flwr-nightly 1.8.0.dev20240315__py3-none-any.whl → 1.15.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (311) hide show
  1. flwr/cli/app.py +16 -2
  2. flwr/cli/build.py +181 -0
  3. flwr/cli/cli_user_auth_interceptor.py +90 -0
  4. flwr/cli/config_utils.py +343 -0
  5. flwr/cli/example.py +4 -1
  6. flwr/cli/install.py +253 -0
  7. flwr/cli/log.py +182 -0
  8. flwr/{server/superlink/state → cli/login}/__init__.py +4 -10
  9. flwr/cli/login/login.py +88 -0
  10. flwr/cli/ls.py +327 -0
  11. flwr/cli/new/__init__.py +1 -0
  12. flwr/cli/new/new.py +210 -66
  13. flwr/cli/new/templates/app/.gitignore.tpl +163 -0
  14. flwr/cli/new/templates/app/LICENSE.tpl +202 -0
  15. flwr/cli/new/templates/app/README.baseline.md.tpl +127 -0
  16. flwr/cli/new/templates/app/README.flowertune.md.tpl +66 -0
  17. flwr/cli/new/templates/app/README.md.tpl +16 -32
  18. flwr/cli/new/templates/app/code/__init__.baseline.py.tpl +1 -0
  19. flwr/cli/new/templates/app/code/__init__.py.tpl +1 -1
  20. flwr/cli/new/templates/app/code/client.baseline.py.tpl +58 -0
  21. flwr/cli/new/templates/app/code/client.huggingface.py.tpl +55 -0
  22. flwr/cli/new/templates/app/code/client.jax.py.tpl +50 -0
  23. flwr/cli/new/templates/app/code/client.mlx.py.tpl +73 -0
  24. flwr/cli/new/templates/app/code/client.numpy.py.tpl +7 -7
  25. flwr/cli/new/templates/app/code/client.pytorch.py.tpl +30 -21
  26. flwr/cli/new/templates/app/code/client.sklearn.py.tpl +63 -0
  27. flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +57 -1
  28. flwr/cli/new/templates/app/code/dataset.baseline.py.tpl +36 -0
  29. flwr/cli/new/templates/app/code/flwr_tune/__init__.py +15 -0
  30. flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +126 -0
  31. flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl +87 -0
  32. flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +78 -0
  33. flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +94 -0
  34. flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +83 -0
  35. flwr/cli/new/templates/app/code/model.baseline.py.tpl +80 -0
  36. flwr/cli/new/templates/app/code/server.baseline.py.tpl +46 -0
  37. flwr/cli/new/templates/app/code/server.huggingface.py.tpl +38 -0
  38. flwr/cli/new/templates/app/code/server.jax.py.tpl +26 -0
  39. flwr/cli/new/templates/app/code/server.mlx.py.tpl +31 -0
  40. flwr/cli/new/templates/app/code/server.numpy.py.tpl +22 -9
  41. flwr/cli/new/templates/app/code/server.pytorch.py.tpl +21 -18
  42. flwr/cli/new/templates/app/code/server.sklearn.py.tpl +36 -0
  43. flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +29 -1
  44. flwr/cli/new/templates/app/code/strategy.baseline.py.tpl +1 -0
  45. flwr/cli/new/templates/app/code/task.huggingface.py.tpl +102 -0
  46. flwr/cli/new/templates/app/code/task.jax.py.tpl +57 -0
  47. flwr/cli/new/templates/app/code/task.mlx.py.tpl +102 -0
  48. flwr/cli/new/templates/app/code/task.numpy.py.tpl +7 -0
  49. flwr/cli/new/templates/app/code/task.pytorch.py.tpl +29 -24
  50. flwr/cli/new/templates/app/code/task.sklearn.py.tpl +67 -0
  51. flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +53 -0
  52. flwr/cli/new/templates/app/code/utils.baseline.py.tpl +1 -0
  53. flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +138 -0
  54. flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +68 -0
  55. flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +46 -0
  56. flwr/cli/new/templates/app/pyproject.jax.toml.tpl +35 -0
  57. flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +39 -0
  58. flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +25 -12
  59. flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +29 -14
  60. flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +35 -0
  61. flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +29 -14
  62. flwr/cli/run/__init__.py +1 -0
  63. flwr/cli/run/run.py +212 -34
  64. flwr/cli/stop.py +130 -0
  65. flwr/cli/utils.py +240 -5
  66. flwr/client/__init__.py +3 -2
  67. flwr/client/app.py +432 -255
  68. flwr/client/client.py +1 -11
