flwr-nightly 1.8.0.dev20240315__py3-none-any.whl → 1.15.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- flwr/cli/app.py +16 -2
- flwr/cli/build.py +181 -0
- flwr/cli/cli_user_auth_interceptor.py +90 -0
- flwr/cli/config_utils.py +343 -0
- flwr/cli/example.py +4 -1
- flwr/cli/install.py +253 -0
- flwr/cli/log.py +182 -0
- flwr/{server/superlink/state → cli/login}/__init__.py +4 -10
- flwr/cli/login/login.py +88 -0
- flwr/cli/ls.py +327 -0
- flwr/cli/new/__init__.py +1 -0
- flwr/cli/new/new.py +210 -66
- flwr/cli/new/templates/app/.gitignore.tpl +163 -0
- flwr/cli/new/templates/app/LICENSE.tpl +202 -0
- flwr/cli/new/templates/app/README.baseline.md.tpl +127 -0
- flwr/cli/new/templates/app/README.flowertune.md.tpl +66 -0
- flwr/cli/new/templates/app/README.md.tpl +16 -32
- flwr/cli/new/templates/app/code/__init__.baseline.py.tpl +1 -0
- flwr/cli/new/templates/app/code/__init__.py.tpl +1 -1
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +58 -0
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +55 -0
- flwr/cli/new/templates/app/code/client.jax.py.tpl +50 -0
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +73 -0
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +7 -7
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +30 -21
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +63 -0
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +57 -1
- flwr/cli/new/templates/app/code/dataset.baseline.py.tpl +36 -0
- flwr/cli/new/templates/app/code/flwr_tune/__init__.py +15 -0
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +126 -0
- flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl +87 -0
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +78 -0
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +94 -0
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +83 -0
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +80 -0
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +46 -0
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +38 -0
- flwr/cli/new/templates/app/code/server.jax.py.tpl +26 -0
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +31 -0
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +22 -9
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +21 -18
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +36 -0
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +29 -1
- flwr/cli/new/templates/app/code/strategy.baseline.py.tpl +1 -0
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +102 -0
- flwr/cli/new/templates/app/code/task.jax.py.tpl +57 -0
- flwr/cli/new/templates/app/code/task.mlx.py.tpl +102 -0
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +7 -0
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +29 -24
- flwr/cli/new/templates/app/code/task.sklearn.py.tpl +67 -0
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +53 -0
- flwr/cli/new/templates/app/code/utils.baseline.py.tpl +1 -0
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +138 -0
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +68 -0
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +46 -0
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +35 -0
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +39 -0
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +25 -12
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +29 -14
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +35 -0
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +29 -14
- flwr/cli/run/__init__.py +1 -0
- flwr/cli/run/run.py +212 -34
- flwr/cli/stop.py +130 -0
- flwr/cli/utils.py +240 -5
- flwr/client/__init__.py +3 -2
- flwr/client/app.py +432 -255
- flwr/client/client.py +1 -11
- flwr/client/client_app.py +74 -13
- flwr/client/clientapp/__init__.py +22 -0
- flwr/client/clientapp/app.py +259 -0
- flwr/client/clientapp/clientappio_servicer.py +244 -0
- flwr/client/clientapp/utils.py +115 -0
- flwr/client/dpfedavg_numpy_client.py +7 -8
- flwr/client/grpc_adapter_client/__init__.py +15 -0
- flwr/client/grpc_adapter_client/connection.py +98 -0
- flwr/client/grpc_client/connection.py +21 -7
- flwr/client/grpc_rere_client/__init__.py +1 -1
- flwr/client/grpc_rere_client/client_interceptor.py +176 -0
- flwr/client/grpc_rere_client/connection.py +163 -56
- flwr/client/grpc_rere_client/grpc_adapter.py +167 -0
- flwr/client/heartbeat.py +74 -0
- flwr/client/message_handler/__init__.py +1 -1
- flwr/client/message_handler/message_handler.py +10 -11
- flwr/client/mod/__init__.py +5 -5
- flwr/client/mod/centraldp_mods.py +4 -2
- flwr/client/mod/comms_mods.py +5 -4
- flwr/client/mod/localdp_mod.py +10 -5
- flwr/client/mod/secure_aggregation/__init__.py +1 -1
- flwr/client/mod/secure_aggregation/secaggplus_mod.py +26 -26
- flwr/client/mod/utils.py +2 -4
- flwr/client/nodestate/__init__.py +26 -0
- flwr/client/nodestate/in_memory_nodestate.py +38 -0
- flwr/client/nodestate/nodestate.py +31 -0
- flwr/client/nodestate/nodestate_factory.py +38 -0
- flwr/client/numpy_client.py +8 -31
- flwr/client/rest_client/__init__.py +1 -1
