flwr-nightly 1.21.0.dev20250902__py3-none-any.whl → 1.21.0.dev20250904__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,218 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Adaptive Federated Optimization (FedOpt) [Reddi et al., 2020] abstract strategy.
16
+
17
+ Paper: arxiv.org/abs/2003.00295
18
+ """
19
+
20
+ from collections.abc import Iterable
21
+ from logging import INFO
22
+ from typing import Callable, Optional
23
+
24
+ import numpy as np
25
+
26
+ from flwr.common import (
27
+ ArrayRecord,
28
+ ConfigRecord,
29
+ Message,
30
+ MetricRecord,
31
+ NDArray,
32
+ RecordDict,
33
+ log,
34
+ )
35
+ from flwr.server import Grid
36
+
37
+ from .fedavg import FedAvg
38
+ from .strategy_utils import AggregationError
39
+
40
+
41
+ # pylint: disable=line-too-long
42
+ class FedOpt(FedAvg):
43
+ """Federated Optim strategy.
44
+
45
+ Implementation based on https://arxiv.org/abs/2003.00295v5
46
+
47
+ Parameters
48
+ ----------
49
+ fraction_train : float (default: 1.0)
50
+ Fraction of nodes used during training. In case `min_train_nodes`
51
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
52
+ will still be sampled.
53
+ fraction_evaluate : float (default: 1.0)
54
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
55
+ is larger than `fraction_evaluate * total_connected_nodes`,
56
+ `min_evaluate_nodes` will still be sampled.
57
+ min_train_nodes : int (default: 2)
58
+ Minimum number of nodes used during training.
59
+ min_evaluate_nodes : int (default: 2)
60
+ Minimum number of nodes used during validation.
61
+ min_available_nodes : int (default: 2)
62
+ Minimum number of total nodes in the system.
63
+ weighted_by_key : str (default: "num-examples")
64
+ The key within each MetricRecord whose value is used as the weight when
65
+ computing weighted averages for both ArrayRecords and MetricRecords.
66
+ arrayrecord_key : str (default: "arrays")
67
+ Key used to store the ArrayRecord when constructing Messages.
68
+ configrecord_key : str (default: "config")
69
+ Key used to store the ConfigRecord when constructing Messages.
70
+ train_metrics_aggr_fn : Optional[callable] (default: None)
71
+ Function with signature (list[RecordDict], str) -> MetricRecord,
72
+ used to aggregate MetricRecords from training round replies.
73
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
74
+ average using the provided weight factor key.
75
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
76
+ Function with signature (list[RecordDict], str) -> MetricRecord,
77
+ used to aggregate MetricRecords from training round replies.
78
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
79
+ average using the provided weight factor key.
80
+ eta : float, optional
81
+ Server-side learning rate. Defaults to 1e-1.
82
+ eta_l : float, optional
83
+ Client-side learning rate. Defaults to 1e-1.
84
+ beta_1 : float, optional
85
+ Momentum parameter. Defaults to 0.0.
86
+ beta_2 : float, optional
87
+ Second moment parameter. Defaults to 0.0.
88
+ tau : float, optional
89
+ Controls the algorithm's degree of adaptability. Defaults to 1e-3.
90
+ """
91
+
92
+ # pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-locals, line-too-long
93
+ def __init__(
94
+ self,
95
+ *,
96
+ fraction_train: float = 1.0,
97
+ fraction_evaluate: float = 1.0,
98
+ min_train_nodes: int = 2,
99
+ min_evaluate_nodes: int = 2,
100
+ min_available_nodes: int = 2,
101
+ weighted_by_key: str = "num-examples",
102
+ arrayrecord_key: str = "arrays",
103
+ configrecord_key: str = "config",
104
+ train_metrics_aggr_fn: Optional[
105
+ Callable[[list[RecordDict], str], MetricRecord]
106
+ ] = None,
107
+ evaluate_metrics_aggr_fn: Optional[
108
+ Callable[[list[RecordDict], str], MetricRecord]
109
+ ] = None,
110
+ eta: float = 1e-1,
111
+ eta_l: float = 1e-1,
112
+ beta_1: float = 0.0,
113
+ beta_2: float = 0.0,
114
+ tau: float = 1e-3,
115
+ ) -> None:
116
+ super().__init__(
117
+ fraction_train=fraction_train,
118
+ fraction_evaluate=fraction_evaluate,
119
+ min_train_nodes=min_train_nodes,
120
+ min_evaluate_nodes=min_evaluate_nodes,
121
+ min_available_nodes=min_available_nodes,
122
+ weighted_by_key=weighted_by_key,
123
+ arrayrecord_key=arrayrecord_key,
124
+ configrecord_key=configrecord_key,
125
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
126
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
127
+ )
128
