nside, cell_ids, nest=True)
|
|
1290
|
+
phi = [p[k] / np.pi * 180 for k in range(ncell)]
|
|
1291
|
+
thi = [t[k] / np.pi * 180 for k in range(ncell)]
|
|
1468
1292
|
|
|
1469
|
-
|
|
1293
|
+
indice2 = np.zeros([ncell * 64, 2], dtype="int")
|
|
1294
|
+
indice = np.zeros([ncell * 64 * self.NORIENT, 2], dtype="int")
|
|
1295
|
+
wav = np.zeros([ncell * 64 * self.NORIENT], dtype="complex")
|
|
1296
|
+
wwav = np.zeros([ncell * 64 * self.NORIENT], dtype="float")
|
|
1470
1297
|
|
|
1471
|
-
|
|
1298
|
+
else:
|
|
1472
1299
|
|
|
1473
|
-
|
|
1474
|
-
|
|
1475
|
-
z2 = vec2[:, 2]
|
|
1300
|
+
th, ph = hp.pix2ang(nside, np.arange(12 * nside**2), nest=True)
|
|
1301
|
+
x, y, z = hp.pix2vec(nside, np.arange(12 * nside**2), nest=True)
|
|
1476
1302
|
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
* (
|
|
1480
|
-
* ((x2) ** 2 + (y2) ** 2 + (z2 - 1.0) ** 2)
|
|
1481
|
-
)
|
|
1482
|
-
idx = np.where((ww**2) > threshold)[0]
|
|
1483
|
-
nval2 = len(idx)
|
|
1484
|
-
indice2[iv2 : iv2 + nval2, 1] = iii
|
|
1485
|
-
indice2[iv2 : iv2 + nval2, 0] = hidx[idx]
|
|
1486
|
-
wwav[iv2 : iv2 + nval2] = ww[idx] / np.sum(ww[idx])
|
|
1487
|
-
iv2 += nval2
|
|
1303
|
+
t, p = hp.pix2ang(nside, np.arange(12 * nside * nside), nest=True)
|
|
1304
|
+
phi = [p[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1305
|
+
thi = [t[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1488
1306
|
|
|
1489
|
-
|
|
1490
|
-
|
|
1491
|
-
|
|
1492
|
-
|
|
1493
|
-
|
|
1494
|
-
|
|
1307
|
+
indice2 = np.zeros([12 * nside * nside * 64, 2], dtype="int")
|
|
1308
|
+
indice = np.zeros(
|
|
1309
|
+
[12 * nside * nside * 64 * self.NORIENT, 2], dtype="int"
|
|
1310
|
+
)
|
|
1311
|
+
wav = np.zeros(
|
|
1312
|
+
[12 * nside * nside * 64 * self.NORIENT], dtype="complex"
|
|
1313
|
+
)
|
|
1314
|
+
wwav = np.zeros(
|
|
1315
|
+
[12 * nside * nside * 64 * self.NORIENT], dtype="float"
|
|
1495
1316
|
)
|
|
1317
|
+
iv = 0
|
|
1318
|
+
iv2 = 0
|
|
1319
|
+
|
|
1320
|
+
for iii in range(ncell):
|
|
1321
|
+
if cell_ids is None:
|
|
1322
|
+
if iii % (nside * nside) == nside * nside - 1:
|
|
1323
|
+
if not self.silent:
|
|
1324
|
+
print(
|
|
1325
|
+
"Pre-compute nside=%6d %.2f%%"
|
|
1326
|
+
% (nside, 100 * iii / (12 * nside * nside))
|
|
1327
|
+
)
|
|
1328
|
+
|
|
1329
|
+
if cell_ids is not None:
|
|
1330
|
+
hidx = np.where(
|
|
1331
|
+
(x - x[iii]) ** 2 + (y - y[iii]) ** 2 + (z - z[iii]) ** 2
|
|
1332
|
+
< (2 * np.pi / nside) ** 2
|
|
1333
|
+
)[0]
|
|
1334
|
+
else:
|
|
1335
|
+
hidx = hp.query_disc(
|
|
1336
|
+
nside,
|
|
1337
|
+
[x[iii], y[iii], z[iii]],
|
|
1338
|
+
2 * np.pi / nside,
|
|
1339
|
+
nest=True,
|
|
1340
|
+
)
|
|
1496
1341
|
|
|
1497
|
-
|
|
1342
|
+
R = hp.Rotator(rot=[phi[iii], -thi[iii]], eulertype="ZYZ")
|
|
1498
1343
|
|
|
1499
|
-
|
|
1500
|
-
wresr = ww * np.cos(pw * axes * (nside) * np.pi)
|
|
1501
|
-
wresi = ww * np.sin(pw * axes * (nside) * np.pi)
|
|
1344
|
+
t2, p2 = R(th[hidx], ph[hidx])
|
|
1502
1345
|
|
|
1503
|
-
|
|
1504
|
-
idx = np.where(vnorm > threshold)[0]
|
|
1346
|
+
vec2 = hp.ang2vec(t2, p2)
|
|
1505
1347
|
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
# print([hidx[k] for k in idx])
|
|
1510
|
-
# print(hp.query_disc(nside, [x[iii],y[iii],z[iii]], np.pi/nside,nest=True))
|
|
1511
|
-
normr = np.mean(wresr[idx])
|
|
1512
|
-
normi = np.mean(wresi[idx])
|
|
1348
|
+
x2 = vec2[:, 0]
|
|
1349
|
+
y2 = vec2[:, 1]
|
|
1350
|
+
z2 = vec2[:, 2]
|
|
1513
1351
|
|
|
1514
|
-
|
|
1515
|
-
|
|
1352
|
+
ww = np.exp(
|
|
1353
|
+
-pw2
|
|
1354
|
+
* ((nside) ** 2)
|
|
1355
|
+
* ((x2) ** 2 + (y2) ** 2 + (z2 - 1.0) ** 2)
|
|
1356
|
+
)
|
|
1357
|
+
idx = np.where((ww**2) > threshold)[0]
|
|
1358
|
+
nval2 = len(idx)
|
|
1359
|
+
indice2[iv2 : iv2 + nval2, 1] = iii
|
|
1360
|
+
indice2[iv2 : iv2 + nval2, 0] = hidx[idx]
|
|
1361
|
+
wwav[iv2 : iv2 + nval2] = ww[idx] / np.sum(ww[idx])
|
|
1362
|
+
iv2 += nval2
|
|
1363
|
+
|
|
1364
|
+
for l_rotation in range(self.NORIENT):
|
|
1365
|
+
|
|
1366
|
+
angle = (
|
|
1367
|
+
l_rotation / 4.0 * np.pi
|
|
1368
|
+
- phi[iii] / 180.0 * np.pi * (z[hidx] > 0)
|
|
1369
|
+
- (180.0 - phi[iii]) / 180.0 * np.pi * (z[hidx] < 0)
|
|
1370
|
+
)
|
|
1516
1371
|
|
|
1517
|
-
|
|
1518
|
-
val = val / r
|
|
1372
|
+
# posi=2*(0.5-(z[hidx]<0))
|
|
1519
1373
|
|
|
1520
|
-
|
|
1521
|
-
|
|
1374
|
+
axes = y2 * np.cos(angle) - x2 * np.sin(angle)
|
|
1375
|
+
wresr = ww * np.cos(pw * axes * (nside) * np.pi)
|
|
1376
|
+
wresi = ww * np.sin(pw * axes * (nside) * np.pi)
|
|
1522
1377
|
|
|
1523
|
-
|
|
1524
|
-
|
|
1525
|
-
indice2 = indice2[:iv2, :]
|
|
1526
|
-
wwav = wwav[:iv2]
|
|
1527
|
-
if not self.silent:
|
|
1528
|
-
print("Kernel Size ", iv / (self.NORIENT * 12 * nside * nside))
|
|
1529
|
-
"""
|
|
1530
|
-
# OLD VERSION OLD VERSION OLD VERSION (3.0)
|
|
1531
|
-
if self.KERNELSZ*self.KERNELSZ>12*nside*nside:
|
|
1532
|
-
l_kernel=3
|
|
1533
|
-
|
|
1534
|
-
aa=np.cos(np.arange(self.NORIENT)/self.NORIENT*np.pi).reshape(1,self.NORIENT)