- flwr/client/rest_client/connection.py +199 -176
- flwr/client/run_info_store.py +112 -0
- flwr/client/supernode/__init__.py +24 -0
- flwr/client/supernode/app.py +321 -0
- flwr/client/typing.py +1 -0
- flwr/common/__init__.py +17 -11
- flwr/common/address.py +47 -3
- flwr/common/args.py +153 -0
- flwr/common/auth_plugin/__init__.py +24 -0
- flwr/common/auth_plugin/auth_plugin.py +121 -0
- flwr/common/config.py +243 -0
- flwr/common/constant.py +132 -1
- flwr/common/context.py +32 -2
- flwr/common/date.py +22 -4
- flwr/common/differential_privacy.py +2 -2
- flwr/common/dp.py +2 -4
- flwr/common/exit_handlers.py +3 -3
- flwr/common/grpc.py +164 -5
- flwr/common/logger.py +230 -12
- flwr/common/message.py +191 -106
- flwr/common/object_ref.py +179 -44
- flwr/common/pyproject.py +1 -0
- flwr/common/record/__init__.py +2 -1
- flwr/common/record/configsrecord.py +58 -18
- flwr/common/record/metricsrecord.py +57 -17
- flwr/common/record/parametersrecord.py +88 -20
- flwr/common/record/recordset.py +153 -30
- flwr/common/record/typeddict.py +30 -55
- flwr/common/recordset_compat.py +31 -12
- flwr/common/retry_invoker.py +123 -30
- flwr/common/secure_aggregation/__init__.py +1 -1
- flwr/common/secure_aggregation/crypto/__init__.py +1 -1
- flwr/common/secure_aggregation/crypto/shamir.py +11 -11
- flwr/common/secure_aggregation/crypto/symmetric_encryption.py +68 -4
- flwr/common/secure_aggregation/ndarrays_arithmetic.py +17 -17
- flwr/common/secure_aggregation/quantization.py +8 -8
- flwr/common/secure_aggregation/secaggplus_constants.py +1 -1
- flwr/common/secure_aggregation/secaggplus_utils.py +10 -12
- flwr/common/serde.py +298 -19
- flwr/common/telemetry.py +65 -29
- flwr/common/typing.py +120 -19
- flwr/common/version.py +17 -3
- flwr/proto/clientappio_pb2.py +45 -0
- flwr/proto/clientappio_pb2.pyi +132 -0
- flwr/proto/clientappio_pb2_grpc.py +135 -0
- flwr/proto/clientappio_pb2_grpc.pyi +53 -0
- flwr/proto/exec_pb2.py +62 -0
- flwr/proto/exec_pb2.pyi +212 -0
- flwr/proto/exec_pb2_grpc.py +237 -0
- flwr/proto/exec_pb2_grpc.pyi +93 -0
- flwr/proto/fab_pb2.py +31 -0
- flwr/proto/fab_pb2.pyi +65 -0
- flwr/proto/fab_pb2_grpc.py +4 -0
- flwr/proto/fab_pb2_grpc.pyi +4 -0
- flwr/proto/fleet_pb2.py +42 -23
- flwr/proto/fleet_pb2.pyi +123 -1
- flwr/proto/fleet_pb2_grpc.py +170 -0
- flwr/proto/fleet_pb2_grpc.pyi +61 -0
- flwr/proto/grpcadapter_pb2.py +32 -0
- flwr/proto/grpcadapter_pb2.pyi +43 -0
- flwr/proto/grpcadapter_pb2_grpc.py +66 -0
- flwr/proto/grpcadapter_pb2_grpc.pyi +24 -0
- flwr/proto/log_pb2.py +29 -0
- flwr/proto/log_pb2.pyi +39 -0
- flwr/proto/log_pb2_grpc.py +4 -0
- flwr/proto/log_pb2_grpc.pyi +4 -0
- flwr/proto/message_pb2.py +41 -0
- flwr/proto/message_pb2.pyi +128 -0
- flwr/proto/message_pb2_grpc.py +4 -0
- flwr/proto/message_pb2_grpc.pyi +4 -0
- flwr/proto/node_pb2.py +1 -1
- flwr/proto/recordset_pb2.py +35 -33
- flwr/proto/recordset_pb2.pyi +40 -14
- flwr/proto/run_pb2.py +64 -0
- flwr/proto/run_pb2.pyi +268 -0
- flwr/proto/run_pb2_grpc.py +4 -0
- flwr/proto/run_pb2_grpc.pyi +4 -0
- flwr/proto/serverappio_pb2.py +52 -0
- flwr/proto/{driver_pb2.pyi → serverappio_pb2.pyi} +62 -20
- flwr/proto/serverappio_pb2_grpc.py +410 -0
- flwr/proto/serverappio_pb2_grpc.pyi +160 -0
- flwr/proto/simulationio_pb2.py +38 -0
- flwr/proto/simulationio_pb2.pyi +65 -0
- flwr/proto/simulationio_pb2_grpc.py +239 -0
- flwr/proto/simulationio_pb2_grpc.pyi +94 -0
- flwr/proto/task_pb2.py +7 -8
- flwr/proto/task_pb2.pyi +8 -5
- flwr/proto/transport_pb2.py +8 -8
- flwr/proto/transport_pb2.pyi +9 -6
- flwr/server/__init__.py +2 -10
- flwr/server/app.py +579 -402
- flwr/server/client_manager.py +8 -6
- flwr/server/compat/app.py +6 -62
- flwr/server/compat/app_utils.py +14 -8
- flwr/server/compat/driver_client_proxy.py +25 -58
- flwr/server/compat/legacy_context.py +5 -4
- flwr/server/driver/__init__.py +2 -0
- flwr/server/driver/driver.py +36 -131
- flwr/server/driver/grpc_driver.py +217 -81
- flwr/server/driver/inmemory_driver.py +182 -0
- flwr/server/history.py +28 -29
- flwr/server/run_serverapp.py +15 -126
- flwr/server/server.py +50 -44
- flwr/server/server_app.py +59 -10
- flwr/server/serverapp/__init__.py +22 -0
- flwr/server/serverapp/app.py +256 -0
- flwr/server/serverapp_components.py +52 -0
- flwr/server/strategy/__init__.py +2 -2
- flwr/server/strategy/aggregate.py +37 -23
- flwr/server/strategy/bulyan.py +9 -9
- flwr/server/strategy/dp_adaptive_clipping.py +25 -25
- flwr/server/strategy/dp_fixed_clipping.py +23 -22
- flwr/server/strategy/dpfedavg_adaptive.py +8 -8
- flwr/server/strategy/dpfedavg_fixed.py +13 -12
- flwr/server/strategy/fault_tolerant_fedavg.py +11 -11
- flwr/server/strategy/fedadagrad.py +9 -9
- flwr/server/strategy/fedadam.py +20 -10
- flwr/server/strategy/fedavg.py +16 -16
- flwr/server/strategy/fedavg_android.py +17 -17
- flwr/server/strategy/fedavgm.py +9 -9
- flwr/server/strategy/fedmedian.py +5 -5
- flwr/server/strategy/fedopt.py +6 -6
- flwr/server/strategy/fedprox.py +7 -7