+ self.current_arrays: Optional[dict[str, NDArray]] = None
129
+ self.eta = eta
130
+ self.eta_l = eta_l
131
+ self.tau = tau
132
+ self.beta_1 = beta_1
133
+ self.beta_2 = beta_2
134
+ self.m_t: Optional[dict[str, NDArray]] = None
135
+ self.v_t: Optional[dict[str, NDArray]] = None
136
+
137
+ def summary(self) -> None:
138
+ """Log summary configuration of the strategy."""
139
+ log(INFO, "\t├──> FedOpt settings:")
140
+ log(
141
+ INFO,
142
+ "\t│\t├── eta (%s) | eta_l (%s)",
143
+ f"{self.eta:.6g}",
144
+ f"{self.eta_l:.6g}",
145
+ )
146
+ log(
147
+ INFO,
148
+ "\t│\t├── beta_1 (%s) | beta_2 (%s)",
149
+ f"{self.beta_1:.6g}",
150
+ f"{self.beta_2:.6g}",
151
+ )
152
+ log(
153
+ INFO,
154
+ "\t│\t└── tau (%s)",
155
+ f"{self.tau:.6g}",
156
+ )
157
+ super().summary()
158
+
159
+ def configure_train(
160
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
161
+ ) -> Iterable[Message]:
162
+ """Configure the next round of federated training."""
163
+ # Keep track of array record being communicated
164
+ self.current_arrays = {k: array.numpy() for k, array in arrays.items()}
165
+ return super().configure_train(server_round, arrays, config, grid)
166
+
167
+ def _compute_deltat_and_mt(
168
+ self, aggregated_arrayrecord: ArrayRecord
169
+ ) -> tuple[dict[str, NDArray], dict[str, NDArray], dict[str, NDArray]]:
170
+ """Compute delta_t and m_t.
171
+
172
+ This is a shared stage during aggregation for FedAdagrad, FedAdam and FedYogi.
173
+ """
174
+ if self.current_arrays is None:
175
+ reason = (
176
+ "Current arrays not set. Ensure that `configure_train` has been "
177
+ "called before aggregation."
178
+ )
179
+ raise AggregationError(reason=reason)
180
+
181
+ aggregated_ndarrays = {
182
+ k: array.numpy() for k, array in aggregated_arrayrecord.items()
183
+ }
184
+
185
+ # Check keys in aggregated arrays match those in current arrays
186
+ if set(aggregated_ndarrays.keys()) != set(self.current_arrays.keys()):
187
+ reason = (
188
+ "Keys of the aggregated arrays do not match those of the arrays "
189
+ "stored at the strategy. `delta_t = aggregated_arrays - "
190
+ "current_arrays` cannot be computed."
191
+ )
192
+ raise AggregationError(reason=reason)
193
+
194
+ # Check that the shape of values match
195
+ # Only shapes that match can compute delta_t (we don't want
196
+ # broadcasting to happen)
197
+ for k, x in aggregated_ndarrays.items():
198
+ if x.shape != self.current_arrays[k].shape:
199
+ reason = (
200
+ f"Shape of aggregated array '{k}' does not match "
201
+ f"shape of the array under the same key stored in the strategy. "
202
+ f"Cannot compute `delta_t`."
203
+ )
204
+ raise AggregationError(reason=reason)
205
+
206
+ delta_t = {
207
+ k: x - self.current_arrays[k] for k, x in aggregated_ndarrays.items()
208
+ }
209
+
210
+ # m_t
211
+ if not self.m_t:
212
+ self.m_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
213
+ self.m_t = {
214
+ k: self.beta_1 * v + (1 - self.beta_1) * delta_t[k]
215
+ for k, v in self.m_t.items()
216
+ }
217
+
218
+ return delta_t, self.m_t, aggregated_ndarrays
@@ -0,0 +1,173 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Adaptive Federated Optimization using Yogi (FedYogi) [Reddi et al., 2020] strategy.
16
+
17
+ Paper: arxiv.org/abs/2003.00295
18
+ """
19
+
20
+
21
+ from collections import OrderedDict
22
+ from collections.abc import Iterable
23
+ from typing import Callable, Optional
24
+
25
+ import numpy as np
26
+
27
+ from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
28
+
29
+ from .fedopt import FedOpt
30
+ from .strategy_utils import AggregationError
31
+
32
+
33
+ # pylint: disable=line-too-long
34
+ class FedYogi(FedOpt):
35
+ """FedYogi [Reddi et al., 2020] strategy.
36
+
37
+ Implementation based on https://arxiv.org/abs/2003.00295v5
38
+
39
+
40
+ Parameters
41
+ ----------
42
+ fraction_train : float (default: 1.0)
43
+ Fraction of nodes used during training. In case `min_train_nodes`
44
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
45
+ will still be sampled.
46
+ fraction_evaluate : float (default: 1.0)
47
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
48
+ is larger than `fraction_evaluate * total_connected_nodes`,
49
+ `min_evaluate_nodes` will still be sampled.
50
+ min_train_nodes : int (default: 2)
51
+ Minimum number of nodes used during training.
52
+ min_evaluate_nodes : int (default: 2)
53