|
|
1535
|
-
bb=np.sin(np.arange(self.NORIENT)/self.NORIENT*np.pi).reshape(1,self.NORIENT)
|
|
1536
|
-
x,y,z=hp.pix2vec(nside,np.arange(12*nside*nside),nest=True)
|
|
1537
|
-
to,po=hp.pix2ang(nside,np.arange(12*nside*nside),nest=True)
|
|
1538
|
-
|
|
1539
|
-
wav=np.zeros([12*nside*nside,l_kernel**2,self.NORIENT],dtype='complex')
|
|
1540
|
-
wwav=np.zeros([12*nside*nside,l_kernel**2])
|
|
1541
|
-
iwav=np.zeros([12*nside*nside,l_kernel**2],dtype='int')
|
|
1542
|
-
|
|
1543
|
-
scale=4
|
|
1544
|
-
if nside>scale*2:
|
|
1545
|
-
th,ph=hp.pix2ang(nside//scale,np.arange(12*(nside//scale)**2),nest=True)
|
|
1546
|
-
else:
|
|
1547
|
-
lidx=np.arange(12*nside*nside)
|
|
1378
|
+
vnorm = wresr * wresr + wresi * wresi
|
|
1379
|
+
idx = np.where(vnorm > threshold)[0]
|
|
1548
1380
|
|
|
1549
|
-
|
|
1550
|
-
|
|
1551
|
-
|
|
1381
|
+
nval = len(idx)
|
|
1382
|
+
indice[iv : iv + nval, 1] = iii + l_rotation * ncell
|
|
1383
|
+
indice[iv : iv + nval, 0] = hidx[idx]
|
|
1384
|
+
# print([hidx[k] for k in idx])
|
|
1385
|
+
# print(hp.query_disc(nside, [x[iii],y[iii],z[iii]], np.pi/nside,nest=True))
|
|
1386
|
+
normr = np.mean(wresr[idx])
|
|
1387
|
+
normi = np.mean(wresi[idx])
|
|
1552
1388
|
|
|
1553
|
-
|
|
1554
|
-
|
|
1555
|
-
pw2=1/2.25
|
|
1556
|
-
amp=1.0/9.2038
|
|
1389
|
+
val = wresr[idx] - normr + 1j * (wresi[idx] - normi)
|
|
1390
|
+
r = abs(val).sum()
|
|
1557
1391
|
|
|
1558
|
-
|
|
1559
|
-
|
|
1560
|
-
pw2=1.0
|
|
1561
|
-
amp=1/8.45
|
|
1392
|
+
if r > 0:
|
|
1393
|
+
val = val / r
|
|
1562
1394
|
|
|
1563
|
-
|
|
1564
|
-
|
|
1565
|
-
pw2=1.0/3.0
|
|
1395
|
+
wav[iv : iv + nval] = val
|
|
1396
|
+
iv += nval
|
|
1566
1397
|
|
|
1567
|
-
|
|
1568
|
-
|
|
1569
|
-
|
|
1570
|
-
|
|
1571
|
-
if nside>scale*2:
|
|
1572
|
-
lidx=hp.get_all_neighbours(nside//scale,th[k//(scale*scale)],ph[k//(scale*scale)],nest=True)
|
|
1573
|
-
lidx=np.concatenate([lidx,np.array([(k//(scale*scale))])],0)
|
|
1574
|
-
lidx=np.repeat(lidx*(scale*scale),(scale*scale))+ \
|
|
1575
|
-
np.tile(np.arange((scale*scale)),lidx.shape[0])
|
|
1576
|
-
|
|
1577
|
-
delta=(x[lidx]-x[k])**2+(y[lidx]-y[k])**2+(z[lidx]-z[k])**2
|
|
1578
|
-
pidx=np.where(delta<(10)/(nside**2))[0]
|
|
1579
|
-
if len(pidx)<l_kernel**2:
|
|
1580
|
-
pidx=np.arange(delta.shape[0])
|
|
1581
|
-
|
|
1582
|
-
w=np.exp(-pw2*delta[pidx]*(nside**2))
|
|
1583
|
-
pidx=pidx[np.argsort(-w)[0:l_kernel**2]]
|
|
1584
|
-
pidx=pidx[np.argsort(lidx[pidx])]
|
|
1585
|
-
|
|
1586
|
-
w=np.exp(-pw2*delta[pidx]*(nside**2))
|
|
1587
|
-
iwav[k]=lidx[pidx]
|
|
1588
|
-
wwav[k]=w
|
|
1589
|
-
rot=[po[k]/np.pi*180.0,90+(-to[k])/np.pi*180.0]
|
|
1590
|
-
r=hp.Rotator(rot=rot)
|
|
1591
|
-
ty,tx=r(to[iwav[k]],po[iwav[k]])
|
|
1592
|
-
ty=ty-np.pi/2
|
|
1593
|
-
|
|
1594
|
-
xx=np.expand_dims(pw*nside*np.pi*tx/np.cos(ty),-1)
|
|
1595
|
-
yy=np.expand_dims(pw*nside*np.pi*ty,-1)
|
|
1596
|
-
|
|
1597
|
-
wav[k,:,:]=(np.cos(xx*aa+yy*bb)+complex(0.0,1.0)*np.sin(xx*aa+yy*bb))*np.expand_dims(w,-1)
|
|
1598
|
-
|
|
1599
|
-
wav=wav-np.expand_dims(np.mean(wav,1),1)
|
|
1600
|
-
wav=amp*wav/np.expand_dims(np.std(wav,1),1)
|
|
1601
|
-
wwav=wwav/np.expand_dims(np.sum(wwav,1),1)
|
|
1602
|
-
|
|
1603
|
-
nk=l_kernel*l_kernel
|
|
1604
|
-
indice=np.zeros([12*nside*nside*nk*self.NORIENT,2],dtype='int')
|
|
1605
|
-
lidx=np.arange(self.NORIENT)
|
|
1606
|
-
for i in range(12*nside*nside):
|
|
1607
|
-
indice[i*nk*self.NORIENT:i*nk*self.NORIENT+nk*self.NORIENT,0]=i*self.NORIENT+np.repeat(lidx,nk)
|
|
1608
|
-
indice[i*nk*self.NORIENT:i*nk*self.NORIENT+nk*self.NORIENT,1]=np.tile(iwav[i],self.NORIENT)
|
|
1609
|
-
|
|
1610
|
-
indice2=np.zeros([12*nside*nside*nk,2],dtype='int')
|
|
1611
|
-
for i in range(12*nside*nside):
|
|
1612
|
-
indice2[i*nk:i*nk+nk,0]=i
|
|
1613
|
-
indice2[i*nk:i*nk+nk,1]=iwav[i]
|
|
1614
|
-
|
|
1615
|
-
w=np.zeros([12*nside*nside,wav.shape[2],wav.shape[1]],dtype='complex')
|
|
1616
|
-
for i in range(wav.shape[1]):
|
|
1617
|
-
for j in range(wav.shape[2]):
|
|
1618
|
-
w[:,j,i]=wav[:,i,j]
|
|
1619
|
-
wav=w.flatten()
|
|
1620
|
-
wwav=wwav.flatten()
|
|
1621
|
-
"""
|
|
1622
|
-
if cell_ids is None:
|
|
1398
|
+
indice = indice[:iv, :]
|
|
1399
|
+
wav = wav[:iv]
|
|
1400
|
+
indice2 = indice2[:iv2, :]
|
|
1401
|
+
wwav = wwav[:iv2]
|
|
1623
1402
|
if not self.silent:
|
|
1624
|
-
print(
|
|
1625
|
-
|
|
1626
|
-
|
|
1403
|
+
print("Kernel Size ", iv / (self.NORIENT * 12 * nside * nside))
|
|
1404
|
+
|
|
1405
|
+
if cell_ids is None:
|
|
1406
|
+
if not self.silent:
|
|
1407
|
+
print(
|
|
1408
|
+
"Write FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1409
|
+
% (TMPFILE_VERSION, self.KERNELSZ**2,
|
|
1410
|
+
self.NORIENT,
|
|
1411
|
+
nside,
|
|
1412
|
+
spin,)
|
|
1413
|
+
)
|
|
1414
|
+
np.save(
|
|
1415
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1416
|
+
% (
|
|
1417
|
+
self.TEMPLATE_PATH,
|
|
1418
|
+
TMPFILE_VERSION,
|
|
1419
|
+
self.KERNELSZ**2,
|
|