  69. flwr/client/client_app.py +74 -13
  70. flwr/client/clientapp/__init__.py +22 -0
  71. flwr/client/clientapp/app.py +259 -0
  72. flwr/client/clientapp/clientappio_servicer.py +244 -0
  73. flwr/client/clientapp/utils.py +115 -0
  74. flwr/client/dpfedavg_numpy_client.py +7 -8
  75. flwr/client/grpc_adapter_client/__init__.py +15 -0
  76. flwr/client/grpc_adapter_client/connection.py +98 -0
  77. flwr/client/grpc_client/connection.py +21 -7
  78. flwr/client/grpc_rere_client/__init__.py +1 -1
  79. flwr/client/grpc_rere_client/client_interceptor.py +176 -0
  80. flwr/client/grpc_rere_client/connection.py +163 -56
  81. flwr/client/grpc_rere_client/grpc_adapter.py +167 -0
  82. flwr/client/heartbeat.py +74 -0
  83. flwr/client/message_handler/__init__.py +1 -1
  84. flwr/client/message_handler/message_handler.py +10 -11
  85. flwr/client/mod/__init__.py +5 -5
  86. flwr/client/mod/centraldp_mods.py +4 -2
  87. flwr/client/mod/comms_mods.py +5 -4
  88. flwr/client/mod/localdp_mod.py +10 -5
  89. flwr/client/mod/secure_aggregation/__init__.py +1 -1
  90. flwr/client/mod/secure_aggregation/secaggplus_mod.py +26 -26
  91. flwr/client/mod/utils.py +2 -4
  92. flwr/client/nodestate/__init__.py +26 -0
  93. flwr/client/nodestate/in_memory_nodestate.py +38 -0
  94. flwr/client/nodestate/nodestate.py +31 -0
  95. flwr/client/nodestate/nodestate_factory.py +38 -0
  96. flwr/client/numpy_client.py +8 -31
  97. flwr/client/rest_client/__init__.py +1 -1
  98. flwr/client/rest_client/connection.py +199 -176
  99. flwr/client/run_info_store.py +112 -0
  100. flwr/client/supernode/__init__.py +24 -0
  101. flwr/client/supernode/app.py +321 -0
  102. flwr/client/typing.py +1 -0
  103. flwr/common/__init__.py +17 -11
  104. flwr/common/address.py +47 -3
  105. flwr/common/args.py +153 -0
  106. flwr/common/auth_plugin/__init__.py +24 -0
  107. flwr/common/auth_plugin/auth_plugin.py +121 -0
  108. flwr/common/config.py +243 -0
  109. flwr/common/constant.py +132 -1
  110. flwr/common/context.py +32 -2
  111. flwr/common/date.py +22 -4
  112. flwr/common/differential_privacy.py +2 -2
  113. flwr/common/dp.py +2 -4
  114. flwr/common/exit_handlers.py +3 -3
  115. flwr/common/grpc.py +164 -5
  116. flwr/common/logger.py +230 -12
  117. flwr/common/message.py +191 -106
  118. flwr/common/object_ref.py +179 -44
  119. flwr/common/pyproject.py +1 -0
  120. flwr/common/record/__init__.py +2 -1
  121. flwr/common/record/configsrecord.py +58 -18
  122. flwr/common/record/metricsrecord.py +57 -17
  123. flwr/common/record/parametersrecord.py +88 -20
  124. flwr/common/record/recordset.py +153 -30
  125. flwr/common/record/typeddict.py +30 -55
  126. flwr/common/recordset_compat.py +31 -12
  127. flwr/common/retry_invoker.py +123 -30
  128. flwr/common/secure_aggregation/__init__.py +1 -1
  129. flwr/common/secure_aggregation/crypto/__init__.py +1 -1
  130. flwr/common/secure_aggregation/crypto/shamir.py +11 -11
  131. flwr/common/secure_aggregation/crypto/symmetric_encryption.py +68 -4
  132. flwr/common/secure_aggregation/ndarrays_arithmetic.py +17 -17
  133. flwr/common/secure_aggregation/quantization.py +8 -8
  134. flwr/common/secure_aggregation/secaggplus_constants.py +1 -1
  135. flwr/common/secure_aggregation/secaggplus_utils.py +10 -12
  136. flwr/common/serde.py +298 -19
  137. flwr/common/telemetry.py +65 -29
  138. flwr/common/typing.py +120 -19
  139. flwr/common/version.py +17 -3
  140. flwr/proto/clientappio_pb2.py +45 -0
  141. flwr/proto/clientappio_pb2.pyi +132 -0
  142. flwr/proto/clientappio_pb2_grpc.py +135 -0
  143. flwr/proto/clientappio_pb2_grpc.pyi +53 -0
  144. flwr/proto/exec_pb2.py +62 -0
  145. flwr/proto/exec_pb2.pyi +212 -0
  146. flwr/proto/exec_pb2_grpc.py +237 -0
  147. flwr/proto/exec_pb2_grpc.pyi +93 -0
  148. flwr/proto/fab_pb2.py +31 -0
  149. flwr/proto/fab_pb2.pyi +65 -0
  150. flwr/proto/fab_pb2_grpc.py +4 -0
  151. flwr/proto/fab_pb2_grpc.pyi +4 -0
  152. flwr/proto/fleet_pb2.py +42 -23
  153. flwr/proto/fleet_pb2.pyi +123 -1
  154. flwr/proto/fleet_pb2_grpc.py +170 -0
  155. flwr/proto/fleet_pb2_grpc.pyi +61 -0
  156. flwr/proto/grpcadapter_pb2.py +32 -0
  157. flwr/proto/grpcadapter_pb2.pyi +43 -0
  158. flwr/proto/grpcadapter_pb2_grpc.py +66 -0
  159. flwr/proto/grpcadapter_pb2_grpc.pyi +24 -0
  160. flwr/proto/log_pb2.py +29 -0
  161. flwr/proto/log_pb2.pyi +39 -0
  162. flwr/proto/log_pb2_grpc.py +4 -0
  163. flwr/proto/log_pb2_grpc.pyi +4 -0
  164. flwr/proto/message_pb2.py +41 -0
  165. flwr/proto/message_pb2.pyi +128 -0
  166. flwr/proto/message_pb2_grpc.py +4 -0
  167. flwr/proto/message_pb2_grpc.pyi +4 -0
  168. flwr/proto/node_pb2.py +1 -1
  169. flwr/proto/recordset_pb2.py +35 -33
  170. flwr/proto/recordset_pb2.pyi +40 -14
  171. flwr/proto/run_pb2.py +64 -0
  172. flwr/proto/run_pb2.pyi +268 -0
  173. flwr/proto/run_pb2_grpc.py +4 -0
  174. flwr/proto/run_pb2_grpc.pyi +4 -0
  175. flwr/proto/serverappio_pb2.py +52 -0
  176. flwr/proto/{driver_pb2.pyi → serverappio_pb2.pyi} +62 -20
  177. flwr/proto/serverappio_pb2_grpc.py +410 -0
  178. flwr/proto/serverappio_pb2_grpc.pyi +160 -0
  179. flwr/proto/simulationio_pb2.py +38 -0
  180. flwr/proto/simulationio_pb2.pyi +65 -0
  181. flwr/proto/simulationio_pb2_grpc.py +239 -0
  182. flwr/proto/simulationio_pb2_grpc.pyi +94 -0
  183. flwr/proto/task_pb2.py +7 -8
  184. flwr/proto/task_pb2.pyi +8 -5
  185. flwr/proto/transport_pb2.py +8 -8
  186. flwr/proto/transport_pb2.pyi +9 -6
  187. flwr/server/__init__.py +2 -10
  188. flwr/server/app.py +579 -402
  189. flwr/server/client_manager.py +8 -6
  190. flwr/server/compat/app.py +6 -62
  191. flwr/server/compat/app_utils.py +14 -8
  192. flwr/server/compat/driver_client_proxy.py +25 -58
  193. flwr/server/compat/legacy_context.py +5 -4
  194. flwr/server/driver/__init__.py +2 -0
  195. flwr/server/driver/driver.py +36 -131
  196. flwr/server/driver/grpc_driver.py +217 -81
  197. flwr/server/driver/inmemory_driver.py +182 -0
  198. flwr/server/history.py +28 -29
  199. flwr/server/run_serverapp.py +15 -126
  200. flwr/server/server.py +50 -44
  201. flwr/server/server_app.py +59 -10
  202. flwr/server/serverapp/__init__.py +22 -0
  203. flwr/server/serverapp/app.py +256 -0
  204. flwr/server/serverapp_components.py +52 -0
  205. flwr/server/strategy/__init__.py +2 -2
  206. flwr/server/strategy/aggregate.py +37 -23
  207. flwr/server/strategy/bulyan.py +9 -9
  208. flwr/server/strategy/dp_adaptive_clipping.py +25 -25
  209. flwr/server/strategy/dp_fixed_clipping.py +23 -22
  210. flwr/server/strategy/dpfedavg_adaptive.py +8 -8
  211. flwr/server/strategy/dpfedavg_fixed.py +13 -12
  212. flwr/server/strategy/fault_tolerant_fedavg.py +11 -11
  213. flwr/server/strategy/fedadagrad.py +9 -9
  214. flwr/server/strategy/fedadam.py +20 -10
  215. flwr/server/strategy/fedavg.py +16 -16
  216. flwr/server/strategy/fedavg_android.py +17 -17
  217. flwr/server/strategy/fedavgm.py +9 -9
  218. flwr/server/strategy/fedmedian.py +5 -5
  219. flwr/server/strategy/fedopt.py +6 -6
  220. flwr/server/strategy/fedprox.py +7 -7
  221. flwr/server/strategy/fedtrimmedavg.py +8 -8
  222. flwr/server/strategy/fedxgb_bagging.py +12 -12
  223. flwr/server/strategy/fedxgb_cyclic.py +10 -10
  224. flwr/server/strategy/fedxgb_nn_avg.py +6 -6
  225. flwr/server/strategy/fedyogi.py +9 -9
  226. flwr/server/strategy/krum.py +9 -9
  227. flwr/server/strategy/qfedavg.py +16 -16
  228. flwr/server/strategy/strategy.py +10 -10
  229. flwr/server/superlink/driver/__init__.py +2 -2
  230. flwr/server/superlink/driver/serverappio_grpc.py +61 -0
  231. flwr/server/superlink/driver/serverappio_servicer.py +363 -0
  232. flwr/server/superlink/ffs/__init__.py +24 -0
  233. flwr/server/superlink/ffs/disk_ffs.py +108 -0
  234. flwr/server/superlink/ffs/ffs.py +79 -0
  235. flwr/server/superlink/ffs/ffs_factory.py +47 -0
  236. flwr/server/superlink/fleet/__init__.py +1 -1
  237. flwr/server/superlink/fleet/grpc_adapter/__init__.py +15 -0
  238. flwr/server/superlink/fleet/grpc_adapter/grpc_adapter_servicer.py +162 -0
  239. flwr/server/superlink/fleet/grpc_bidi/__init__.py +1 -1
  240. flwr/server/superlink/fleet/grpc_bidi/flower_service_servicer.py +4 -2
  241. flwr/server/superlink/fleet/grpc_bidi/grpc_bridge.py +3 -2
  242. flwr/server/superlink/fleet/grpc_bidi/grpc_client_proxy.py +1 -1
  243. flwr/server/superlink/fleet/grpc_bidi/grpc_server.py +5 -154
  244. flwr/server/superlink/fleet/grpc_rere/__init__.py +1 -1
  245. flwr/server/superlink/fleet/grpc_rere/fleet_servicer.py +120 -13
  246. flwr/server/superlink/fleet/grpc_rere/server_interceptor.py +228 -0
  247. flwr/server/superlink/fleet/message_handler/__init__.py +1 -1
  248. flwr/server/superlink/fleet/message_handler/message_handler.py +153 -9
  249. flwr/server/superlink/fleet/rest_rere/__init__.py +1 -1
  250. flwr/server/superlink/fleet/rest_rere/rest_api.py +119 -81
  251. flwr/server/superlink/fleet/vce/__init__.py +1 -0
  252. flwr/server/superlink/fleet/vce/backend/__init__.py +4 -4
  253. flwr/server/superlink/fleet/vce/backend/backend.py +8 -9
  254. flwr/server/superlink/fleet/vce/backend/raybackend.py +87 -68
  255. flwr/server/superlink/fleet/vce/vce_api.py +208 -146
  256. flwr/server/superlink/linkstate/__init__.py +28 -0
  257. flwr/server/superlink/linkstate/in_memory_linkstate.py +581 -0
  258. flwr/server/superlink/linkstate/linkstate.py +389 -0
  259. flwr/server/superlink/{state/state_factory.py → linkstate/linkstate_factory.py} +19 -10
  260. flwr/server/superlink/linkstate/sqlite_linkstate.py +1236 -0
  261. flwr/server/superlink/linkstate/utils.py +389 -0
  262. flwr/server/superlink/simulation/__init__.py +15 -0
  263. flwr/server/superlink/simulation/simulationio_grpc.py +65 -0
  264. flwr/server/superlink/simulation/simulationio_servicer.py +186 -0
  265. flwr/server/superlink/utils.py +65 -0
  266. flwr/server/typing.py +2 -0
  267. flwr/server/utils/__init__.py +1 -1
  268. flwr/server/utils/tensorboard.py +5 -5
  269. flwr/server/utils/validator.py +31 -11
  270. flwr/server/workflow/default_workflows.py +70 -26
  271. flwr/server/workflow/secure_aggregation/secagg_workflow.py +1 -0
  272. flwr/server/workflow/secure_aggregation/secaggplus_workflow.py +40 -27
  273. flwr/simulation/__init__.py +12 -5
  274. flwr/simulation/app.py +247 -315
  275. flwr/simulation/legacy_app.py +402 -0
  276. flwr/simulation/ray_transport/__init__.py +1 -1
  277. flwr/simulation/ray_transport/ray_actor.py +42 -67
  278. flwr/simulation/ray_transport/ray_client_proxy.py +37 -17
  279. flwr/simulation/ray_transport/utils.py +1 -0
  280. flwr/simulation/run_simulation.py +306 -163
  281. flwr/simulation/simulationio_connection.py +89 -0
  282. flwr/superexec/__init__.py +15 -0
  283. flwr/superexec/app.py +59 -0
  284. flwr/superexec/deployment.py +188 -0
  285. flwr/superexec/exec_grpc.py +80 -0
  286. flwr/superexec/exec_servicer.py +231 -0
  287. flwr/superexec/exec_user_auth_interceptor.py +101 -0
  288. flwr/superexec/executor.py +96 -0
  289. flwr/superexec/simulation.py +124 -0
  290. {flwr_nightly-1.8.0.dev20240315.dist-info → flwr_nightly-1.15.0.dev20250114.dist-info}/METADATA +33 -26
  291. flwr_nightly-1.15.0.dev20250114.dist-info/RECORD +328 -0
  292. flwr_nightly-1.15.0.dev20250114.dist-info/entry_points.txt +12 -0
  293. flwr/cli/flower_toml.py +0 -140
  294. flwr/cli/new/templates/app/flower.toml.tpl +0 -13
  295. flwr/cli/new/templates/app/requirements.numpy.txt.tpl +0 -2
  296. flwr/cli/new/templates/app/requirements.pytorch.txt.tpl +0 -4
  297. flwr/cli/new/templates/app/requirements.tensorflow.txt.tpl +0 -4
  298. flwr/client/node_state.py +0 -48
  299. flwr/client/node_state_tests.py +0 -65
  300. flwr/proto/driver_pb2.py +0 -44
  301. flwr/proto/driver_pb2_grpc.py +0 -169
  302. flwr/proto/driver_pb2_grpc.pyi +0 -66
  303. flwr/server/superlink/driver/driver_grpc.py +0 -54
  304. flwr/server/superlink/driver/driver_servicer.py +0 -129
  305. flwr/server/superlink/state/in_memory_state.py +0 -230
  306. flwr/server/superlink/state/sqlite_state.py +0 -630
  307. flwr/server/superlink/state/state.py +0 -154
  308. flwr_nightly-1.8.0.dev20240315.dist-info/RECORD +0 -211
  309. flwr_nightly-1.8.0.dev20240315.dist-info/entry_points.txt +0 -9
  310. {flwr_nightly-1.8.0.dev20240315.dist-info → flwr_nightly-1.15.0.dev20250114.dist-info}/LICENSE +0 -0
  311. {flwr_nightly-1.8.0.dev20240315.dist-info → flwr_nightly-1.15.0.dev20250114.dist-info}/WHEEL +0 -0
@@ -0,0 +1,36 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ from flwr.common import Context, ndarrays_to_parameters
4
+ from flwr.server import ServerApp, ServerAppComponents, ServerConfig
5
+ from flwr.server.strategy import FedAvg
6
+ from $import_name.task import get_model, get_model_params, set_initial_params
7
+
8
+
9
+ def server_fn(context: Context):
10
+ # Read from config
11
+ num_rounds = context.run_config["num-server-rounds"]
12
+
13
+ # Create LogisticRegression Model
14
+ penalty = context.run_config["penalty"]
15
+ local_epochs = context.run_config["local-epochs"]
16
+ model = get_model(penalty, local_epochs)
17
+
18
+ # Setting initial parameters, akin to model.compile for keras models
19
+ set_initial_params(model)
20
+
21
+ initial_parameters = ndarrays_to_parameters(get_model_params(model))
22
+
23
+ # Define strategy
24
+ strategy = FedAvg(
25
+ fraction_fit=1.0,
26
+ fraction_evaluate=1.0,
27
+ min_available_clients=2,
28
+ initial_parameters=initial_parameters,
29
+ )
30
+ config = ServerConfig(num_rounds=num_rounds)
31
+
32
+ return ServerAppComponents(strategy=strategy, config=config)
33
+
34
+
35
+ # Create ServerApp
36
+ app = ServerApp(server_fn=server_fn)
@@ -1 +1,29 @@
1
- """$project_name: A Flower / TensorFlow app."""
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ from flwr.common import Context, ndarrays_to_parameters
4
+ from flwr.server import ServerApp, ServerAppComponents, ServerConfig
5
+ from flwr.server.strategy import FedAvg
6
+
7
+ from $import_name.task import load_model
8
+
9
+
10
+ def server_fn(context: Context):
11
+ # Read from config
12
+ num_rounds = context.run_config["num-server-rounds"]
13
+
14
+ # Get parameters to initialize global model
15
+ parameters = ndarrays_to_parameters(load_model().get_weights())
16
+
17
+ # Define strategy
18
+ strategy = strategy = FedAvg(
19
+ fraction_fit=1.0,
20
+ fraction_evaluate=1.0,
21
+ min_available_clients=2,
22
+ initial_parameters=parameters,
23
+ )
24
+ config = ServerConfig(num_rounds=num_rounds)
25
+
26
+ return ServerAppComponents(strategy=strategy, config=config)
27
+
28
+ # Create ServerApp
29
+ app = ServerApp(server_fn=server_fn)
@@ -0,0 +1 @@
1
+ """$project_name: A Flower Baseline."""
@@ -0,0 +1,102 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import warnings
4
+ from collections import OrderedDict
5
+
6
+ import torch
7
+ import transformers
8
+ from datasets.utils.logging import disable_progress_bar
9
+ from evaluate import load as load_metric
10
+ from flwr_datasets import FederatedDataset
11
+ from flwr_datasets.partitioner import IidPartitioner
12
+ from torch.optim import AdamW
13
+ from torch.utils.data import DataLoader
14
+ from transformers import AutoTokenizer, DataCollatorWithPadding
15
+
16
+ warnings.filterwarnings("ignore", category=UserWarning)
17
+ warnings.filterwarnings("ignore", category=FutureWarning)
18
+ disable_progress_bar()
19
+ transformers.logging.set_verbosity_error()
20
+
21
+
22
+ fds = None # Cache FederatedDataset
23
+
24
+
25
+ def load_data(partition_id: int, num_partitions: int, model_name: str):
26
+ """Load IMDB data (training and eval)"""
27
+ # Only initialize `FederatedDataset` once
28
+ global fds
29
+ if fds is None:
30
+ partitioner = IidPartitioner(num_partitions=num_partitions)
31
+ fds = FederatedDataset(
32
+ dataset="stanfordnlp/imdb",
33
+ partitioners={"train": partitioner},
34
+ )
35
+ partition = fds.load_partition(partition_id)
36
+ # Divide data: 80% train, 20% test
37
+ partition_train_test = partition.train_test_split(test_size=0.2, seed=42)
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
40
+
41
+ def tokenize_function(examples):
42
+ return tokenizer(
43
+ examples["text"], truncation=True, add_special_tokens=True, max_length=512
44
+ )
45
+
46
+ partition_train_test = partition_train_test.map(tokenize_function, batched=True)
47
+ partition_train_test = partition_train_test.remove_columns("text")
48
+ partition_train_test = partition_train_test.rename_column("label", "labels")
49
+
50
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
51
+ trainloader = DataLoader(
52
+ partition_train_test["train"],
53
+ shuffle=True,
54
+ batch_size=32,
55
+ collate_fn=data_collator,
56
+ )
57
+
58
+ testloader = DataLoader(
59
+ partition_train_test["test"], batch_size=32, collate_fn=data_collator
60
+ )
61
+
62
+ return trainloader, testloader
63
+
64
+
65
+ def train(net, trainloader, epochs, device):
66
+ optimizer = AdamW(net.parameters(), lr=5e-5)
67
+ net.train()
68
+ for _ in range(epochs):
69
+ for batch in trainloader:
70
+ batch = {k: v.to(device) for k, v in batch.items()}
71
+ outputs = net(**batch)
72
+ loss = outputs.loss
73
+ loss.backward()
74
+ optimizer.step()
75
+ optimizer.zero_grad()
76
+
77
+
78
+ def test(net, testloader, device):
79
+ metric = load_metric("accuracy")
80
+ loss = 0
81
+ net.eval()
82
+ for batch in testloader:
83
+ batch = {k: v.to(device) for k, v in batch.items()}
84
+ with torch.no_grad():
85
+ outputs = net(**batch)
86
+ logits = outputs.logits
87
+ loss += outputs.loss.item()
88
+ predictions = torch.argmax(logits, dim=-1)
89
+ metric.add_batch(predictions=predictions, references=batch["labels"])
90
+ loss /= len(testloader.dataset)
91
+ accuracy = metric.compute()["accuracy"]
92
+ return loss, accuracy
93
+
94
+
95
+ def get_weights(net):
96
+ return [val.cpu().numpy() for _, val in net.state_dict().items()]
97
+
98
+
99
+ def set_weights(net, parameters):
100
+ params_dict = zip(net.state_dict().keys(), parameters)
101
+ state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict})
102
+ net.load_state_dict(state_dict, strict=True)
@@ -0,0 +1,57 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import jax
4
+ import jax.numpy as jnp
5
+ import numpy as np
6
+ from sklearn.datasets import make_regression
7
+ from sklearn.model_selection import train_test_split
8
+
9
+ key = jax.random.PRNGKey(0)
10
+
11
+
12
+ def load_data():
13
+ # Load dataset
14
+ X, y = make_regression(n_features=3, random_state=0)
15
+ X, X_test, y, y_test = train_test_split(X, y)
16
+ return X, y, X_test, y_test
17
+
18
+
19
+ def load_model(model_shape):
20
+ # Extract model parameters
21
+ params = {"b": jax.random.uniform(key), "w": jax.random.uniform(key, model_shape)}
22
+ return params
23
+
24
+
25
+ def loss_fn(params, X, y):
26
+ # Return MSE as loss
27
+ err = jnp.dot(X, params["w"]) + params["b"] - y
28
+ return jnp.mean(jnp.square(err))
29
+
30
+
31
+ def train(params, grad_fn, X, y):
32
+ loss = 1_000_000
33
+ num_examples = X.shape[0]
34
+ for epochs in range(50):
35
+ grads = grad_fn(params, X, y)
36
+ params = jax.tree.map(lambda p, g: p - 0.05 * g, params, grads)
37
+ loss = loss_fn(params, X, y)
38
+ return params, loss, num_examples
39
+
40
+
41
+ def evaluation(params, grad_fn, X_test, y_test):
42
+ num_examples = X_test.shape[0]
43
+ err_test = loss_fn(params, X_test, y_test)
44
+ loss_test = jnp.mean(jnp.square(err_test))
45
+ return loss_test, num_examples
46
+
47
+
48
+ def get_params(params):
49
+ parameters = []
50
+ for _, val in params.items():
51
+ parameters.append(np.array(val))
52
+ return parameters
53
+
54
+
55
+ def set_params(local_params, global_params):
56
+ for key, value in list(zip(local_params.keys(), global_params)):
57
+ local_params[key] = value
@@ -0,0 +1,102 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+ import numpy as np
6
+ from flwr_datasets import FederatedDataset
7
+ from flwr_datasets.partitioner import IidPartitioner
8
+
9
+ from datasets.utils.logging import disable_progress_bar
10
+
11
+ disable_progress_bar()
12
+
13
+
14
+ class MLP(nn.Module):
15
+ """A simple MLP."""
16
+
17
+ def __init__(
18
+ self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
19
+ ):
20
+ super().__init__()
21
+ layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
22
+ self.layers = [
23
+ nn.Linear(idim, odim)
24
+ for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
25
+ ]
26
+
27
+ def __call__(self, x):
28
+ for l in self.layers[:-1]:
29
+ x = mx.maximum(l(x), 0.0)
30
+ return self.layers[-1](x)
31
+
32
+
33
+ def loss_fn(model, X, y):
34
+ return mx.mean(nn.losses.cross_entropy(model(X), y))
35
+
36
+
37
+ def eval_fn(model, X, y):
38
+ return mx.mean(mx.argmax(model(X), axis=1) == y)
39
+
40
+
41
+ def batch_iterate(batch_size, X, y):
42
+ perm = mx.array(np.random.permutation(y.size))
43
+ for s in range(0, y.size, batch_size):
44
+ ids = perm[s : s + batch_size]
45
+ yield X[ids], y[ids]
46
+
47
+
48
+ fds = None # Cache FederatedDataset
49
+
50
+
51
+ def load_data(partition_id: int, num_partitions: int):
52
+ # Only initialize `FederatedDataset` once
53
+ global fds
54
+ if fds is None:
55
+ partitioner = IidPartitioner(num_partitions=num_partitions)
56
+ fds = FederatedDataset(
57
+ dataset="ylecun/mnist",
58
+ partitioners={"train": partitioner},
59
+ trust_remote_code=True,
60
+ )
61
+ partition = fds.load_partition(partition_id)
62
+ partition_splits = partition.train_test_split(test_size=0.2, seed=42)
63
+
64
+ partition_splits["train"].set_format("numpy")
65
+ partition_splits["test"].set_format("numpy")
66
+
67
+ train_partition = partition_splits["train"].map(
68
+ lambda img: {
69
+ "img": img.reshape(-1, 28 * 28).squeeze().astype(np.float32) / 255.0
70
+ },
71
+ input_columns="image",
72
+ )
73
+ test_partition = partition_splits["test"].map(
74
+ lambda img: {
75
+ "img": img.reshape(-1, 28 * 28).squeeze().astype(np.float32) / 255.0
76
+ },
77
+ input_columns="image",
78
+ )
79
+
80
+ data = (
81
+ train_partition["img"],
82
+ train_partition["label"].astype(np.uint32),
83
+ test_partition["img"],
84
+ test_partition["label"].astype(np.uint32),
85
+ )
86
+
87
+ train_images, train_labels, test_images, test_labels = map(mx.array, data)
88
+ return train_images, train_labels, test_images, test_labels
89
+
90
+
91
+ def get_params(model):
92
+ layers = model.parameters()["layers"]
93
+ return [np.array(val) for layer in layers for _, val in layer.items()]
94
+
95
+
96
+ def set_params(model, parameters):
97
+ new_params = {}
98
+ new_params["layers"] = [
99
+ {"weight": mx.array(parameters[i]), "bias": mx.array(parameters[i + 1])}
100
+ for i in range(0, len(parameters), 2)
101
+ ]
102
+ model.update(new_params)
@@ -0,0 +1,7 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import numpy as np
4
+
5
+
6
+ def get_dummy_model():
7
+ return np.ones((1, 1))
@@ -1,16 +1,14 @@
1
- """$project_name: A Flower / PyTorch app."""
1
+ """$project_name: A Flower / $framework_str app."""
2
2
 
3
3
  from collections import OrderedDict
4
4
 
5
5
  import torch
6
6
  import torch.nn as nn
7
7
  import torch.nn.functional as F
8
+ from flwr_datasets import FederatedDataset
9
+ from flwr_datasets.partitioner import IidPartitioner
8
10
  from torch.utils.data import DataLoader
9
- from torchvision.datasets import CIFAR10
10
11
  from torchvision.transforms import Compose, Normalize, ToTensor
11
- from flwr_datasets import FederatedDataset
12
-
13
- DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14
12
 
15
13
 
16
14
  class Net(nn.Module):
@@ -34,12 +32,22 @@ class Net(nn.Module):
34
32
  return self.fc3(x)
35
33
 
36
34
 
37
- def load_data(partition_id, num_partitions):
35
+ fds = None # Cache FederatedDataset
36
+
37
+
38
+ def load_data(partition_id: int, num_partitions: int):
38
39
  """Load partition CIFAR10 data."""
39
- fds = FederatedDataset(dataset="cifar10", partitioners={"train": num_partitions})
40
+ # Only initialize `FederatedDataset` once
41
+ global fds
42
+ if fds is None:
43
+ partitioner = IidPartitioner(num_partitions=num_partitions)
44
+ fds = FederatedDataset(
45
+ dataset="uoft-cs/cifar10",
46
+ partitioners={"train": partitioner},
47
+ )
40
48
  partition = fds.load_partition(partition_id)
41
49
  # Divide data on each node: 80% train, 20% test
42
- partition_train_test = partition.train_test_split(test_size=0.2)
50
+ partition_train_test = partition.train_test_split(test_size=0.2, seed=42)
43
51
  pytorch_transforms = Compose(
44
52
  [ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
45
53
  )
@@ -55,44 +63,41 @@ def load_data(partition_id, num_partitions):
55
63
  return trainloader, testloader
56
64
 
57
65
 
58
- def train(net, trainloader, valloader, epochs, device):
66
+ def train(net, trainloader, epochs, device):
59
67
  """Train the model on the training set."""
60
68
  net.to(device) # move model to GPU if available
61
69
  criterion = torch.nn.CrossEntropyLoss().to(device)
62
- optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
70
+ optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
63
71
  net.train()
72
+ running_loss = 0.0
64
73
  for _ in range(epochs):
65
74
  for batch in trainloader:
66
75
  images = batch["img"]
67
76
  labels = batch["label"]
68
77
  optimizer.zero_grad()
69
- criterion(net(images.to(DEVICE)), labels.to(DEVICE)).backward()
78
+ loss = criterion(net(images.to(device)), labels.to(device))
79
+ loss.backward()
70
80
  optimizer.step()
81
+ running_loss += loss.item()
71
82
 
72
- train_loss, train_acc = test(net, trainloader)
73
- val_loss, val_acc = test(net, valloader)
74
-
75
- results = {
76
- "train_loss": train_loss,
77
- "train_accuracy": train_acc,
78
- "val_loss": val_loss,
79
- "val_accuracy": val_acc,
80
- }
81
- return results
83
+ avg_trainloss = running_loss / len(trainloader)
84
+ return avg_trainloss
82
85
 
83
86
 
84
- def test(net, testloader):
87
+ def test(net, testloader, device):
85
88
  """Validate the model on the test set."""
89
+ net.to(device)
86
90
  criterion = torch.nn.CrossEntropyLoss()
87
91
  correct, loss = 0, 0.0
88
92
  with torch.no_grad():
89
93
  for batch in testloader:
90
- images = batch["img"].to(DEVICE)
91
- labels = batch["label"].to(DEVICE)
94
+ images = batch["img"].to(device)
95
+ labels = batch["label"].to(device)
92
96
  outputs = net(images)
93
97
  loss += criterion(outputs, labels).item()
94
98
  correct += (torch.max(outputs.data, 1)[1] == labels).sum().item()
95
99
  accuracy = correct / len(testloader.dataset)
100
+ loss = loss / len(testloader)
96
101
  return loss, accuracy
97
102
 
98
103
 
@@ -0,0 +1,67 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import numpy as np
4
+ from flwr_datasets import FederatedDataset
5
+ from flwr_datasets.partitioner import IidPartitioner
6
+ from sklearn.linear_model import LogisticRegression
7
+
8
+ fds = None # Cache FederatedDataset
9
+
10
+
11
+ def load_data(partition_id: int, num_partitions: int):
12
+ """Load partition MNIST data."""
13
+ # Only initialize `FederatedDataset` once
14
+ global fds
15
+ if fds is None:
16
+ partitioner = IidPartitioner(num_partitions=num_partitions)
17
+ fds = FederatedDataset(
18
+ dataset="mnist",
19
+ partitioners={"train": partitioner},
20
+ )
21
+
22
+ dataset = fds.load_partition(partition_id, "train").with_format("numpy")
23
+
24
+ X, y = dataset["image"].reshape((len(dataset), -1)), dataset["label"]
25
+
26
+ # Split the on edge data: 80% train, 20% test
27
+ X_train, X_test = X[: int(0.8 * len(X))], X[int(0.8 * len(X)) :]
28
+ y_train, y_test = y[: int(0.8 * len(y))], y[int(0.8 * len(y)) :]
29
+
30
+ return X_train, X_test, y_train, y_test
31
+
32
+
33
+ def get_model(penalty: str, local_epochs: int):
34
+
35
+ return LogisticRegression(
36
+ penalty=penalty,
37
+ max_iter=local_epochs,
38
+ warm_start=True,
39
+ )
40
+
41
+
42
+ def get_model_params(model):
43
+ if model.fit_intercept:
44
+ params = [
45
+ model.coef_,
46
+ model.intercept_,
47
+ ]
48
+ else:
49
+ params = [model.coef_]
50
+ return params
51
+
52
+
53
+ def set_model_params(model, params):
54
+ model.coef_ = params[0]
55
+ if model.fit_intercept:
56
+ model.intercept_ = params[1]
57
+ return model
58
+
59
+
60
+ def set_initial_params(model):
61
+ n_classes = 10 # MNIST has 10 classes
62
+ n_features = 784 # Number of features in dataset
63
+ model.classes_ = np.array([i for i in range(10)])
64
+
65
+ model.coef_ = np.zeros((n_classes, n_features))
66
+ if model.fit_intercept:
67
+ model.intercept_ = np.zeros((n_classes,))
@@ -0,0 +1,53 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import os
4
+
5
+ import keras
6
+ from keras import layers
7
+ from flwr_datasets import FederatedDataset
8
+ from flwr_datasets.partitioner import IidPartitioner
9
+
10
+
11
+ # Make TensorFlow log less verbose
12
+ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
13
+
14
+
15
+ def load_model():
16
+ # Define a simple CNN for CIFAR-10 and set Adam optimizer
17
+ model = keras.Sequential(
18
+ [
19
+ keras.Input(shape=(32, 32, 3)),
20
+ layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
21
+ layers.MaxPooling2D(pool_size=(2, 2)),
22
+ layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
23
+ layers.MaxPooling2D(pool_size=(2, 2)),
24
+ layers.Flatten(),
25
+ layers.Dropout(0.5),
26
+ layers.Dense(10, activation="softmax"),
27
+ ]
28
+ )
29
+ model.compile("adam", "sparse_categorical_crossentropy", metrics=["accuracy"])
30
+ return model
31
+
32
+
33
+ fds = None # Cache FederatedDataset
34
+
35
+
36
+ def load_data(partition_id, num_partitions):
37
+ # Download and partition dataset
38
+ # Only initialize `FederatedDataset` once
39
+ global fds
40
+ if fds is None:
41
+ partitioner = IidPartitioner(num_partitions=num_partitions)
42
+ fds = FederatedDataset(
43
+ dataset="uoft-cs/cifar10",
44
+ partitioners={"train": partitioner},
45
+ )
46
+ partition = fds.load_partition(partition_id, "train")
47
+ partition.set_format("numpy")
48
+
49
+ # Divide data on each node: 80% train, 20% test
50
+ partition = partition.train_test_split(test_size=0.2)
51
+ x_train, y_train = partition["train"]["img"] / 255.0, partition["train"]["label"]
52
+ x_test, y_test = partition["test"]["img"] / 255.0, partition["test"]["label"]
53
+ return x_train, y_train, x_test, y_test
@@ -0,0 +1 @@
1
+ """$project_name: A Flower Baseline."""