+ Minimum number of nodes used during validation.
54
+ min_available_nodes : int (default: 2)
55
+ Minimum number of total nodes in the system.
56
+ weighted_by_key : str (default: "num-examples")
57
+ The key within each MetricRecord whose value is used as the weight when
58
+ computing weighted averages for both ArrayRecords and MetricRecords.
59
+ arrayrecord_key : str (default: "arrays")
60
+ Key used to store the ArrayRecord when constructing Messages.
61
+ configrecord_key : str (default: "config")
62
+ Key used to store the ConfigRecord when constructing Messages.
63
+ train_metrics_aggr_fn : Optional[callable] (default: None)
64
+ Function with signature (list[RecordDict], str) -> MetricRecord,
65
+ used to aggregate MetricRecords from training round replies.
66
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
67
+ average using the provided weight factor key.
68
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
69
+ Function with signature (list[RecordDict], str) -> MetricRecord,
70
+ used to aggregate MetricRecords from training round replies.
71
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
72
+ average using the provided weight factor key.
73
+ eta : float, optional
74
+ Server-side learning rate. Defaults to 1e-2.
75
+ eta_l : float, optional
76
+ Client-side learning rate. Defaults to 0.0316.
77
+ beta_1 : float, optional
78
+ Momentum parameter. Defaults to 0.9.
79
+ beta_2 : float, optional
80
+ Second moment parameter. Defaults to 0.99.
81
+ tau : float, optional
82
+ Controls the algorithm's degree of adaptability.
83
+ Defaults to 1e-3.
84
+ """
85
+
86
+ # pylint: disable=too-many-arguments, too-many-locals
87
+ def __init__(
88
+ self,
89
+ *,
90
+ fraction_train: float = 1.0,
91
+ fraction_evaluate: float = 1.0,
92
+ min_train_nodes: int = 2,
93
+ min_evaluate_nodes: int = 2,
94
+ min_available_nodes: int = 2,
95
+ weighted_by_key: str = "num-examples",
96
+ arrayrecord_key: str = "arrays",
97
+ configrecord_key: str = "config",
98
+ train_metrics_aggr_fn: Optional[
99
+ Callable[[list[RecordDict], str], MetricRecord]
100
+ ] = None,
101
+ evaluate_metrics_aggr_fn: Optional[
102
+ Callable[[list[RecordDict], str], MetricRecord]
103
+ ] = None,
104
+ eta: float = 1e-2,
105
+ eta_l: float = 0.0316,
106
+ beta_1: float = 0.9,
107
+ beta_2: float = 0.99,
108
+ tau: float = 1e-3,
109
+ ) -> None:
110
+ super().__init__(
111
+ fraction_train=fraction_train,
112
+ fraction_evaluate=fraction_evaluate,
113
+ min_train_nodes=min_train_nodes,
114
+ min_evaluate_nodes=min_evaluate_nodes,
115
+ min_available_nodes=min_available_nodes,
116
+ weighted_by_key=weighted_by_key,
117
+ arrayrecord_key=arrayrecord_key,
118
+ configrecord_key=configrecord_key,
119
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
120
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
121
+ eta=eta,
122
+ eta_l=eta_l,
123
+ beta_1=beta_1,
124
+ beta_2=beta_2,
125
+ tau=tau,
126
+ )
127
+
128
+ def aggregate_train(
129
+ self,
130
+ server_round: int,
131
+ replies: Iterable[Message],
132
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
133
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
134
+ aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
135
+ server_round, replies
136
+ )
137
+
138
+ if aggregated_arrayrecord is None:
139
+ return aggregated_arrayrecord, aggregated_metrics
140
+
141
+ if self.current_arrays is None:
142
+ reason = (
143
+ "Current arrays not set. Ensure that `configure_train` has been "
144
+ "called before aggregation."
145
+ )
146
+ raise AggregationError(reason=reason)
147
+
148
+ # Compute intermediate variables
149
+ delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
150
+ aggregated_arrayrecord
151
+ )
152
+
153
+ # v_t
154
+ if not self.v_t:
155
+ self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
156
+ self.v_t = {
157
+ k: v
158
+ - (1.0 - self.beta_2) * (delta_t[k] ** 2) * np.sign(v - delta_t[k] ** 2)
159
+ for k, v in self.v_t.items()
160
+ }
161
+
162
+ new_arrays = {
163
+ k: x + self.eta * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
164
+ for k, x in self.current_arrays.items()
165
+ }
166
+
167
+ # Update current arrays
168
+ self.current_arrays = new_arrays
169
+
170
+ return (
171
+ ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
172
+ aggregated_metrics,
173
+ )
@@ -15,16 +15,91 @@
15
15
  """Strategy results."""
16
16
 