1420
|
+
self.NORIENT,
|
|
1421
|
+
nside,
|
|
1422
|
+
spin,
|
|
1423
|
+
),
|
|
1424
|
+
indice,
|
|
1425
|
+
)
|
|
1426
|
+
np.save(
|
|
1427
|
+
"%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"
|
|
1428
|
+
% (
|
|
1429
|
+
self.TEMPLATE_PATH,
|
|
1430
|
+
TMPFILE_VERSION,
|
|
1431
|
+
self.KERNELSZ**2,
|
|
1432
|
+
self.NORIENT,
|
|
1433
|
+
nside,
|
|
1434
|
+
spin,
|
|
1435
|
+
),
|
|
1436
|
+
wav,
|
|
1437
|
+
)
|
|
1438
|
+
np.save(
|
|
1439
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN%d.npy"
|
|
1440
|
+
% (
|
|
1441
|
+
self.TEMPLATE_PATH,
|
|
1442
|
+
TMPFILE_VERSION,
|
|
1443
|
+
self.KERNELSZ**2,
|
|
1444
|
+
self.NORIENT,
|
|
1445
|
+
nside,
|
|
1446
|
+
spin,
|
|
1447
|
+
),
|
|
1448
|
+
indice2,
|
|
1449
|
+
)
|
|
1450
|
+
np.save(
|
|
1451
|
+
"%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN%d.npy"
|
|
1452
|
+
% (
|
|
1453
|
+
self.TEMPLATE_PATH,
|
|
1454
|
+
TMPFILE_VERSION,
|
|
1455
|
+
self.KERNELSZ**2,
|
|
1456
|
+
self.NORIENT,
|
|
1457
|
+
nside,
|
|
1458
|
+
spin,
|
|
1459
|
+
),
|
|
1460
|
+
wwav,
|
|
1627
1461
|
)
|
|
1628
|
-
np.save(
|
|
1629
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1630
|
-
% (
|
|
1631
|
-
self.TEMPLATE_PATH,
|
|
1632
|
-
TMPFILE_VERSION,
|
|
1633
|
-
self.KERNELSZ**2,
|
|
1634
|
-
self.NORIENT,
|
|
1635
|
-
nside,
|
|
1636
|
-
),
|
|
1637
|
-
indice,
|
|
1638
|
-
)
|
|
1639
|
-
np.save(
|
|
1640
|
-
"%s/FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1641
|
-
% (
|
|
1642
|
-
self.TEMPLATE_PATH,
|
|
1643
|
-
TMPFILE_VERSION,
|
|
1644
|
-
self.KERNELSZ**2,
|
|
1645
|
-
self.NORIENT,
|
|
1646
|
-
nside,
|
|
1647
|
-
),
|
|
1648
|
-
wav,
|
|
1649
|
-
)
|
|
1650
|
-
np.save(
|
|
1651
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2.npy"
|
|
1652
|
-
% (
|
|
1653
|
-
self.TEMPLATE_PATH,
|
|
1654
|
-
TMPFILE_VERSION,
|
|
1655
|
-
self.KERNELSZ**2,
|
|
1656
|
-
self.NORIENT,
|
|
1657
|
-
nside,
|
|
1658
|
-
),
|
|
1659
|
-
indice2,
|
|
1660
|
-
)
|
|
1661
|
-
np.save(
|
|
1662
|
-
"%s/FOSCAT_%s_W%d_%d_%d_SMOO.npy"
|
|
1663
|
-
% (
|
|
1664
|
-
self.TEMPLATE_PATH,
|
|
1665
|
-
TMPFILE_VERSION,
|
|
1666
|
-
self.KERNELSZ**2,
|
|
1667
|
-
self.NORIENT,
|
|
1668
|
-
nside,
|
|
1669
|
-
),
|
|
1670
|
-
wwav,
|
|
1671
|
-
)
|
|
1672
1462
|
if self.use_2D:
|
|
1673
1463
|
if l_kernel**2 == 9:
|
|
1674
1464
|
if self.rank == 0:
|
|
@@ -1689,58 +1479,68 @@ class FoCUS:
|
|
|
1689
1479
|
self.barrier()
|
|
1690
1480
|
if self.use_2D:
|
|
1691
1481
|
tmp = np.load(
|
|
1692
|
-
"%s/W%d_%s_%d_IDX.npy"
|
|
1693
|
-
% (
|
|
1482
|
+
"%s/W%d_%s_%d_IDX-SPIN%d.npy"
|
|
1483
|
+
% (
|
|
1484
|
+
self.TEMPLATE_PATH,
|
|
1485
|
+
l_kernel**2,
|
|
1486
|
+
TMPFILE_VERSION,
|
|
1487
|
+
nside,
|
|
1488
|
+
spin)
|
|
1694
1489
|
)
|
|
1695
1490
|
else:
|
|
1696
1491
|
tmp = np.load(
|
|
1697
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1492
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1698
1493
|
% (
|
|
1699
1494
|
self.TEMPLATE_PATH,
|
|
1700
1495
|
TMPFILE_VERSION,
|
|
1701
1496
|
self.KERNELSZ**2,
|
|
1702
1497
|
self.NORIENT,
|
|
1703
1498
|
nside,
|
|
1499
|
+
spin,
|
|
1704
1500
|
)
|
|
1705
1501
|
)
|
|
1706
1502
|
tmp2 = np.load(
|
|
1707
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2.npy"
|
|
1503
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN%d.npy"
|
|
1708
1504
|
% (
|
|
1709
1505
|
self.TEMPLATE_PATH,
|
|
1710
1506
|
TMPFILE_VERSION,
|
|
1711
1507
|
self.KERNELSZ**2,
|
|
1712
1508
|
self.NORIENT,
|
|
1713
1509
|
nside,
|
|
1510
|
+
spin,
|
|
1714
1511
|
)
|
|
1715
1512
|
)
|
|
1716
1513
|
wr = np.load(
|
|
1717
|
-
"%s/FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1514
|
+
"%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"
|
|
1718
1515
|
% (
|
|
1719
1516
|
self.TEMPLATE_PATH,
|
|
1720
1517
|
TMPFILE_VERSION,
|
|
1721
1518
|
self.KERNELSZ**2,
|
|
1722
1519
|
self.NORIENT,
|
|
1723
1520
|
nside,
|
|
1521
|
+
spin,
|
|
1724
1522
|
)
|
|
1725
1523
|
).real
|
|
1726
1524
|
wi = np.load(
|
|
1727
|
-
"%s/FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1525
|
+
"%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"
|
|
1728
1526
|
% (
|
|
1729
1527
|
self.TEMPLATE_PATH,
|
|
1730
1528
|
TMPFILE_VERSION,
|
|
1731
1529
|
self.KERNELSZ**2,
|
|
1732
1530
|
self.NORIENT,
|
|
1733
1531
|
nside,
|
|
1532
|
+
spin,
|
|
1734
1533
|
)
|
|
1735
1534
|
).imag
|
|
1736
1535
|
ws = self.slope * np.load(
|
|
1737
|
-
"%s/FOSCAT_%s_W%d_%d_%d_SMOO.npy"
|
|
1536
|
+
"%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN%d.npy"
|
|
1738
1537
|
% (
|
|
1739
1538
|
self.TEMPLATE_PATH,
|
|
1740
1539
|
TMPFILE_VERSION,
|
|
1741
1540
|
self.KERNELSZ**2,
|
|
1742
1541
|
self.NORIENT,
|
|
1743
1542
|
nside,
|
|
1543
|
+
spin,
|
|
1744
1544
|
)
|
|
1745
1545
|
)
|
|
1746
1546
|
else:
|
|
@@ -1750,21 +1550,38 @@ class FoCUS:
|
|
|
1750
1550
|
wi = wav.imag
|
|
1751
1551
|
ws = self.slope * wwav
|
|
1752
1552
|
|
|
1753
|
-
|
|
1754
|
-
self.backend.