- flwr/server/strategy/fedtrimmedavg.py +8 -8
- flwr/server/strategy/fedxgb_bagging.py +12 -12
- flwr/server/strategy/fedxgb_cyclic.py +10 -10
- flwr/server/strategy/fedxgb_nn_avg.py +6 -6
- flwr/server/strategy/fedyogi.py +9 -9
- flwr/server/strategy/krum.py +9 -9
- flwr/server/strategy/qfedavg.py +16 -16
- flwr/server/strategy/strategy.py +10 -10
- flwr/server/superlink/driver/__init__.py +2 -2
- flwr/server/superlink/driver/serverappio_grpc.py +61 -0
- flwr/server/superlink/driver/serverappio_servicer.py +363 -0
- flwr/server/superlink/ffs/__init__.py +24 -0
- flwr/server/superlink/ffs/disk_ffs.py +108 -0
- flwr/server/superlink/ffs/ffs.py +79 -0
- flwr/server/superlink/ffs/ffs_factory.py +47 -0
- flwr/server/superlink/fleet/__init__.py +1 -1
- flwr/server/superlink/fleet/grpc_adapter/__init__.py +15 -0
- flwr/server/superlink/fleet/grpc_adapter/grpc_adapter_servicer.py +162 -0
- flwr/server/superlink/fleet/grpc_bidi/__init__.py +1 -1
- flwr/server/superlink/fleet/grpc_bidi/flower_service_servicer.py +4 -2
- flwr/server/superlink/fleet/grpc_bidi/grpc_bridge.py +3 -2
- flwr/server/superlink/fleet/grpc_bidi/grpc_client_proxy.py +1 -1
- flwr/server/superlink/fleet/grpc_bidi/grpc_server.py +5 -154
- flwr/server/superlink/fleet/grpc_rere/__init__.py +1 -1
- flwr/server/superlink/fleet/grpc_rere/fleet_servicer.py +120 -13
- flwr/server/superlink/fleet/grpc_rere/server_interceptor.py +228 -0
- flwr/server/superlink/fleet/message_handler/__init__.py +1 -1
- flwr/server/superlink/fleet/message_handler/message_handler.py +153 -9
- flwr/server/superlink/fleet/rest_rere/__init__.py +1 -1
- flwr/server/superlink/fleet/rest_rere/rest_api.py +119 -81
- flwr/server/superlink/fleet/vce/__init__.py +1 -0
- flwr/server/superlink/fleet/vce/backend/__init__.py +4 -4
- flwr/server/superlink/fleet/vce/backend/backend.py +8 -9
- flwr/server/superlink/fleet/vce/backend/raybackend.py +87 -68
- flwr/server/superlink/fleet/vce/vce_api.py +208 -146
- flwr/server/superlink/linkstate/__init__.py +28 -0
- flwr/server/superlink/linkstate/in_memory_linkstate.py +581 -0
- flwr/server/superlink/linkstate/linkstate.py +389 -0
- flwr/server/superlink/{state/state_factory.py → linkstate/linkstate_factory.py} +19 -10
- flwr/server/superlink/linkstate/sqlite_linkstate.py +1236 -0
- flwr/server/superlink/linkstate/utils.py +389 -0
- flwr/server/superlink/simulation/__init__.py +15 -0
- flwr/server/superlink/simulation/simulationio_grpc.py +65 -0
- flwr/server/superlink/simulation/simulationio_servicer.py +186 -0
- flwr/server/superlink/utils.py +65 -0
- flwr/server/typing.py +2 -0
- flwr/server/utils/__init__.py +1 -1
- flwr/server/utils/tensorboard.py +5 -5
- flwr/server/utils/validator.py +31 -11
- flwr/server/workflow/default_workflows.py +70 -26
- flwr/server/workflow/secure_aggregation/secagg_workflow.py +1 -0
- flwr/server/workflow/secure_aggregation/secaggplus_workflow.py +40 -27
- flwr/simulation/__init__.py +12 -5
- flwr/simulation/app.py +247 -315
- flwr/simulation/legacy_app.py +402 -0
- flwr/simulation/ray_transport/__init__.py +1 -1
- flwr/simulation/ray_transport/ray_actor.py +42 -67
- flwr/simulation/ray_transport/ray_client_proxy.py +37 -17
- flwr/simulation/ray_transport/utils.py +1 -0
- flwr/simulation/run_simulation.py +306 -163
- flwr/simulation/simulationio_connection.py +89 -0
- flwr/superexec/__init__.py +15 -0
- flwr/superexec/app.py +59 -0
- flwr/superexec/deployment.py +188 -0
- flwr/superexec/exec_grpc.py +80 -0
- flwr/superexec/exec_servicer.py +231 -0
- flwr/superexec/exec_user_auth_interceptor.py +101 -0
- flwr/superexec/executor.py +96 -0
- flwr/superexec/simulation.py +124 -0
- {flwr_nightly-1.8.0.dev20240315.dist-info → flwr_nightly-1.15.0.dev20250114.dist-info}/METADATA +33 -26
- flwr_nightly-1.15.0.dev20250114.dist-info/RECORD +328 -0
- flwr_nightly-1.15.0.dev20250114.dist-info/entry_points.txt +12 -0
- flwr/cli/flower_toml.py +0 -140
- flwr/cli/new/templates/app/flower.toml.tpl +0 -13
- flwr/cli/new/templates/app/requirements.numpy.txt.tpl +0 -2
- flwr/cli/new/templates/app/requirements.pytorch.txt.tpl +0 -4
- flwr/cli/new/templates/app/requirements.tensorflow.txt.tpl +0 -4
- flwr/client/node_state.py +0 -48
- flwr/client/node_state_tests.py +0 -65
- flwr/proto/driver_pb2.py +0 -44
- flwr/proto/driver_pb2_grpc.py +0 -169
- flwr/proto/driver_pb2_grpc.pyi +0 -66
- flwr/server/superlink/driver/driver_grpc.py +0 -54
- flwr/server/superlink/driver/driver_servicer.py +0 -129
- flwr/server/superlink/state/in_memory_state.py +0 -230
- flwr/server/superlink/state/sqlite_state.py +0 -630
- flwr/server/superlink/state/state.py +0 -154
- flwr_nightly-1.8.0.dev20240315.dist-info/RECORD +0 -211
- flwr_nightly-1.8.0.dev20240315.dist-info/entry_points.txt +0 -9
- {flwr_nightly-1.8.0.dev20240315.dist-info → flwr_nightly-1.15.0.dev20250114.dist-info}/LICENSE +0 -0
- {flwr_nightly-1.8.0.dev20240315.dist-info → flwr_nightly-1.15.0.dev20250114.dist-info}/WHEEL +0 -0
@@ -0,0 +1,58 @@
|
|
1
|
+
"""$project_name: A Flower Baseline."""