17
17
 
18
+ import pprint
18
19
  from dataclasses import dataclass, field
19
20
 
20
21
  from flwr.common import ArrayRecord, MetricRecord
22
+ from flwr.common.typing import MetricRecordValues
21
23
 
22
24
 
23
25
  @dataclass
24
26
  class Result:
25
- """Data class carrying records generated during the execution of a strategy."""
27
+ """Data class carrying records generated during the execution of a strategy.
28
+
29
+ This class encapsulates the results of a federated learning strategy execution,
30
+ including the final global model parameters and metrics collected throughout
31
+ the federated training and evaluation (both federated and centralized) stages.
32
+
33
+ Attributes
34
+ ----------
35
+ arrays : ArrayRecord
36
+ The final global model parameters. Contains the
37
+ aggregated model weights/parameters that resulted from the federated
38
+ learning process.
39
+ train_metrics_clientapp : dict[int, MetricRecord]
40
+ Training metrics collected from ClientApps, indexed by round number.
41
+ Contains aggregated metrics (e.g., loss, accuracy) from the training
42
+ phase of each federated learning round.
43
+ evaluate_metrics_clientapp : dict[int, MetricRecord]
44
+ Evaluation metrics collected from ClientApps, indexed by round number.
45
+ Contains aggregated metrics (e.g. validation loss) from the evaluation
46
+ phase where ClientApps evaluate the global model on their local
47
+ validation/test data.
48
+ evaluate_metrics_serverapp : dict[int, MetricRecord]
49
+ Evaluation metrics generated at the ServerApp, indexed by round number.
50
+ Contains metrics from centralized evaluation performed by the ServerApp
51
+ (e.g., when the server evaluates the global model on a held-out dataset).
52
+ """
26
53
 