|
|
1755
|
-
|
|
1756
|
-
|
|
1757
|
-
|
|
1758
|
-
|
|
1759
|
-
self.backend.
|
|
1760
|
-
|
|
1761
|
-
|
|
1762
|
-
|
|
1763
|
-
|
|
1764
|
-
self.backend.
|
|
1765
|
-
|
|
1766
|
-
|
|
1767
|
-
|
|
1553
|
+
if spin==0:
|
|
1554
|
+
wr = self.backend.bk_SparseTensor(
|
|
1555
|
+
self.backend.bk_constant(tmp),
|
|
1556
|
+
self.backend.bk_constant(self.backend.bk_cast(wr)),
|
|
1557
|
+
dense_shape=[ncell, self.NORIENT * ncell],
|
|
1558
|
+
)
|
|
1559
|
+
wi = self.backend.bk_SparseTensor(
|
|
1560
|
+
self.backend.bk_constant(tmp),
|
|
1561
|
+
self.backend.bk_constant(self.backend.bk_cast(wi)),
|
|
1562
|
+
dense_shape=[ncell, self.NORIENT * ncell],
|
|
1563
|
+
)
|
|
1564
|
+
ws = self.backend.bk_SparseTensor(
|
|
1565
|
+
self.backend.bk_constant(tmp2),
|
|
1566
|
+
self.backend.bk_constant(self.backend.bk_cast(ws)),
|
|
1567
|
+
dense_shape=[ncell, ncell],
|
|
1568
|
+
)
|
|
1569
|
+
else:
|
|
1570
|
+
wr = self.backend.bk_SparseTensor(
|
|
1571
|
+
self.backend.bk_constant(tmp),
|
|
1572
|
+
self.backend.bk_constant(self.backend.bk_cast(wr)),
|
|
1573
|
+
dense_shape=[2*ncell, 2*self.NORIENT * ncell],
|
|
1574
|
+
)
|
|
1575
|
+
wi = self.backend.bk_SparseTensor(
|
|
1576
|
+
self.backend.bk_constant(tmp),
|
|
1577
|
+
self.backend.bk_constant(self.backend.bk_cast(wi)),
|
|
1578
|
+
dense_shape=[2*ncell, 2*self.NORIENT * ncell],
|
|
1579
|
+
)
|
|
1580
|
+
ws = self.backend.bk_SparseTensor(
|
|
1581
|
+
self.backend.bk_constant(tmp2),
|
|
1582
|
+
self.backend.bk_constant(self.backend.bk_cast(ws)),
|
|
1583
|
+
dense_shape=[2*ncell, 2*ncell],
|
|
1584
|
+
)
|
|
1768
1585
|
|
|
1769
1586
|
if kernel == -1:
|
|
1770
1587
|
self.Idx_Neighbours[nside] = tmp
|
|
@@ -1775,6 +1592,232 @@ class FoCUS:
|
|
|
1775
1592
|
|
|
1776
1593
|
return wr, wi, ws, tmp
|
|
1777
1594
|
|
|
1595
|
+
|
|
1596
|
+
# ---------------------------------------------−---------
|
|
1597
|
+
def init_index_cnn(self, nside, NORIENT=4,kernel=-1, cell_ids=None):
|
|
1598
|
+
|
|
1599
|
+
if kernel == -1:
|
|
1600
|
+
l_kernel = self.KERNELSZ
|
|
1601
|
+
else:
|
|
1602
|
+
l_kernel = kernel
|
|
1603
|
+
|
|
1604
|
+
if cell_ids is not None:
|
|
1605
|
+
ncell = cell_ids.shape[0]
|
|
1606
|
+
else:
|
|
1607
|
+
ncell = 12 * nside * nside
|
|
1608
|
+
|
|
1609
|
+
try:
|
|
1610
|
+
|
|
1611
|
+
if cell_ids is not None:
|
|
1612
|
+
tmp = np.load(
|
|
1613
|
+
"%s/XXXX_%s_W%d_%d_%d_PIDX.npy" # can not work
|
|
1614
|
+
% (
|
|
1615
|
+
self.TEMPLATE_PATH,
|
|
1616
|
+
TMPFILE_VERSION,
|
|
1617
|
+
l_kernel**2,
|
|
1618
|
+
NORIENT,
|
|
1619
|
+
nside, # if cell_ids computes the index
|
|
1620
|
+
)
|
|
1621
|
+
)
|
|
1622
|
+
|
|
1623
|
+
else:
|
|
1624
|
+
tmp = np.load(
|
|
1625
|
+
"%s/CNN_FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1626
|
+
% (
|
|
1627
|
+
self.TEMPLATE_PATH,
|
|
1628
|
+
TMPFILE_VERSION,
|
|
1629
|
+
l_kernel**2,
|
|
1630
|
+
NORIENT,
|
|
1631
|
+
nside, # if cell_ids computes the index
|
|
1632
|
+
)
|
|
1633
|
+
)
|
|
1634
|
+
except:
|
|
1635
|
+
|
|
1636
|
+
pw = 8.0
|
|
1637
|
+
pw2 = 1.0
|
|
1638
|
+
threshold = 1e-3
|
|
1639
|
+
|
|
1640
|
+
if l_kernel == 5:
|
|
1641
|
+
pw = 8.0
|
|
1642
|
+
pw2 = 0.5
|
|
1643
|
+
threshold = 2e-4
|
|
1644
|
+
|
|
1645
|
+
elif l_kernel == 3:
|
|
1646
|
+
pw = 8.0
|
|
1647
|
+
pw2 = 1.0
|
|
1648
|
+
threshold = 1e-3
|
|
1649
|
+
|
|
1650
|
+
elif l_kernel == 7:
|
|
1651
|
+
pw = 8.0
|
|
1652
|
+
pw2 = 0.25
|
|
1653
|
+
threshold = 4e-5
|
|
1654
|
+
|
|
1655
|
+
n_weights = self.KERNELSZ*(self.KERNELSZ//2+1)
|
|
1656
|
+
|
|
1657
|
+
if cell_ids is not None:
|
|
1658
|
+
if not isinstance(cell_ids, np.ndarray):
|
|
1659
|
+
cell_ids = self.backend.to_numpy(cell_ids)
|
|
1660
|
+
th, ph = hp.pix2ang(nside, cell_ids, nest=True)
|
|
1661
|
+
x, y, z = hp.pix2vec(nside, cell_ids, nest=True)
|
|
1662
|
+
|
|
1663
|
+
t, p = hp.pix2ang(nside, cell_ids, nest=True)
|
|
1664
|
+
phi = [p[k] / np.pi * 180 for k in range(ncell)]
|
|
1665
|
+
thi = [t[k] / np.pi * 180 for k in range(ncell)]
|
|
1666
|
+
|
|
1667
|
+
indice = np.zeros([n_weights, NORIENT, ncell,4], dtype="int")
|
|
1668
|
+
|
|
1669
|
+
wav = np.zeros([n_weights, NORIENT, ncell,4], dtype="float")
|
|
1670
|
+
|
|
1671
|
+
else:
|
|
1672
|
+
|
|
1673
|
+
th, ph = hp.pix2ang(nside, np.arange(12 * nside**2), nest=True)
|
|
1674
|
+
x, y, z = hp.pix2vec(nside, np.arange(12 * nside**2), nest=True)
|
|
1675
|
+
|
|
1676
|
+
t, p = hp.pix2ang(nside, np.arange(12 * nside * nside), nest=True)
|
|
1677
|
+
phi = [p[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1678
|
+