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
from flwr.client import ClientApp, NumPyClient
|
6
|
+
from flwr.common import Context
|
7
|
+
from $import_name.dataset import load_data
|
8
|
+
from $import_name.model import Net, get_weights, set_weights, test, train
|
9
|
+
|
10
|
+
|
11
|
+
class FlowerClient(NumPyClient):
|
12
|
+
"""A class defining the client."""
|
13
|
+
|
14
|
+
def __init__(self, net, trainloader, valloader, local_epochs):
|
15
|
+
self.net = net
|
16
|
+
self.trainloader = trainloader
|
17
|
+
self.valloader = valloader
|
18
|
+
self.local_epochs = local_epochs
|
19
|
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20
|
+
self.net.to(self.device)
|
21
|
+
|
22
|
+
def fit(self, parameters, config):
|
23
|
+
"""Traim model using this client's data."""
|
24
|
+
set_weights(self.net, parameters)
|
25
|
+
train_loss = train(
|
26
|
+
self.net,
|
27
|
+
self.trainloader,
|
28
|
+
self.local_epochs,
|
29
|
+
self.device,
|
30
|
+
)
|
31
|
+
return (
|
32
|
+
get_weights(self.net),
|
33
|
+
len(self.trainloader.dataset),
|
34
|
+
{"train_loss": train_loss},
|
35
|
+
)
|
36
|
+
|
37
|
+
def evaluate(self, parameters, config):
|
38
|
+
"""Evaluate model using this client's data."""
|
39
|
+
set_weights(self.net, parameters)
|
40
|
+
loss, accuracy = test(self.net, self.valloader, self.device)
|
41
|
+
return loss, len(self.valloader.dataset), {"accuracy": accuracy}
|
42
|
+
|
43
|
+
|
44
|
+
def client_fn(context: Context):
|
45
|
+
"""Construct a Client that will be run in a ClientApp."""
|
46
|
+
# Load model and data
|
47
|
+
net = Net()
|
48
|
+
partition_id = int(context.node_config["partition-id"])
|
49
|
+
num_partitions = int(context.node_config["num-partitions"])
|
50
|
+
trainloader, valloader = load_data(partition_id, num_partitions)
|
51
|
+
local_epochs = context.run_config["local-epochs"]
|
52
|
+
|
53
|
+
# Return Client instance
|
54
|
+
return FlowerClient(net, trainloader, valloader, local_epochs).to_client()
|
55
|
+
|
56
|
+
|
57
|
+
# Flower ClientApp
|
58
|
+
app = ClientApp(client_fn)
|
@@ -0,0 +1,55 @@
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from flwr.client import ClientApp, NumPyClient
|
5
|
+
from flwr.common import Context
|
6
|
+
from transformers import AutoModelForSequenceClassification
|
7
|
+
|
8
|
+
from $import_name.task import get_weights, load_data, set_weights, test, train
|
9
|
+
|
10
|
+
|
11
|
+
# Flower client
|
12
|
+
class FlowerClient(NumPyClient):
|
13
|
+
def __init__(self, net, trainloader, testloader, local_epochs):
|
14
|
+
self.net = net
|
15
|
+
self.trainloader = trainloader
|
16
|
+
self.testloader = testloader
|
17
|
+
self.local_epochs = local_epochs
|
18
|
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19
|
+
self.net.to(self.device)
|
20
|
+
|
21
|
+
def fit(self, parameters, config):
|
22
|
+
set_weights(self.net, parameters)
|
23
|
+
train(self.net, self.trainloader, epochs=self.local_epochs, device=self.device)
|
24
|
+
return get_weights(self.net), len(self.trainloader), {}
|
25
|
+
|
26
|
+
def evaluate(self, parameters, config):
|
27
|
+
set_weights(self.net, parameters)
|
28
|
+
loss, accuracy = test(self.net, self.testloader, self.device)
|
29
|
+
return float(loss), len(self.testloader), {"accuracy": accuracy}
|
30
|
+
|
31
|
+
|
32
|
+
def client_fn(context: Context):
|
33
|
+
|
34
|
+
# Get this client's dataset partition
|
35
|
+
partition_id = context.node_config["partition-id"]
|
36
|
+
num_partitions = context.node_config["num-partitions"]
|
37
|
+
model_name = context.run_config["model-name"]
|
38
|
+
trainloader, valloader = load_data(partition_id, num_partitions, model_name)
|
39
|
+
|
40
|
+
# Load model
|
41
|
+
num_labels = context.run_config["num-labels"]
|
42
|
+
net = AutoModelForSequenceClassification.from_pretrained(
|
43
|
+
model_name, num_labels=num_labels
|
44
|
+
)
|
45
|
+
|
46
|
+
local_epochs = context.run_config["local-epochs"]
|
47
|
+
|
48
|
+
# Return Client instance
|
49
|
+
return FlowerClient(net, trainloader, valloader, local_epochs).to_client()
|
50
|
+
|
51
|
+
|
52
|
+
# Flower ClientApp
|
53
|
+
app = ClientApp(
|
54
|
+
client_fn,
|
55
|
+
)
|
@@ -0,0 +1,50 @@
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
|
+
|
3
|
+
import jax
|
4
|
+
|
5
|
+
from flwr.client import ClientApp, NumPyClient
|
6
|
+
from flwr.common import Context
|
7
|
+
from $import_name.task import (
|
8
|
+
evaluation,
|
9
|
+
get_params,
|
10
|
+
load_data,
|
11
|
+
load_model,
|
12
|
+
loss_fn,
|
13
|
+
set_params,
|
14
|
+
train,
|
15
|
+
)
|
16
|
+
|
17
|
+
|
18
|
+
# Define Flower Client and client_fn
|
19
|
+
class FlowerClient(NumPyClient):