27
54
  arrays: ArrayRecord = field(default_factory=ArrayRecord)
28
55
  train_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
29
56
  evaluate_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
30
57
  evaluate_metrics_serverapp: dict[int, MetricRecord] = field(default_factory=dict)
58
+
59
+ def __repr__(self) -> str:
60
+ """Create a representation of the Result instance."""
61
+ rep = ""
62
+ arr_size = sum(len(array.data) for array in self.arrays.values()) / (1024**2)
63
+ rep += "Global Arrays:\n" + f"\tArrayRecord ({arr_size:.3f} MB)\n" + "\n"
64
+ rep += (
65
+ "Aggregated ClientApp-side Train Metrics:\n"
66
+ + pprint.pformat(stringify_dict(self.train_metrics_clientapp), indent=2)
67
+ + "\n\n"
68
+ )
69
+
70
+ rep += (
71
+ "Aggregated ClientApp-side Evaluate Metrics:\n"
72
+ + pprint.pformat(stringify_dict(self.evaluate_metrics_clientapp), indent=2)
73
+ + "\n\n"
74
+ )
75
+
76
+ rep += (
77
+ "ServerApp-side Evaluate Metrics:\n"
78
+ + pprint.pformat(stringify_dict(self.evaluate_metrics_serverapp), indent=2)
79
+ + "\n"
80
+ )
81
+
82
+ return rep
83
+
84
+
85
+ def format_value(val: MetricRecordValues) -> str:
86
+ """Format a value as string, applying scientific notation for floats."""
87
+ if isinstance(val, float):
88
+ return f"{val:.4e}"
89
+ if isinstance(val, int):
90
+ return str(val)
91
+ if isinstance(val, list):
92
+ return str([f"{x:.4e}" if isinstance(x, float) else str(x) for x in val])
93
+ return str(val)
94
+
95
+
96
+ def stringify_dict(d: dict[int, MetricRecord]) -> dict[int, dict[str, str]]:
97
+ """Return a copy results metrics but with values converted to string and formatted
98
+ accordingtly."""
99
+ new_metrics_dict = {}
100
+ for k, inner in d.items():
101
+ new_inner = {}
102
+ for ik, iv in inner.items():
103
+ new_inner[ik] = format_value(iv)
104
+ new_metrics_dict[k] = new_inner
105
+ return new_metrics_dict
@@ -15,6 +15,7 @@
15
15
  """Flower message-based strategy."""
16
16
 
17
17
 
18
+ import io
18
19
  import time
19
20
  from abc import ABC, abstractmethod
20
21
  from collections.abc import Iterable
@@ -22,11 +23,10 @@ from logging import INFO
22
23
  from typing import Callable, Optional
23
24
 
24
25
  from flwr.common import ArrayRecord, ConfigRecord, Message, MetricRecord, log
25
- from flwr.common.exit import ExitCode, flwr_exit
26
26
  from flwr.server import Grid
27
27
 
28
28
  from .result import Result
29
- from .strategy_utils import InconsistentMessageReplies, log_strategy_start_info
29
+ from .strategy_utils import log_strategy_start_info
30
30
 
31
31
 
32
32
  class Strategy(ABC):
@@ -202,7 +202,7 @@ class Strategy(ABC):
202
202
  log(INFO, "[ROUND %s/%s]", current_round, num_rounds)
203
203
 
204
204
  # -----------------------------------------------------------------
205
- # --- TRAINING ----------------------------------------------------
205
+ # --- TRAINING (CLIENTAPP-SIDE) -----------------------------------
206
206
  # -----------------------------------------------------------------
207
207
 