thi = [t[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1679
|
+
|
|
1680
|
+
indice = np.zeros(
|
|
1681
|
+
[n_weights, NORIENT, 12 * nside * nside,4], dtype="int"
|
|
1682
|
+
)
|
|
1683
|
+
wav = np.zeros(
|
|
1684
|
+
[n_weights, NORIENT, 12 * nside * nside,4], dtype="float"
|
|
1685
|
+
)
|
|
1686
|
+
iv = 0
|
|
1687
|
+
iv2 = 0
|
|
1688
|
+
|
|
1689
|
+
for iii in range(ncell):
|
|
1690
|
+
if cell_ids is None:
|
|
1691
|
+
if iii % (nside * nside) == nside * nside - 1:
|
|
1692
|
+
if not self.silent:
|
|
1693
|
+
print(
|
|
1694
|
+
"Pre-compute nside=%6d %.2f%%"
|
|
1695
|
+
% (nside, 100 * iii / (12 * nside * nside))
|
|
1696
|
+
)
|
|
1697
|
+
|
|
1698
|
+
if cell_ids is not None:
|
|
1699
|
+
hidx = np.where(
|
|
1700
|
+
(x - x[iii]) ** 2 + (y - y[iii]) ** 2 + (z - z[iii]) ** 2
|
|
1701
|
+
< (2 * np.pi / nside) ** 2
|
|
1702
|
+
)[0]
|
|
1703
|
+
else:
|
|
1704
|
+
hidx = hp.query_disc(
|
|
1705
|
+
nside,
|
|
1706
|
+
[x[iii], y[iii], z[iii]],
|
|
1707
|
+
2 * np.pi / nside,
|
|
1708
|
+
nest=True,
|
|
1709
|
+
)
|
|
1710
|
+
|
|
1711
|
+
R = hp.Rotator(rot=[phi[iii], -thi[iii]], eulertype="ZYZ")
|
|
1712
|
+
|
|
1713
|
+
t2, p2 = R(th[hidx], ph[hidx])
|
|
1714
|
+
|
|
1715
|
+
vec2 = hp.ang2vec(t2, p2)
|
|
1716
|
+
|
|
1717
|
+
x2 = vec2[:, 0]
|
|
1718
|
+
y2 = vec2[:, 1]
|
|
1719
|
+
z2 = vec2[:, 2]
|
|
1720
|
+
|
|
1721
|
+
for l_rotation in range(NORIENT):
|
|
1722
|
+
|
|
1723
|
+
angle = (
|
|
1724
|
+
l_rotation / 4.0 * np.pi
|
|
1725
|
+
- phi[iii] / 180.0 * np.pi * (z[hidx] > 0)
|
|
1726
|
+
- (180.0 - phi[iii]) / 180.0 * np.pi * (z[hidx] < 0)
|
|
1727
|
+
)
|
|
1728
|
+
|
|
1729
|
+
|
|
1730
|
+
axes = y2 * np.cos(angle) - x2 * np.sin(angle)
|
|
1731
|
+
axes2 = -y2 * np.sin(angle) - x2 * np.cos(angle)
|
|
1732
|
+
|
|
1733
|
+
for k_weights in range(self.KERNELSZ//2+1):
|
|
1734
|
+
for l_weights in range(self.KERNELSZ):
|
|
1735
|
+
|
|
1736
|
+
val=np.exp(-(pw*(axes2*(nside)-(k_weights-self.KERNELSZ//2))**2+pw*(axes*(nside)-(l_weights-self.KERNELSZ//2))**2))+ \
|
|
1737
|
+
np.exp(-(pw*(axes2*(nside)+(k_weights-self.KERNELSZ//2))**2+pw*(axes*(nside)-(l_weights-self.KERNELSZ//2))**2))
|
|
1738
|
+
|
|
1739
|
+
idx = np.argsort(-val)
|
|
1740
|
+
idx = idx[0:4]
|
|
1741
|
+
|
|
1742
|
+
nval = len(idx)
|
|
1743
|
+
val=val[idx]
|
|
1744
|
+
|
|
1745
|
+
r = abs(val).sum()
|
|
1746
|
+
|
|
1747
|
+
if r > 0:
|
|
1748
|
+
val = val / r
|
|
1749
|
+
|
|
1750
|
+
indice[k_weights*self.KERNELSZ+l_weights,l_rotation,iii,:] = hidx[idx]
|
|
1751
|
+
wav[k_weights*self.KERNELSZ+l_weights,l_rotation,iii,:] = val
|
|
1752
|
+
|
|
1753
|
+
if not self.silent:
|
|
1754
|
+
print("Kernel Size ", iv / (NORIENT * 12 * nside * nside))
|
|
1755
|
+
|
|
1756
|
+
if cell_ids is None:
|
|
1757
|
+
if not self.silent:
|
|
1758
|
+
print(
|
|
1759
|
+
"Write FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1760
|
+
% (TMPFILE_VERSION, self.KERNELSZ**2, NORIENT, nside)
|
|
1761
|
+
)
|
|
1762
|
+
np.save(
|
|
1763
|
+
"%s/CNN_FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1764
|
+
% (
|
|
1765
|
+
self.TEMPLATE_PATH,
|
|
1766
|
+
TMPFILE_VERSION,
|
|
1767
|
+
self.KERNELSZ**2,
|
|
1768
|
+
NORIENT,
|
|
1769
|
+
nside,
|
|
1770
|
+
),
|
|
1771
|
+
indice,
|
|
1772
|
+
)
|
|
1773
|
+
np.save(
|
|
1774
|
+
"%s/CNN_FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1775
|
+
% (
|
|
1776
|
+
self.TEMPLATE_PATH,
|
|
1777
|
+
TMPFILE_VERSION,
|
|
1778
|
+
self.KERNELSZ**2,
|
|
1779
|
+
NORIENT,
|
|
1780
|
+
nside,
|
|
1781
|
+
),
|
|
1782
|
+
wav,
|
|
1783
|
+
)
|
|
1784
|
+
|
|
1785
|
+
if cell_ids is None:
|
|
1786
|
+
self.barrier()
|
|
1787
|
+
if self.use_2D:
|
|
1788
|
+
tmp = np.load(
|
|
1789
|
+
"%s/W%d_%s_%d_IDX.npy"
|
|
1790
|
+
% (self.TEMPLATE_PATH, l_kernel**2, TMPFILE_VERSION, nside)
|
|
1791
|
+
)
|
|
1792
|
+
else:
|
|
1793
|
+
tmp = np.load(
|
|
1794
|
+
"%s/CNN_FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1795
|
+
% (
|
|
1796
|
+
self.TEMPLATE_PATH,
|
|
1797
|
+
TMPFILE_VERSION,
|
|
1798
|
+
self.KERNELSZ**2,
|
|
1799
|
+
NORIENT,
|
|
1800
|
+
nside,
|
|
1801
|
+
)
|
|
1802
|
+
)
|
|
1803
|
+
wav = np.load(
|
|
1804
|
+
"%s/CNN_FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1805
|
+
% (
|
|
1806
|
+
self.TEMPLATE_PATH,
|
|
1807
|
+
TMPFILE_VERSION,
|
|
1808
|
+
self.KERNELSZ**2,
|
|
1809
|
+
NORIENT,
|
|
1810
|
+
nside,
|
|
1811
|
+
)
|
|
1812
|
+
)
|
|
1813
|
+
else:
|
|
1814
|
+
tmp = indice
|
|
1815
|
+
|
|
1816
|
+
self.Idx_CNN[(nside,NORIENT,self.KERNELSZ)] = tmp
|
|
1817
|
+
self.Idx_WCNN[(nside,NORIENT,self.KERNELSZ)] = self.backend.bk_cast(wav)
|
|
1818
|
+
|
|
1819
|
+
return wav, tmp
|
|
1820
|
+
|
|
1778
1821
|
# ---------------------------------------------−---------
|
|
1779
1822
|
# convert swap axes tensor x [....,a,....,b,....] to [....,b,....,a,....]
|
|
1780
1823
|
def swapaxes(self, x, axis1, axis2):
|
|
@@ -1795,10 +1838,10 @@ class FoCUS:
|
|
|
1795
1838
|
return self.backend.bk_transpose(x, thelist)
|
|
1796
1839
|
|
|
1797
1840
|
# ---------------------------------------------−---------
|
|
1798
|
-
# Mean using mask x [
|
|
1841
|
+
# Mean using mask x [n_b,....,Npix], mask[Nmask,Npix] to [n_b,Nmask,....]
|
|
1799
1842
|
# if use_2D
|
|
1800
|
-
# Mean using mask x [
|
|
1801
|
-
def masked_mean(self, x, mask,
|
|
1843
|
+
# Mean using mask x [n_b,....,N_1,N_2], mask[Nmask,N_1,N_2] to [n_b,Nmask,....]
|
|
1844
|
+
def masked_mean(self, x, mask, rank=0, calc_var=False):
|
|
1802
1845
|
|
|
1803
1846
|
# ==========================================================================
|
|
1804
1847
|
# in input data=[Nbatch,...,NORIENT[,NORIENT],X[,Y]]
|
|
@@ -1810,7 +1853,7 @@ class FoCUS:
|
|
|
1810
1853
|
shape = list(x.shape)
|
|
1811
1854
|
|
|
1812
1855
|
if not self.use_2D and not self.use_1D:
|
|
1813
|
-
nside = int(np.sqrt(x.shape[
|
|
1856
|
+
nside = int(np.sqrt(x.shape[-1] // 12))
|
|
1814
1857
|
|
|
1815
1858
|
l_mask = mask
|
|
1816
1859
|
if self.mask_norm:
|
|
@@ -1904,16 +1947,24 @@ class FoCUS:
|
|
|
1904
1947
|
l_x = self.backend.bk_reshape(
|
|
1905
1948
|
l_x[:, :, self.KERNELSZ // 2 : -self.KERNELSZ // 2 + 1, :], oshape
|
|
1906
1949
|
)
|
|
1907
|
-
else:
|
|
1950
|
+
else:
|
|
1908
1951
|
ichannel = 1
|
|
1909
|
-
|
|
1910
|
-
ichannel
|
|
1952
|
+
if len(shape)>1:
|
|
1953
|
+
ichannel = shape[0]
|
|
1954
|
+
|
|
1955
|
+
ochannel = 1
|
|
1956
|
+
for i in range(1,len(shape)-1):
|
|
1957
|
+
ochannel *= shape[i]
|
|
1911
1958
|
|
|
1912
|
-
l_x = self.backend.bk_reshape(x, [ichannel,
|
|
1959
|
+
l_x = self.backend.bk_reshape(x, [ichannel,1,ochannel,shape[-1]])
|
|
1913
1960
|
|
|
1914
|
-
# data=[Nbatch,...,NORIENT[,NORIENT],X[,Y]] => data=[Nbatch,
|
|
1961
|
+
# data=[Nbatch,...,NORIENT[,NORIENT],X[,Y]] => data=[Nbatch,...,1,NORIENT[,NORIENT],X[,Y]]
|
|
1915
1962
|
# mask=[Nmask,X[,Y]] => mask=[1,Nmask,....,X[,Y]]
|
|
1916
|
-
|
|
1963
|
+
|
|
1964
|
+
if self.use_2D:
|
|
1965
|
+
l_mask = self.backend.bk_expand_dims(self.backend.bk_expand_dims(l_mask,0),-3)
|
|
1966
|
+
else:
|
|
1967
|
+
l_mask = self.backend.bk_expand_dims(self.backend.bk_expand_dims(l_mask,0),-2)
|
|
1917
1968
|
|
|
1918
1969
|
if l_x.dtype == self.all_cbk_type:
|
|
1919
1970
|
l_mask = self.backend.bk_complex(l_mask, self.backend.bk_cast(0.0 * l_mask))
|
|
@@ -1944,6 +1995,8 @@ class FoCUS:
|
|
|
1944
1995
|
|
|
1945
1996
|
if len(x.shape[axis:-2]) > 0:
|
|
1946
1997
|
oshape = oshape + list(x.shape[axis:-2])
|
|
1998
|
+
else:
|
|
1999
|
+
oshape = oshape + [1]
|
|
1947
2000
|
|
|
1948
2001
|
if calc_var:
|
|
1949
2002
|
if self.backend.bk_is_complex(vtmp):
|
|
@@ -1973,7 +2026,7 @@ class FoCUS:
|
|
|
1973
2026
|
elif self.use_1D:
|
|
1974
2027
|
mtmp = l_mask
|
|
1975
2028
|
vtmp = l_x
|
|
1976
|
-
v1 = self.backend.bk_reduce_sum(
|
|
2029
|
+
v1 = self.backend.bk_reduce_sum(l_mask[1,:,...,:] * vtmp, axis=-1)
|
|
1977
2030
|
v2 = self.backend.bk_reduce_sum(mtmp * vtmp * vtmp, axis=-1)
|
|
1978
2031
|
vh = self.backend.bk_reduce_sum(mtmp, axis=-1)
|
|
1979
2032
|
|
|
@@ -1982,6 +2035,8 @@ class FoCUS:
|
|
|
1982
2035
|
oshape = [x.shape[0]] + [mask.shape[0]]
|
|
1983
2036
|
if len(x.shape) > 1:
|
|
1984
2037
|
oshape = oshape + list(x.shape[1:-1])
|
|
2038
|
+
else:
|
|
2039
|
+
oshape = oshape + [1]
|
|
1985
2040
|
|
|
1986
2041
|
if calc_var:
|
|
1987
2042
|
if self.backend.bk_is_complex(vtmp):
|
|
@@ -2015,13 +2070,16 @@ class FoCUS:
|
|
|
2015
2070
|
res = v1 / vh
|
|
2016
2071
|
|
|
2017
2072
|
oshape = []
|
|
2018
|
-
if
|
|
2073
|
+
if len(shape) > 1:
|
|
2019
2074
|
oshape = [x.shape[0]]
|
|
2020
2075
|
else:
|
|
2021
2076
|
oshape = [1]
|
|
2077
|
+
|
|
2022
2078
|
oshape = oshape + [mask.shape[0]]
|
|
2023
|
-
if
|
|
2024
|
-
oshape = oshape +
|
|
2079
|
+
if len(shape) > 2:
|
|
2080
|
+
oshape = oshape + shape[1:-1]
|
|
2081
|
+
else:
|
|
2082
|
+
oshape = oshape + [1]
|
|
2025
2083
|
|
|
2026
2084
|
if calc_var:
|
|
2027
2085
|
if self.backend.bk_is_complex(l_x):
|
|
@@ -2175,7 +2233,7 @@ class FoCUS:
|
|
|
2175
2233
|
return self.backend.bk_reduce_sum(r)
|
|
2176
2234
|
|
|
2177
2235
|
# ---------------------------------------------−---------
|
|
2178
|
-
def convol(self, in_image, axis=0, cell_ids=None, nside=None):
|
|
2236
|
+
def convol(self, in_image, axis=0, cell_ids=None, nside=None, spin=0):
|
|
2179
2237
|
|
|
2180
2238
|
image = self.backend.bk_cast(in_image)
|
|
2181
2239
|
|
|
@@ -2238,77 +2296,37 @@ class FoCUS:
|
|
|
2238
2296
|
|
|
2239
2297
|
else:
|
|
2240
2298
|
ishape = list(image.shape)
|
|
2241
|
-
|
|
2242
|
-
|
|
2243
|
-
if cell_ids.shape[0] not in self.padding_conv:
|
|
2244
|
-
print(image.shape,cell_ids.shape)
|
|
2245
|
-
import healpix_convolution as hc
|
|
2246
|
-
from xdggs.healpix import HealpixInfo
|
|
2247
|
-
|
|
2248
|
-
res = self.backend.bk_zeros(
|
|
2249
|
-
ishape[0:-1] + [self.NORIENT]+ishape[-1], dtype=self.backend.all_cbk_type
|
|
2250
|
-
)
|
|
2299
|
+
if nside is None:
|
|
2300
|
+
nside = int(np.sqrt(image.shape[-1] // 12))
|
|
2251
2301
|
|
|
2252
|
-
|
|
2253
|
-
|
|
2254
|
-
|
|
2302
|
+
if spin==0:
|
|
2303
|
+
if nside not in self.Idx_Neighbours:
|
|
2304
|
+
if self.InitWave is None:
|
|
2305
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids)
|
|
2306
|
+
else:
|
|
2307
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids)
|
|
2255
2308
|
|
|
2256
|
-
|
|
2257
|
-
|
|
2258
|
-
|
|
2259
|
-
|
|
2260
|
-
self.kernelR_conv[(cell_ids.shape[0], k)] = kernelR.to(
|
|
2261
|
-
self.backend.all_bk_type
|
|
2262
|
-
).to(image.device)
|
|
2263
|
-
self.kernelI_conv[(cell_ids.shape[0], k)] = kernelI.to(
|
|
2264
|
-
self.backend.all_bk_type
|
|
2265
|
-
).to(image.device)
|
|
2266
|
-
self.padding_conv[(cell_ids.shape[0], k)] = hc.pad(
|
|
2267
|
-
cell_ids,
|
|
2268
|
-
grid_info=grid_info,
|
|
2269
|
-
ring=5 // 2, # wavelet kernel_size=5 is hard coded
|
|
2270
|
-
mode="mean",
|
|
2271
|
-
constant_value=0,
|
|
2272
|
-
)
|
|
2309
|
+
self.Idx_Neighbours[nside] = 1 # self.backend.bk_constant(tmp)
|
|
2310
|
+
self.ww_Real[nside] = wr
|
|
2311
|
+
self.ww_Imag[nside] = wi
|
|
2312
|
+
self.w_smooth[nside] = ws
|
|
2273
2313
|
|
|
2274
|
-
|
|
2275
|
-
|
|
2276
|
-
|
|
2277
|
-
|
|
2278
|
-
|
|
2279
|
-
|
|
2280
|
-
for l in range(ishape[0]):
|
|
2281
|
-
padded_data = padding.apply(image[l], is_torch=True)
|
|
2282
|
-
res[l, :, k] = kernelR.matmul(
|
|
2283
|
-
padded_data
|
|
2284
|
-
) + 1j * kernelI.matmul(padded_data)
|
|
2314
|
+
l_ww_real = self.ww_Real[nside]
|
|
2315
|
+
l_ww_imag = self.ww_Imag[nside]
|
|
2316
|
+
else:
|
|
2317
|
+
if (spin,nside) not in self.Idx_Neighbours:
|
|
2318
|
+
if self.InitWave is None:
|
|
2319
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids,spin=spin)
|
|
2285
2320
|
else:
|
|
2286
|
-
|
|
2287
|
-
for k2 in range(ishape[2]):
|
|
2288
|
-
padded_data = padding.apply(
|
|
2289
|
-
image[l, :, k2], is_torch=True
|
|
2290
|
-
)
|
|
2291
|
-
res[l, :, k2, k] = kernelR.matmul(
|
|
2292
|
-
padded_data
|
|
2293
|
-
) + 1j * kernelI.matmul(padded_data)
|
|
2294
|
-
return res
|
|
2295
|
-
"""
|
|
2296
|
-
if nside is None:
|
|
2297
|
-
nside = int(np.sqrt(image.shape[-1] // 12))
|
|
2298
|
-
|
|
2299
|
-
if self.Idx_Neighbours[nside] is None:
|
|
2300
|
-
if self.InitWave is None:
|
|
2301
|
-
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids)
|
|
2302
|
-
else:
|
|
2303
|
-
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids)
|
|
2321
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids,spin=spin)
|
|
2304
2322
|
|
|
2305
|
-
|
|
2306
|
-
|
|
2307
|
-
|
|
2308
|
-
|
|
2323
|
+
self.Idx_Neighbours[(spin,nside)] = 1 # self.backend.bk_constant(tmp)
|
|
2324
|
+
self.ww_Real[(spin,nside)] = wr
|
|
2325
|
+
self.ww_Imag[(spin,nside)] = wi
|
|
2326
|
+
self.w_smooth[(spin,nside)] = ws
|
|
2309
2327
|
|
|
2310
|
-
|
|
2311
|
-
|
|
2328
|
+
l_ww_real = self.ww_Real[(spin,nside)]
|
|
2329
|
+
l_ww_imag = self.ww_Imag[(spin,nside)]
|
|
2312
2330
|
|
|
2313
2331
|
# always convolve the last dimension
|
|
2314
2332
|
|
|
@@ -2316,9 +2334,14 @@ class FoCUS:
|
|
|
2316
2334
|
if len(ishape) > 1:
|
|
2317
2335
|
for k in range(len(ishape) - 1):
|
|
2318
2336
|
ndata = ndata * ishape[k]
|
|
2319
|
-
|
|
2320
|
-
self.backend.
|
|
2321
|
-
|
|
2337
|
+
if spin>0:
|
|
2338
|
+
tim = self.backend.bk_reshape(
|
|
2339
|
+
self.backend.bk_cast(image), [ndata//2,2*ishape[-1]]
|
|
2340
|
+
)
|
|
2341
|
+
else:
|
|
2342
|
+
tim = self.backend.bk_reshape(
|
|
2343
|
+
self.backend.bk_cast(image), [ndata, ishape[-1]]
|
|
2344
|
+
)
|
|
2322
2345
|
|
|
2323
2346
|
if tim.dtype == self.all_cbk_type:
|
|
2324
2347
|
rr1 = self.backend.bk_reshape(
|
|
@@ -2360,17 +2383,27 @@ class FoCUS:
|
|
|
2360
2383
|
[ndata, self.NORIENT, ishape[-1]],
|
|
2361
2384
|
)
|
|
2362
2385
|
res = self.backend.bk_complex(rr, ii)
|
|
2363
|
-
|
|
2364
|
-
|
|
2365
|
-
|
|
2366
|
-
|
|
2386
|
+
|
|
2387
|
+
if spin==0:
|
|
2388
|
+
if len(ishape) > 1:
|
|
2389
|
+
return self.backend.bk_reshape(
|
|
2390
|
+
res, ishape[0:-1] + [self.NORIENT, ishape[-1]]
|
|
2391
|
+
)
|
|
2392
|
+
else:
|
|
2393
|
+
return self.backend.bk_reshape(res, [self.NORIENT, ishape[-1]])
|
|
2367
2394
|
else:
|
|
2368
|
-
|
|
2395
|
+
if len(ishape) > 2:
|
|
2396
|
+
return self.backend.bk_reshape(
|
|
2397
|
+
res, ishape[0:-2] + [2,self.NORIENT, ishape[-1]]
|
|
2398
|
+
)
|
|
2399
|
+
else:
|
|
2400
|
+
return self.backend.bk_reshape(res, [2,self.NORIENT, ishape[-1]])
|
|
2401
|
+
|
|
2369
2402
|
|
|
2370
2403
|
return res
|
|
2371
2404
|
|
|
2372
2405
|
# ---------------------------------------------−---------
|
|
2373
|
-
def smooth(self, in_image, axis=0, cell_ids=None, nside=None):
|
|
2406
|
+
def smooth(self, in_image, axis=0, cell_ids=None, nside=None, spin=0):
|
|
2374
2407
|
|
|
2375
2408
|
image = self.backend.bk_cast(in_image)
|
|
2376
2409
|
|
|
@@ -2430,64 +2463,35 @@ class FoCUS:
|
|
|
2430
2463
|
else:
|
|
2431
2464
|
|
|
2432
2465
|
ishape = list(image.shape)
|
|
2433
|
-
|
|
2434
|
-
if cell_ids is not None:
|
|
2435
|
-
if cell_ids.shape[0] not in self.padding_smooth:
|
|
2436
|
-
import healpix_convolution as hc
|
|
2437
|
-
from xdggs.healpix import HealpixInfo
|
|
2438
|
-
|
|
2439
|
-
grid_info = HealpixInfo(
|
|
2440
|
-
level=int(np.log(nside) / np.log(2)), indexing_scheme="nested"
|
|
2441
|
-
)
|
|
2442
|
-
|
|
2443
|
-
kernel = hc.kernels.wavelet_smooth_kernel(
|
|
2444
|
-
cell_ids, grid_info=grid_info, is_torch=True
|
|
2445
|
-
)
|
|
2446
|
-
|
|
2447
|
-
self.kernel_smooth[cell_ids.shape[0]] = kernel.to(
|
|
2448
|
-
self.backend.all_bk_type
|
|
2449
|
-
).to(image.device)
|
|
2450
|
-
|
|
2451
|
-
self.padding_smooth[cell_ids.shape[0]] = hc.pad(
|
|
2452
|
-
cell_ids,
|
|
2453
|
-
grid_info=grid_info,
|
|
2454
|
-
ring=5 // 2, # wavelet kernel_size=5 is hard coded
|
|
2455
|
-
mode="mean",
|
|
2456
|
-
constant_value=0,
|
|
2457
|
-
)
|
|
2458
|
-
|
|
2459
|
-
kernel = self.kernel_smooth[cell_ids.shape[0]]
|
|
2460
|
-
padding = self.padding_smooth[cell_ids.shape[0]]
|
|
2461
|
-
|
|
2462
|
-
res = self.backend.bk_zeros(ishape, dtype=self.backend.all_cbk_type)
|
|
2463
|
-
|
|
2464
|
-
if len(ishape) == 2:
|
|
2465
|
-
for l in range(ishape[0]):
|
|
2466
|
-
padded_data = padding.apply(image[l], is_torch=True)
|
|
2467
|
-
res[l] = kernel.matmul(padded_data)
|
|
2468
|
-
else:
|
|
2469
|
-
for l in range(ishape[0]):
|
|
2470
|
-
for k2 in range(ishape[2]):
|
|
2471
|
-
padded_data = padding.apply(image[l, :, k2], is_torch=True)
|
|
2472
|
-
res[l, :, k2] = kernel.matmul(padded_data)
|
|
2473
|
-
return res
|
|
2474
|
-
"""
|
|
2466
|
+
|
|
2475
2467
|
if nside is None:
|
|
2476
2468
|
nside = int(np.sqrt(image.shape[-1] // 12))
|
|
2477
2469
|
|
|
2478
|
-
if
|
|
2470
|
+
if spin==0:
|
|
2471
|
+
if nside not in self.Idx_Neighbours:
|
|
2472
|
+
if self.InitWave is None:
|
|
2473
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids)
|
|
2474
|
+
else:
|
|
2475
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids)
|
|
2479
2476
|
|
|
2480
|
-
|
|
2481
|
-
|
|
2482
|
-
|
|
2483
|
-
|
|
2477
|
+
self.Idx_Neighbours[nside] = 1 # self.backend.bk_constant(tmp)
|
|
2478
|
+
self.ww_Real[nside] = wr
|
|
2479
|
+
self.ww_Imag[nside] = wi
|
|
2480
|
+
self.w_smooth[nside] = ws
|
|
2484
2481
|
|
|
2485
|
-
self.
|
|
2486
|
-
|
|
2487
|
-
|
|
2488
|
-
|
|
2482
|
+
l_w_smooth = self.w_smooth[nside]
|
|
2483
|
+
else:
|
|
2484
|
+
if (spin,nside) not in self.Idx_Neighbours:
|
|
2485
|
+
if self.InitWave is None:
|
|
2486
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids,spin=spin)
|
|
2487
|
+
else:
|
|
2488
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids,spin=spin)
|
|
2489
2489
|
|
|
2490
|
-
|
|
2490
|
+
self.Idx_Neighbours[(spin,nside)] = 1 # self.backend.bk_constant(tmp)
|
|
2491
|
+
self.ww_Real[(spin,nside)] = wr
|
|
2492
|
+
self.ww_Imag[(spin,nside)] = wi
|
|
2493
|
+
self.w_smooth[(spin,nside)] = ws
|
|
2494
|
+
l_w_smooth = self.w_smooth[(spin,nside)]
|
|
2491
2495
|
|
|
2492
2496
|
odata = 1
|
|
2493
2497
|
for k in range(0, len(ishape) - 1):
|