|
20
|
+
def __init__(self, input_dim):
|
21
|
+
self.train_x, self.train_y, self.test_x, self.test_y = load_data()
|
22
|
+
self.grad_fn = jax.grad(loss_fn)
|
23
|
+
self.params = load_model((input_dim,))
|
24
|
+
|
25
|
+
def fit(self, parameters, config):
|
26
|
+
set_params(self.params, parameters)
|
27
|
+
self.params, loss, num_examples = train(
|
28
|
+
self.params, self.grad_fn, self.train_x, self.train_y
|
29
|
+
)
|
30
|
+
return get_params(self.params), num_examples, {"loss": float(loss)}
|
31
|
+
|
32
|
+
def evaluate(self, parameters, config):
|
33
|
+
set_params(self.params, parameters)
|
34
|
+
loss, num_examples = evaluation(
|
35
|
+
self.params, self.grad_fn, self.test_x, self.test_y
|
36
|
+
)
|
37
|
+
return float(loss), num_examples, {"loss": float(loss)}
|
38
|
+
|
39
|
+
|
40
|
+
def client_fn(context: Context):
|
41
|
+
input_dim = context.run_config["input-dim"]
|
42
|
+
|
43
|
+
# Return Client instance
|
44
|
+
return FlowerClient(input_dim).to_client()
|
45
|
+
|
46
|
+
|
47
|
+
# Flower ClientApp
|
48
|
+
app = ClientApp(
|
49
|
+
client_fn,
|
50
|
+
)
|
@@ -0,0 +1,73 @@
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
|
+
|
3
|
+
import mlx.core as mx
|
4
|
+
import mlx.nn as nn
|
5
|
+
import mlx.optimizers as optim
|
6
|
+
|
7
|
+
from flwr.client import ClientApp, NumPyClient
|
8
|
+
from flwr.common import Context
|
9
|
+
from flwr.common.config import UserConfig
|
10
|
+
from $import_name.task import (
|
11
|
+
MLP,
|
12
|
+
batch_iterate,
|
13
|
+
eval_fn,
|
14
|
+
get_params,
|
15
|
+
load_data,
|
16
|
+
loss_fn,
|
17
|
+
set_params,
|
18
|
+
)
|
19
|
+
|
20
|
+
|
21
|
+
# Define Flower Client and client_fn
|
22
|
+
class FlowerClient(NumPyClient):
|
23
|
+
def __init__(
|
24
|
+
self,
|
25
|
+
data,
|
26
|
+
run_config: UserConfig,
|
27
|
+
num_classes,
|
28
|
+
):
|
29
|
+
num_layers = run_config["num-layers"]
|
30
|
+
hidden_dim = run_config["hidden-dim"]
|
31
|
+
input_dim = run_config["input-dim"]
|
32
|
+
batch_size = run_config["batch-size"]
|
33
|
+
learning_rate = run_config["lr"]
|
34
|
+
self.num_epochs = run_config["local-epochs"]
|
35
|
+
|
36
|
+
self.train_images, self.train_labels, self.test_images, self.test_labels = data
|
37
|
+
self.model = MLP(num_layers, input_dim, hidden_dim, num_classes)
|
38
|
+
self.optimizer = optim.SGD(learning_rate=learning_rate)
|
39
|
+
self.loss_and_grad_fn = nn.value_and_grad(self.model, loss_fn)
|
40
|
+
self.batch_size = batch_size
|
41
|
+
|
42
|
+
def fit(self, parameters, config):
|
43
|
+
set_params(self.model, parameters)
|
44
|
+
for _ in range(self.num_epochs):
|
45
|
+
for X, y in batch_iterate(
|
46
|
+
self.batch_size, self.train_images, self.train_labels
|
47
|
+
):
|
48
|
+
_, grads = self.loss_and_grad_fn(self.model, X, y)
|
49
|
+
self.optimizer.update(self.model, grads)
|
50
|
+
mx.eval(self.model.parameters(), self.optimizer.state)
|
51
|
+
return get_params(self.model), len(self.train_images), {}
|
52
|
+
|
53
|
+
def evaluate(self, parameters, config):
|
54
|
+
set_params(self.model, parameters)
|
55
|
+
accuracy = eval_fn(self.model, self.test_images, self.test_labels)
|
56
|
+
loss = loss_fn(self.model, self.test_images, self.test_labels)
|
57
|
+
return loss.item(), len(self.test_images), {"accuracy": accuracy.item()}
|
58
|
+
|
59
|
+
|
60
|
+
def client_fn(context: Context):
|
61
|
+
partition_id = context.node_config["partition-id"]
|
62
|
+
num_partitions = context.node_config["num-partitions"]
|
63
|
+
data = load_data(partition_id, num_partitions)
|
64
|
+
num_classes = 10
|
65
|
+
|
66
|
+
# Return Client instance
|
67
|
+
return FlowerClient(data, context.run_config, num_classes).to_client()
|
68
|
+
|
69
|
+
|
70
|
+
# Flower ClientApp
|
71
|
+
app = ClientApp(
|
72
|
+
client_fn,
|
73
|
+
)
|
@@ -1,21 +1,21 @@
|
|
1
|
-
"""$project_name: A Flower /
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
2
|
|
3
|
-
from flwr.client import
|
4
|
-
|
3
|
+
from flwr.client import ClientApp, NumPyClient
|
4
|
+
from flwr.common import Context
|
5
|
+
from $import_name.task import get_dummy_model
|
5
6
|
|
6
7
|
|
7
8
|
class FlowerClient(NumPyClient):
|
8
|
-
def get_parameters(self, config):
|
9
|
-
return [np.ones((1, 1))]
|
10
9
|
|
11
10
|
def fit(self, parameters, config):
|
12
|
-
|
11
|
+
model = get_dummy_model()
|
12
|
+
return [model], 1, {}
|
13
13
|
|
14
14
|
def evaluate(self, parameters, config):
|
15
15
|
return float(0.0), 1, {"accuracy": float(1.0)}
|
16
16
|
|
17
17
|
|
18
|
-
def client_fn(
|
18
|
+
def client_fn(context: Context):
|
19
19
|
return FlowerClient().to_client()
|
20
20
|
|
21
21
|
|
@@ -1,43 +1,52 @@
|
|
1
|
-
"""$project_name: A Flower /
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
from
|
6
|
-
|
7
|
-
|
8
|
-
load_data,
|
9
|
-
get_weights,
|
10
|
-
set_weights,
|
11
|
-
train,
|
12
|
-
test,
|
13
|
-
)
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
from flwr.client import ClientApp, NumPyClient
|
6
|
+
from flwr.common import Context
|
7
|
+
from $import_name.task import Net, get_weights, load_data, set_weights, test, train
|
14
8
|
|
15
9
|
|
16
10
|
# Define Flower Client and client_fn
|
17
11
|
class FlowerClient(NumPyClient):
|
18
|
-
def __init__(self, net, trainloader, valloader):
|
12
|
+
def __init__(self, net, trainloader, valloader, local_epochs):
|
19
13
|
self.net = net
|
20
14
|
self.trainloader = trainloader
|
21
15
|
self.valloader = valloader
|
16
|
+
self.local_epochs = local_epochs
|
17
|
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
18
|
+
self.net.to(self.device)
|
22
19
|
|
23
20
|
def fit(self, parameters, config):
|
24
21
|
set_weights(self.net, parameters)
|
25
|
-
|
26
|
-
|
22
|
+
train_loss = train(
|
23
|
+
self.net,
|
24
|
+
self.trainloader,
|
25
|
+
self.local_epochs,
|
26
|
+
self.device,
|
27
|
+
)
|
28
|
+
return (
|
29
|
+
get_weights(self.net),
|
30
|
+
len(self.trainloader.dataset),
|
31
|
+
{"train_loss": train_loss},
|
32
|
+
)
|
27
33
|
|
28
34
|
def evaluate(self, parameters, config):
|
29
35
|
set_weights(self.net, parameters)
|
30
|
-
loss, accuracy = test(self.net, self.valloader)
|
36
|
+
loss, accuracy = test(self.net, self.valloader, self.device)
|
31
37
|
return loss, len(self.valloader.dataset), {"accuracy": accuracy}
|
32
38
|
|
33
39
|
|
34
|
-
def client_fn(
|
40
|
+
def client_fn(context: Context):
|
35
41
|
# Load model and data
|
36
|
-
net = Net()
|
37
|
-
|
42
|
+
net = Net()
|
43
|
+
partition_id = context.node_config["partition-id"]
|
44
|
+
num_partitions = context.node_config["num-partitions"]
|
45
|
+
trainloader, valloader = load_data(partition_id, num_partitions)
|
46
|
+
local_epochs = context.run_config["local-epochs"]
|
38
47
|
|
39
48
|
# Return Client instance
|
40
|
-
return FlowerClient(net, trainloader, valloader).to_client()
|
49
|
+
return FlowerClient(net, trainloader, valloader, local_epochs).to_client()
|
41
50
|
|
42
51
|
|
43
52
|
# Flower ClientApp
|
@@ -0,0 +1,63 @@
|
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
|
+
|
3
|
+
import warnings
|
4
|
+
|
5
|
+
from sklearn.metrics import log_loss
|
6
|
+
|
7
|
+
from flwr.client import ClientApp, NumPyClient
|
8
|
+
from flwr.common import Context
|
9
|
+
from $import_name.task import (
|
10
|
+
get_model,
|
11
|
+
get_model_params,
|
12
|
+
load_data,
|
13
|
+
set_initial_params,
|
14
|
+
set_model_params,
|
15
|
+
)
|
16
|
+
|
17
|
+
|
18
|
+
class FlowerClient(NumPyClient):
|
19
|
+
def __init__(self, model, X_train, X_test, y_train, y_test):
|
20
|
+
self.model = model
|
21
|
+
self.X_train = X_train
|
22
|
+
self.X_test = X_test
|
23
|
+
self.y_train = y_train
|
24
|
+
self.y_test = y_test
|
25
|
+
|
26
|
+
def fit(self, parameters, config):
|
27
|
+
set_model_params(self.model, parameters)
|
28
|
+
|
29
|
+
# Ignore convergence failure due to low local epochs
|
30
|
+
with warnings.catch_warnings():
|
31
|
+
warnings.simplefilter("ignore")
|
32
|
+
self.model.fit(self.X_train, self.y_train)
|
33
|
+
|
34
|
+
return get_model_params(self.model), len(self.X_train), {}
|
35
|
+
|
36
|
+
def evaluate(self, parameters, config):
|
37
|
+
set_model_params(self.model, parameters)
|
38
|
+
|
39
|
+
loss = log_loss(self.y_test, self.model.predict_proba(self.X_test))
|
40
|
+
accuracy = self.model.score(self.X_test, self.y_test)
|
41
|
+
|
42
|
+
return loss, len(self.X_test), {"accuracy": accuracy}
|
43
|
+
|
44
|
+
|
45
|
+
def client_fn(context: Context):
|
46
|
+
partition_id = context.node_config["partition-id"]
|
47
|
+
num_partitions = context.node_config["num-partitions"]
|
48
|
+
|
49
|
+
X_train, X_test, y_train, y_test = load_data(partition_id, num_partitions)
|
50
|
+
|
51
|
+
# Create LogisticRegression Model
|
52
|
+
penalty = context.run_config["penalty"]
|
53
|
+
local_epochs = context.run_config["local-epochs"]
|
54
|
+
model = get_model(penalty, local_epochs)
|
55
|
+
|
56
|
+
# Setting initial parameters, akin to model.compile for keras models
|
57
|
+
set_initial_params(model)
|
58
|
+
|
59
|
+
return FlowerClient(model, X_train, X_test, y_train, y_test).to_client()
|
60
|
+
|
61
|
+
|
62
|
+
# Flower ClientApp
|
63
|
+
app = ClientApp(client_fn=client_fn)
|
@@ -1 +1,57 @@
|
|
1
|
-
"""$project_name: A Flower /
|
1
|
+
"""$project_name: A Flower / $framework_str app."""
|
2
|
+
|
3
|
+
from flwr.client import NumPyClient, ClientApp
|
4
|
+
from flwr.common import Context
|
5
|
+
|
6
|
+
from $import_name.task import load_data, load_model
|
7
|
+
|
8
|
+
|
9
|
+
# Define Flower Client and client_fn
|
10
|
+
class FlowerClient(NumPyClient):
|
11
|
+
def __init__(
|
12
|
+
self, model, data, epochs, batch_size, verbose
|
13
|
+
):
|
14
|
+
self.model = model
|
15
|
+
self.x_train, self.y_train, self.x_test, self.y_test = data
|
16
|
+
self.epochs = epochs
|
17
|
+
self.batch_size = batch_size
|
18
|
+
self.verbose = verbose
|
19
|
+
|
20
|
+
def fit(self, parameters, config):
|
21
|
+
self.model.set_weights(parameters)
|
22
|
+
self.model.fit(
|
23
|
+
self.x_train,
|
24
|
+
self.y_train,
|
25
|
+
epochs=self.epochs,
|
26
|
+
batch_size=self.batch_size,
|
27
|
+
verbose=self.verbose,
|
28
|
+
)
|
29
|
+
return self.model.get_weights(), len(self.x_train), {}
|
30
|
+
|
31
|
+
def evaluate(self, parameters, config):
|
32
|
+
self.model.set_weights(parameters)
|
33
|
+
loss, accuracy = self.model.evaluate(self.x_test, self.y_test, verbose=0)
|
34
|
+
return loss, len(self.x_test), {"accuracy": accuracy}
|
35
|
+
|
36
|
+
|
37
|
+
def client_fn(context: Context):
|
38
|
+
# Load model and data
|
39
|
+
net = load_model()
|
40
|
+
|
41
|
+
partition_id = context.node_config["partition-id"]
|
42
|
+
num_partitions = context.node_config["num-partitions"]
|
43
|
+
data = load_data(partition_id, num_partitions)
|
44
|
+
epochs = context.run_config["local-epochs"]
|
45
|
+
batch_size = context.run_config["batch-size"]
|
46
|
+
verbose = context.run_config.get("verbose")
|
47
|
+
|
48
|
+
# Return Client instance
|
49
|
+
return FlowerClient(
|
50
|
+
net, data, epochs, batch_size, verbose
|
51
|
+
).to_client()
|
52
|
+
|
53
|
+
|
54
|
+
# Flower ClientApp
|
55
|
+
app = ClientApp(
|
56
|
+
client_fn=client_fn,
|
57
|
+
)
|
@@ -0,0 +1,36 @@
|
|
1
|
+
"""$project_name: A Flower Baseline."""
|
2
|
+
|
3
|
+
from flwr_datasets import FederatedDataset
|
4
|
+
from flwr_datasets.partitioner import IidPartitioner
|
5
|
+
from torch.utils.data import DataLoader
|
6
|
+
from torchvision.transforms import Compose, Normalize, ToTensor
|
7
|
+
|
8
|
+
FDS = None # Cache FederatedDataset
|
9
|
+
|
10
|
+
|
11
|
+
def load_data(partition_id: int, num_partitions: int):
|
12
|
+
"""Load partition CIFAR10 data."""
|
13
|
+
# Only initialize `FederatedDataset` once
|
14
|
+
global FDS # pylint: disable=global-statement
|
15
|
+
if FDS is None:
|
16
|
+
partitioner = IidPartitioner(num_partitions=num_partitions)
|
17
|
+
FDS = FederatedDataset(
|
18
|
+
dataset="uoft-cs/cifar10",
|
19
|
+
partitioners={"train": partitioner},
|
20
|
+
)
|
21
|
+
partition = FDS.load_partition(partition_id)
|
22
|
+
# Divide data on each node: 80% train, 20% test
|
23
|
+
partition_train_test = partition.train_test_split(test_size=0.2, seed=42)
|
24
|
+
pytorch_transforms = Compose(
|
25
|
+
[ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
26
|
+
)
|
27
|
+
|
28
|
+
def apply_transforms(batch):
|
29
|
+
"""Apply transforms to the partition from FederatedDataset."""
|
30
|
+
batch["img"] = [pytorch_transforms(img) for img in batch["img"]]
|
31
|
+
return batch
|
32
|
+
|
33
|
+
partition_train_test = partition_train_test.with_transform(apply_transforms)
|
34
|
+
trainloader = DataLoader(partition_train_test["train"], batch_size=32, shuffle=True)
|
35
|
+
testloader = DataLoader(partition_train_test["test"], batch_size=32)
|
36
|
+
return trainloader, testloader
|
@@ -0,0 +1,15 @@
|
|
1
|
+
# Copyright 2024 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Flower CLI `new` command app / code / flwr_tune templates."""
|
@@ -0,0 +1,126 @@
|
|
1
|
+
"""$project_name: A Flower / FlowerTune app."""
|
2
|
+
|
3
|
+
import os
|
4
|
+
import warnings
|
5
|
+
from typing import Dict, Tuple
|
6
|
+
|
7
|
+
import torch
|
8
|
+
from flwr.client import ClientApp, NumPyClient
|
9
|
+
from flwr.common import Context
|
10
|
+
from flwr.common.config import unflatten_dict
|
11
|
+
from flwr.common.typing import NDArrays, Scalar
|
12
|
+
from omegaconf import DictConfig
|
13
|
+
|
14
|
+
from transformers import TrainingArguments
|
15
|
+
from trl import SFTTrainer
|
16
|
+
|
17
|
+
from $import_name.dataset import (
|
18
|
+
get_tokenizer_and_data_collator_and_propt_formatting,
|
19
|
+
load_data,
|
20
|
+
replace_keys,
|
21
|
+
)
|
22
|
+
from $import_name.models import (
|
23
|
+
cosine_annealing,
|
24
|
+
get_model,
|
25
|
+
set_parameters,
|
26
|
+
get_parameters,
|
27
|
+
)
|
28
|
+
|
29
|
+
# Avoid warnings
|
30
|
+
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
31
|
+
os.environ["RAY_DISABLE_DOCKER_CPU_WARNING"] = "1"
|
32
|
+
warnings.filterwarnings("ignore", category=UserWarning)
|
33
|
+
|
34
|
+
|
35
|
+
# pylint: disable=too-many-arguments
|
36
|
+
# pylint: disable=too-many-instance-attributes
|
37
|
+
class FlowerClient(NumPyClient):
|
38
|
+
"""Standard Flower client for CNN training."""
|
39
|
+
|
40
|
+
def __init__(
|
41
|
+
self,
|
42
|
+
model_cfg: DictConfig,
|
43
|
+
train_cfg: DictConfig,
|
44
|
+
trainset,
|
45
|
+
tokenizer,
|
46
|
+
formatting_prompts_func,
|
47
|
+
data_collator,
|
48
|
+
num_rounds,
|
49
|
+
): # pylint: disable=too-many-arguments
|
50
|
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
51
|
+
self.train_cfg = train_cfg
|
52
|
+
self.training_argumnets = TrainingArguments(**train_cfg.training_arguments)
|
53
|
+
self.tokenizer = tokenizer
|
54
|
+
self.formatting_prompts_func = formatting_prompts_func
|
55
|
+
self.data_collator = data_collator
|
56
|
+
self.num_rounds = num_rounds
|
57
|
+
self.trainset = trainset
|
58
|
+
|
59
|
+
# instantiate model
|
60
|
+
self.model = get_model(model_cfg)
|
61
|
+
|
62
|
+
def fit(
|
63
|
+
self, parameters: NDArrays, config: Dict[str, Scalar]
|
64
|
+
) -> Tuple[NDArrays, int, Dict]:
|
65
|
+
"""Implement distributed fit function for a given client."""
|
66
|
+
set_parameters(self.model, parameters)
|
67
|
+
|
68
|
+
new_lr = cosine_annealing(
|
69
|
+
int(config["current_round"]),
|
70
|
+
self.num_rounds,
|
71
|
+
self.train_cfg.learning_rate_max,
|
72
|
+
self.train_cfg.learning_rate_min,
|
73
|
+
)
|
74
|
+
|
75
|
+
self.training_argumnets.learning_rate = new_lr
|
76
|
+
self.training_argumnets.output_dir = config["save_path"]
|
77
|
+
|
78
|
+
# Construct trainer
|
79
|
+
trainer = SFTTrainer(
|
80
|
+
model=self.model,
|
81
|
+
tokenizer=self.tokenizer,
|
82
|
+
args=self.training_argumnets,
|
83
|
+
max_seq_length=self.train_cfg.seq_length,
|
84
|
+
train_dataset=self.trainset,
|
85
|
+
formatting_func=self.formatting_prompts_func,
|
86
|
+
data_collator=self.data_collator,
|
87
|
+
)
|
88
|
+
|
89
|
+
# Do local training
|
90
|
+
results = trainer.train()
|
91
|
+
|
92
|
+
return (
|
93
|
+
get_parameters(self.model),
|
94
|
+
len(self.trainset),
|
95
|
+
{"train_loss": results.training_loss},
|
96
|
+
)
|
97
|
+
|
98
|
+
|
99
|
+
def client_fn(context: Context) -> FlowerClient:
|
100
|
+
"""Create a Flower client representing a single organization."""
|
101
|
+
partition_id = context.node_config["partition-id"]
|
102
|
+
num_partitions = context.node_config["num-partitions"]
|
103
|
+
num_rounds = context.run_config["num-server-rounds"]
|
104
|
+
cfg = DictConfig(replace_keys(unflatten_dict(context.run_config)))
|
105
|
+
|
106
|
+
# Let's get the client partition
|
107
|
+
client_trainset = load_data(partition_id, num_partitions, cfg.static.dataset.name)
|
108
|
+
(
|
109
|
+
tokenizer,
|
110
|
+
data_collator,
|
111
|
+
formatting_prompts_func,
|
112
|
+
) = get_tokenizer_and_data_collator_and_propt_formatting(cfg.model.name)
|
113
|
+
|
114
|
+
return FlowerClient(
|
115
|
+
cfg.model,
|
116
|
+
cfg.train,
|
117
|
+
client_trainset,
|
118
|
+
tokenizer,
|
119
|
+
formatting_prompts_func,
|
120
|
+
data_collator,
|
121
|
+
num_rounds,
|
122
|
+
).to_client()
|
123
|
+
|
124
|
+
|
125
|
+
# Flower ClientApp
|
126
|
+
app = ClientApp(client_fn)
|