208
208
  # Call strategy to configure training round
@@ -218,15 +218,10 @@ class Strategy(ABC):
218
218
  )
219
219
 
220
220
  # Aggregate train
221
- try:
222
- agg_arrays, agg_train_metrics = self.aggregate_train(
223
- current_round,
224
- train_replies,
225
- )
226
- except InconsistentMessageReplies as e:
227
- flwr_exit(
228
- ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET, message=str(e)
229
- )
221
+ agg_arrays, agg_train_metrics = self.aggregate_train(
222
+ current_round,
223
+ train_replies,
224
+ )
230
225
 
231
226
  # Log training metrics and append to history
232
227
  if agg_arrays is not None:
@@ -237,7 +232,7 @@ class Strategy(ABC):
237
232
  result.train_metrics_clientapp[current_round] = agg_train_metrics
238
233
 
239
234
  # -----------------------------------------------------------------
240
- # --- EVALUATION (LOCAL) ------------------------------------------
235
+ # --- EVALUATION (CLIENTAPP-SIDE) ---------------------------------
241
236
  # -----------------------------------------------------------------
242
237
 
243
238
  # Call strategy to configure evaluation round
@@ -253,15 +248,10 @@ class Strategy(ABC):
253
248
  )
254
249
 
255
250
  # Aggregate evaluate
256
- try:
257
- agg_evaluate_metrics = self.aggregate_evaluate(
258
- current_round,
259
- evaluate_replies,
260
- )
261
- except InconsistentMessageReplies as e:
262
- flwr_exit(
263
- ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET, message=str(e)
264
- )
251
+ agg_evaluate_metrics = self.aggregate_evaluate(
252
+ current_round,
253
+ evaluate_replies,
254
+ )
265
255
 
266
256
  # Log training metrics and append to history
267
257
  if agg_evaluate_metrics is not None:
@@ -269,7 +259,7 @@ class Strategy(ABC):
269
259
  result.evaluate_metrics_clientapp[current_round] = agg_evaluate_metrics
270
260
 
271
261
  # -----------------------------------------------------------------
272
- # --- EVALUATION (GLOBAL) -----------------------------------------
262
+ # --- EVALUATION (SERVERAPP-SIDE) ---------------------------------
273
263
  # -----------------------------------------------------------------
274
264
 
275
265
  # Centralized evaluation
@@ -282,5 +272,10 @@ class Strategy(ABC):
282
272
  log(INFO, "")
283
273
  log(INFO, "Strategy execution finished in %.2fs", time.time() - t_start)
284
274
  log(INFO, "")
275
+ log(INFO, "Final results:")
276
+ log(INFO, "")
277
+ for line in io.StringIO(str(result)):
278
+ log(INFO, "\t%s", line.strip("\n"))
279
+ log(INFO, "")
285
280
 
286
281
  return result
@@ -30,13 +30,26 @@ from flwr.common import (
30
30
  RecordDict,
31
31
  log,
32
32
  )
33
+ from flwr.common.exception import AppExitException
34
+ from flwr.common.exit import ExitCode
33
35
  from flwr.server import Grid
34
36
 
35
37
 
36
- class InconsistentMessageReplies(Exception):
38
+ class InconsistentMessageReplies(AppExitException):
37
39
  """Exception triggered when replies are inconsistent and therefore aggregation must
38
40
  be skipped."""
39
41
 
42
+ exit_code = ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET
43
+
44
+ def __init__(self, reason: str):
45
+ super().__init__(reason)
46
+
47
+
48
+ class AggregationError(AppExitException):
49
+ """Exception triggered when aggregation fails."""
50
+
51
+ exit_code = ExitCode.SERVERAPP_STRATEGY_AGGREGATION_ERROR
52
+
40
53
  def __init__(self, reason: str):
41
54
  super().__init__(reason)
42
55
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: flwr-nightly
3
- Version: 1.21.0.dev20250902
3
+ Version: 1.21.0.dev20250904
4
4
  Summary: Flower: A Friendly Federated AI Framework
5
5
  License: Apache-2.0
6
6
  Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning