flwr-nightly 1.21.0.dev20250902__py3-none-any.whl → 1.21.0.dev20250904__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/constant.py +25 -8
- flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -8
- flwr/cli/run/run.py +2 -6
- flwr/clientapp/__init__.py +4 -0
- flwr/clientapp/centraldp_mods.py +132 -0
- flwr/common/exception.py +31 -0
- flwr/common/exit/exit_code.py +2 -0
- flwr/server/serverapp/app.py +41 -28
- flwr/serverapp/dp_fixed_clipping.py +352 -0
- flwr/serverapp/strategy/__init__.py +12 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +352 -0
- flwr/serverapp/strategy/fedadagrad.py +162 -0
- flwr/serverapp/strategy/fedadam.py +181 -0
- flwr/serverapp/strategy/fedopt.py +218 -0
- flwr/serverapp/strategy/fedyogi.py +173 -0
- flwr/serverapp/strategy/result.py +76 -1
- flwr/serverapp/strategy/strategy.py +18 -23
- flwr/serverapp/strategy/strategy_utils.py +14 -1
- {flwr_nightly-1.21.0.dev20250902.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/METADATA +1 -1
- {flwr_nightly-1.21.0.dev20250902.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/RECORD +22 -14
- {flwr_nightly-1.21.0.dev20250902.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/WHEEL +0 -0
- {flwr_nightly-1.21.0.dev20250902.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,352 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Message-based Central differential privacy with fixed clipping.
|
16
|
+
|
17
|
+
Papers: https://arxiv.org/abs/1712.07557, https://arxiv.org/abs/1710.06963
|
18
|
+
"""
|
19
|
+
|
20
|
+
from abc import ABC
|
21
|
+
from collections import OrderedDict
|
22
|
+
from collections.abc import Iterable
|
23
|
+
from logging import INFO, WARNING
|
24
|
+
from typing import Optional
|
25
|
+
|
26
|
+
from flwr.common import Array, ArrayRecord, ConfigRecord, Message, MetricRecord, log
|
27
|
+
from flwr.common.differential_privacy import (
|
28
|
+
add_gaussian_noise_inplace,
|
29
|
+
compute_clip_model_update,
|
30
|
+
compute_stdv,
|
31
|
+
)
|
32
|
+
from flwr.common.differential_privacy_constants import (
|
33
|
+
CLIENTS_DISCREPANCY_WARNING,
|
34
|
+
KEY_CLIPPING_NORM,
|
35
|
+
)
|
36
|
+
from flwr.server import Grid
|
37
|
+
|
38
|
+
from .strategy import Strategy
|
39
|
+
|
40
|
+
|
41
|
+
class DifferentialPrivacyFixedClippingBase(Strategy, ABC):
|
42
|
+
"""Base class for DP strategies with fixed clipping.
|
43
|
+
|
44
|
+
This class contains common functionality shared between server-side and
|
45
|
+
client-side fixed clipping implementations.
|
46
|
+
|
47
|
+
Parameters
|
48
|
+
----------
|
49
|
+
strategy : Strategy
|
50
|
+
The strategy to which DP functionalities will be added by this wrapper.
|
51
|
+
noise_multiplier : float
|
52
|
+
The noise multiplier for the Gaussian mechanism for model updates.
|
53
|
+
A value of 1.0 or higher is recommended for strong privacy.
|
54
|
+
clipping_norm : float
|
55
|
+
The value of the clipping norm.
|
56
|
+
num_sampled_clients : int
|
57
|
+
The number of clients that are sampled on each round.
|
58
|
+
"""
|
59
|
+
|
60
|
+
# pylint: disable=too-many-arguments,too-many-instance-attributes
|
61
|
+
def __init__(
|
62
|
+
self,
|
63
|
+
strategy: Strategy,
|
64
|
+
noise_multiplier: float,
|
65
|
+
clipping_norm: float,
|
66
|
+
num_sampled_clients: int,
|
67
|
+
) -> None:
|
68
|
+
super().__init__()
|
69
|
+
|
70
|
+
self.strategy = strategy
|
71
|
+
|
72
|
+
if noise_multiplier < 0:
|
73
|
+
raise ValueError("The noise multiplier should be a non-negative value.")
|
74
|
+
|
75
|
+
if clipping_norm <= 0:
|
76
|
+
raise ValueError("The clipping norm should be a positive value.")
|
77
|
+
|
78
|
+
if num_sampled_clients <= 0:
|
79
|
+
raise ValueError(
|
80
|
+
"The number of sampled clients should be a positive value."
|
81
|
+
)
|
82
|
+
|
83
|
+
self.noise_multiplier = noise_multiplier
|
84
|
+
self.clipping_norm = clipping_norm
|
85
|
+
self.num_sampled_clients = num_sampled_clients
|
86
|
+
|
87
|
+
def _validate_replies(self, replies: Iterable[Message]) -> bool:
|
88
|
+
"""Validate replies and log errors/warnings.
|
89
|
+
|
90
|
+
Returns
|
91
|
+
-------
|
92
|
+
bool
|
93
|
+
True if replies are valid for aggregation, False otherwise.
|
94
|
+
"""
|
95
|
+
num_errors = 0
|
96
|
+
num_replies_with_content = 0
|
97
|
+
for msg in replies:
|
98
|
+
if msg.has_error():
|
99
|
+
log(
|
100
|
+
INFO,
|
101
|
+
"Received error in reply from node %d: %s",
|
102
|
+
msg.metadata.src_node_id,
|
103
|
+
msg.error,
|
104
|
+
)
|
105
|
+
num_errors += 1
|
106
|
+
else:
|
107
|
+
num_replies_with_content += 1
|
108
|
+
|
109
|
+
# Errors are not allowed
|
110
|
+
if num_errors:
|
111
|
+
log(
|
112
|
+
INFO,
|
113
|
+
"aggregate_train: Some clients reported errors. Skipping aggregation.",
|
114
|
+
)
|
115
|
+
return False
|
116
|
+
|
117
|
+
log(
|
118
|
+
INFO,
|
119
|
+
"aggregate_train: Received %s results and %s failures",
|
120
|
+
num_replies_with_content,
|
121
|
+
num_errors,
|
122
|
+
)
|
123
|
+
|
124
|
+
if num_replies_with_content != self.num_sampled_clients:
|
125
|
+
log(
|
126
|
+
WARNING,
|
127
|
+
CLIENTS_DISCREPANCY_WARNING,
|
128
|
+
num_replies_with_content,
|
129
|
+
self.num_sampled_clients,
|
130
|
+
)
|
131
|
+
|
132
|
+
return True
|
133
|
+
|
134
|
+
def _add_noise_to_aggregated_arrays(
|
135
|
+
self, aggregated_arrays: ArrayRecord
|
136
|
+
) -> ArrayRecord:
|
137
|
+
"""Add Gaussian noise to aggregated arrays.
|
138
|
+
|
139
|
+
Parameters
|
140
|
+
----------
|
141
|
+
aggregated_arrays : ArrayRecord
|
142
|
+
The aggregated arrays to add noise to.
|
143
|
+
|
144
|
+
Returns
|
145
|
+
-------
|
146
|
+
ArrayRecord
|
147
|
+
The aggregated arrays with noise added.
|
148
|
+
"""
|
149
|
+
aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
|
150
|
+
stdv = compute_stdv(
|
151
|
+
self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
|
152
|
+
)
|
153
|
+
add_gaussian_noise_inplace(aggregated_ndarrays, stdv)
|
154
|
+
|
155
|
+
log(
|
156
|
+
INFO,
|
157
|
+
"aggregate_fit: central DP noise with %.4f stdev added",
|
158
|
+
stdv,
|
159
|
+
)
|
160
|
+
|
161
|
+
return ArrayRecord(
|
162
|
+
OrderedDict(
|
163
|
+
{
|
164
|
+
k: Array(v)
|
165
|
+
for k, v in zip(aggregated_arrays.keys(), aggregated_ndarrays)
|
166
|
+
}
|
167
|
+
)
|
168
|
+
)
|
169
|
+
|
170
|
+
def configure_evaluate(
|
171
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
172
|
+
) -> Iterable[Message]:
|
173
|
+
"""Configure the next round of federated evaluation."""
|
174
|
+
return self.strategy.configure_evaluate(server_round, arrays, config, grid)
|
175
|
+
|
176
|
+
def aggregate_evaluate(
|
177
|
+
self,
|
178
|
+
server_round: int,
|
179
|
+
replies: Iterable[Message],
|
180
|
+
) -> Optional[MetricRecord]:
|
181
|
+
"""Aggregate MetricRecords in the received Messages."""
|
182
|
+
return self.strategy.aggregate_evaluate(server_round, replies)
|
183
|
+
|
184
|
+
def summary(self) -> None:
|
185
|
+
"""Log summary configuration of the strategy."""
|
186
|
+
self.strategy.summary()
|
187
|
+
|
188
|
+
|
189
|
+
class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippingBase):
|
190
|
+
"""Strategy wrapper for central DP with server-side fixed clipping.
|
191
|
+
|
192
|
+
Parameters
|
193
|
+
----------
|
194
|
+
strategy : Strategy
|
195
|
+
The strategy to which DP functionalities will be added by this wrapper.
|
196
|
+
noise_multiplier : float
|
197
|
+
The noise multiplier for the Gaussian mechanism for model updates.
|
198
|
+
A value of 1.0 or higher is recommended for strong privacy.
|
199
|
+
clipping_norm : float
|
200
|
+
The value of the clipping norm.
|
201
|
+
num_sampled_clients : int
|
202
|
+
The number of clients that are sampled on each round.
|
203
|
+
|
204
|
+
Examples
|
205
|
+
--------
|
206
|
+
Create a strategy::
|
207
|
+
|
208
|
+
strategy = fl.serverapp.FedAvg( ... )
|
209
|
+
|
210
|
+
Wrap the strategy with the `DifferentialPrivacyServerSideFixedClipping` wrapper::
|
211
|
+
|
212
|
+
dp_strategy = DifferentialPrivacyServerSideFixedClipping(
|
213
|
+
strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
|
214
|
+
)
|
215
|
+
"""
|
216
|
+
|
217
|
+
def __init__(
|
218
|
+
self,
|
219
|
+
strategy: Strategy,
|
220
|
+
noise_multiplier: float,
|
221
|
+
clipping_norm: float,
|
222
|
+
num_sampled_clients: int,
|
223
|
+
) -> None:
|
224
|
+
super().__init__(strategy, noise_multiplier, clipping_norm, num_sampled_clients)
|
225
|
+
self.current_arrays: ArrayRecord = ArrayRecord()
|
226
|
+
|
227
|
+
def __repr__(self) -> str:
|
228
|
+
"""Compute a string representation of the strategy."""
|
229
|
+
return "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)"
|
230
|
+
|
231
|
+
def configure_train(
|
232
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
233
|
+
) -> Iterable[Message]:
|
234
|
+
"""Configure the next round of training."""
|
235
|
+
self.current_arrays = arrays
|
236
|
+
return self.strategy.configure_train(server_round, arrays, config, grid)
|
237
|
+
|
238
|
+
def aggregate_train(
|
239
|
+
self,
|
240
|
+
server_round: int,
|
241
|
+
replies: Iterable[Message],
|
242
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
243
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
244
|
+
if not self._validate_replies(replies):
|
245
|
+
return None, None
|
246
|
+
|
247
|
+
# Clip arrays in replies
|
248
|
+
current_ndarrays = self.current_arrays.to_numpy_ndarrays()
|
249
|
+
for reply in replies:
|
250
|
+
for arr_name, record in reply.content.array_records.items():
|
251
|
+
# Clip
|
252
|
+
reply_ndarrays = record.to_numpy_ndarrays()
|
253
|
+
compute_clip_model_update(
|
254
|
+
param1=reply_ndarrays,
|
255
|
+
param2=current_ndarrays,
|
256
|
+
clipping_norm=self.clipping_norm,
|
257
|
+
)
|
258
|
+
# Replace content while preserving keys
|
259
|
+
reply.content[arr_name] = ArrayRecord(
|
260
|
+
OrderedDict(
|
261
|
+
{k: Array(v) for k, v in zip(record.keys(), reply_ndarrays)}
|
262
|
+
)
|
263
|
+
)
|
264
|
+
log(
|
265
|
+
INFO,
|
266
|
+
"aggregate_fit: parameters are clipped by value: %.4f.",
|
267
|
+
self.clipping_norm,
|
268
|
+
)
|
269
|
+
|
270
|
+
# Pass the new parameters for aggregation
|
271
|
+
aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
|
272
|
+
server_round, replies
|
273
|
+
)
|
274
|
+
|
275
|
+
# Add Gaussian noise to the aggregated arrays
|
276
|
+
if aggregated_arrays:
|
277
|
+
aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
|
278
|
+
|
279
|
+
return aggregated_arrays, aggregated_metrics
|
280
|
+
|
281
|
+
|
282
|
+
class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippingBase):
|
283
|
+
"""Strategy wrapper for central DP with client-side fixed clipping.
|
284
|
+
|
285
|
+
Use `fixedclipping_mod` modifier at the client side.
|
286
|
+
|
287
|
+
In comparison to `DifferentialPrivacyServerSideFixedClipping`,
|
288
|
+
which performs clipping on the server-side,
|
289
|
+
`DifferentialPrivacyClientSideFixedClipping` expects clipping to happen
|
290
|
+
on the client-side, usually by using the built-in `fixedclipping_mod`.
|
291
|
+
|
292
|
+
Parameters
|
293
|
+
----------
|
294
|
+
strategy : Strategy
|
295
|
+
The strategy to which DP functionalities will be added by this wrapper.
|
296
|
+
noise_multiplier : float
|
297
|
+
The noise multiplier for the Gaussian mechanism for model updates.
|
298
|
+
A value of 1.0 or higher is recommended for strong privacy.
|
299
|
+
clipping_norm : float
|
300
|
+
The value of the clipping norm.
|
301
|
+
num_sampled_clients : int
|
302
|
+
The number of clients that are sampled on each round.
|
303
|
+
|
304
|
+
Examples
|
305
|
+
--------
|
306
|
+
Create a strategy::
|
307
|
+
|
308
|
+
strategy = fl.serverapp.FedAvg(...)
|
309
|
+
|
310
|
+
Wrap the strategy with the `DifferentialPrivacyClientSideFixedClipping` wrapper::
|
311
|
+
|
312
|
+
dp_strategy = DifferentialPrivacyClientSideFixedClipping(
|
313
|
+
strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
|
314
|
+
)
|
315
|
+
|
316
|
+
On the client, add the `fixedclipping_mod` to the client-side mods::
|
317
|
+
|
318
|
+
app = fl.client.ClientApp(mods=[fixedclipping_mod])
|
319
|
+
"""
|
320
|
+
|
321
|
+
def __repr__(self) -> str:
|
322
|
+
"""Compute a string representation of the strategy."""
|
323
|
+
return "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)"
|
324
|
+
|
325
|
+
def configure_train(
|
326
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
327
|
+
) -> Iterable[Message]:
|
328
|
+
"""Configure the next round of training."""
|
329
|
+
# Inject clipping norm in config
|
330
|
+
config[KEY_CLIPPING_NORM] = self.clipping_norm
|
331
|
+
# Call parent method
|
332
|
+
return self.strategy.configure_train(server_round, arrays, config, grid)
|
333
|
+
|
334
|
+
def aggregate_train(
|
335
|
+
self,
|
336
|
+
server_round: int,
|
337
|
+
replies: Iterable[Message],
|
338
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
339
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
340
|
+
if not self._validate_replies(replies):
|
341
|
+
return None, None
|
342
|
+
|
343
|
+
# Aggregate
|
344
|
+
aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
|
345
|
+
server_round, replies
|
346
|
+
)
|
347
|
+
|
348
|
+
# Add Gaussian noise to the aggregated arrays
|
349
|
+
if aggregated_arrays:
|
350
|
+
aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
|
351
|
+
|
352
|
+
return aggregated_arrays, aggregated_metrics
|
@@ -0,0 +1,162 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""FedAdagrad [Reddi et al., 2020] strategy.
|
16
|
+
|
17
|
+
Adaptive Federated Optimization using Adagrad.
|
18
|
+
|
19
|
+
Paper: arxiv.org/abs/2003.00295
|
20
|
+
"""
|
21
|
+
|
22
|
+
from collections import OrderedDict
|
23
|
+
from collections.abc import Iterable
|
24
|
+
from typing import Callable, Optional
|
25
|
+
|
26
|
+
import numpy as np
|
27
|
+
|
28
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
|
29
|
+
|
30
|
+
from .fedopt import FedOpt
|
31
|
+
from .strategy_utils import AggregationError
|
32
|
+
|
33
|
+
|
34
|
+
# pylint: disable=line-too-long
|
35
|
+
class FedAdagrad(FedOpt):
|
36
|
+
"""FedAdagrad strategy - Adaptive Federated Optimization using Adagrad.
|
37
|
+
|
38
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
39
|
+
|
40
|
+
Parameters
|
41
|
+
----------
|
42
|
+
fraction_train : float (default: 1.0)
|
43
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
44
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
45
|
+
will still be sampled.
|
46
|
+
fraction_evaluate : float (default: 1.0)
|
47
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
48
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
49
|
+
`min_evaluate_nodes` will still be sampled.
|
50
|
+
min_train_nodes : int (default: 2)
|
51
|
+
Minimum number of nodes used during training.
|
52
|
+
min_evaluate_nodes : int (default: 2)
|
53
|
+
Minimum number of nodes used during validation.
|
54
|
+
min_available_nodes : int (default: 2)
|
55
|
+
Minimum number of total nodes in the system.
|
56
|
+
weighted_by_key : str (default: "num-examples")
|
57
|
+
The key within each MetricRecord whose value is used as the weight when
|
58
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
59
|
+
arrayrecord_key : str (default: "arrays")
|
60
|
+
Key used to store the ArrayRecord when constructing Messages.
|
61
|
+
configrecord_key : str (default: "config")
|
62
|
+
Key used to store the ConfigRecord when constructing Messages.
|
63
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
64
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
65
|
+
used to aggregate MetricRecords from training round replies.
|
66
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
67
|
+
average using the provided weight factor key.
|
68
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
72
|
+
average using the provided weight factor key.
|
73
|
+
eta : float, optional
|
74
|
+
Server-side learning rate. Defaults to 1e-1.
|
75
|
+
eta_l : float, optional
|
76
|
+
Client-side learning rate. Defaults to 1e-1.
|
77
|
+
tau : float, optional
|
78
|
+
Controls the algorithm's degree of adaptability. Defaults to 1e-3.
|
79
|
+
"""
|
80
|
+
|
81
|
+
# pylint: disable=too-many-arguments
|
82
|
+
def __init__(
|
83
|
+
self,
|
84
|
+
*,
|
85
|
+
fraction_train: float = 1.0,
|
86
|
+
fraction_evaluate: float = 1.0,
|
87
|
+
min_train_nodes: int = 2,
|
88
|
+
min_evaluate_nodes: int = 2,
|
89
|
+
min_available_nodes: int = 2,
|
90
|
+
weighted_by_key: str = "num-examples",
|
91
|
+
arrayrecord_key: str = "arrays",
|
92
|
+
configrecord_key: str = "config",
|
93
|
+
train_metrics_aggr_fn: Optional[
|
94
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
95
|
+
] = None,
|
96
|
+
evaluate_metrics_aggr_fn: Optional[
|
97
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
98
|
+
] = None,
|
99
|
+
eta: float = 1e-1,
|
100
|
+
eta_l: float = 1e-1,
|
101
|
+
tau: float = 1e-3,
|
102
|
+
) -> None:
|
103
|
+
super().__init__(
|
104
|
+
fraction_train=fraction_train,
|
105
|
+
fraction_evaluate=fraction_evaluate,
|
106
|
+
min_train_nodes=min_train_nodes,
|
107
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
108
|
+
min_available_nodes=min_available_nodes,
|
109
|
+
weighted_by_key=weighted_by_key,
|
110
|
+
arrayrecord_key=arrayrecord_key,
|
111
|
+
configrecord_key=configrecord_key,
|
112
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
113
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
114
|
+
eta=eta,
|
115
|
+
eta_l=eta_l,
|
116
|
+
beta_1=0.0,
|
117
|
+
beta_2=0.0,
|
118
|
+
tau=tau,
|
119
|
+
)
|
120
|
+
|
121
|
+
def aggregate_train(
|
122
|
+
self,
|
123
|
+
server_round: int,
|
124
|
+
replies: Iterable[Message],
|
125
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
126
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
127
|
+
aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
|
128
|
+
server_round, replies
|
129
|
+
)
|
130
|
+
|
131
|
+
if aggregated_arrayrecord is None:
|
132
|
+
return aggregated_arrayrecord, aggregated_metrics
|
133
|
+
|
134
|
+
if self.current_arrays is None:
|
135
|
+
reason = (
|
136
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
137
|
+
"called before aggregation."
|
138
|
+
)
|
139
|
+
raise AggregationError(reason=reason)
|
140
|
+
|
141
|
+
# Compute intermediate variables
|
142
|
+
delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
|
143
|
+
aggregated_arrayrecord
|
144
|
+
)
|
145
|
+
|
146
|
+
# v_t
|
147
|
+
if not self.v_t:
|
148
|
+
self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
149
|
+
self.v_t = {k: v + (delta_t[k] ** 2) for k, v in self.v_t.items()}
|
150
|
+
|
151
|
+
new_arrays = {
|
152
|
+
k: x + self.eta * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
|
153
|
+
for k, x in self.current_arrays.items()
|
154
|
+
}
|
155
|
+
|
156
|
+
# Update current arrays
|
157
|
+
self.current_arrays = new_arrays
|
158
|
+
|
159
|
+
return (
|
160
|
+
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
161
|
+
aggregated_metrics,
|
162
|
+
)
|
@@ -0,0 +1,181 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Adaptive Federated Optimization using Adam (FedAdam) strategy.
|
16
|
+
|
17
|
+
[Reddi et al., 2020]
|
18
|
+
|
19
|
+
Paper: arxiv.org/abs/2003.00295
|
20
|
+
"""
|
21
|
+
|
22
|
+
from collections import OrderedDict
|
23
|
+
from collections.abc import Iterable
|
24
|
+
from typing import Callable, Optional
|
25
|
+
|
26
|
+
import numpy as np
|
27
|
+
|
28
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
|
29
|
+
|
30
|
+
from .fedopt import FedOpt
|
31
|
+
from .strategy_utils import AggregationError
|
32
|
+
|
33
|
+
|
34
|
+
# pylint: disable=line-too-long
|
35
|
+
class FedAdam(FedOpt):
|
36
|
+
"""FedAdam - Adaptive Federated Optimization using Adam.
|
37
|
+
|
38
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
39
|
+
|
40
|
+
Parameters
|
41
|
+
----------
|
42
|
+
fraction_train : float (default: 1.0)
|
43
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
44
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
45
|
+
will still be sampled.
|
46
|
+
fraction_evaluate : float (default: 1.0)
|
47
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
48
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
49
|
+
`min_evaluate_nodes` will still be sampled.
|
50
|
+
min_train_nodes : int (default: 2)
|
51
|
+
Minimum number of nodes used during training.
|
52
|
+
min_evaluate_nodes : int (default: 2)
|
53
|
+
Minimum number of nodes used during validation.
|
54
|
+
min_available_nodes : int (default: 2)
|
55
|
+
Minimum number of total nodes in the system.
|
56
|
+
weighted_by_key : str (default: "num-examples")
|
57
|
+
The key within each MetricRecord whose value is used as the weight when
|
58
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
59
|
+
arrayrecord_key : str (default: "arrays")
|
60
|
+
Key used to store the ArrayRecord when constructing Messages.
|
61
|
+
configrecord_key : str (default: "config")
|
62
|
+
Key used to store the ConfigRecord when constructing Messages.
|
63
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
64
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
65
|
+
used to aggregate MetricRecords from training round replies.
|
66
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
67
|
+
average using the provided weight factor key.
|
68
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
72
|
+
average using the provided weight factor key.
|
73
|
+
eta : float, optional
|
74
|
+
Server-side learning rate. Defaults to 1e-1.
|
75
|
+
eta_l : float, optional
|
76
|
+
Client-side learning rate. Defaults to 1e-1.
|
77
|
+
beta_1 : float, optional
|
78
|
+
Momentum parameter. Defaults to 0.9.
|
79
|
+
beta_2 : float, optional
|
80
|
+
Second moment parameter. Defaults to 0.99.
|
81
|
+
tau : float, optional
|
82
|
+
Controls the algorithm's degree of adaptability. Defaults to 1e-3.
|
83
|
+
"""
|
84
|
+
|
85
|
+
# pylint: disable=too-many-arguments, too-many-locals
|
86
|
+
def __init__(
|
87
|
+
self,
|
88
|
+
*,
|
89
|
+
fraction_train: float = 1.0,
|
90
|
+
fraction_evaluate: float = 1.0,
|
91
|
+
min_train_nodes: int = 2,
|
92
|
+
min_evaluate_nodes: int = 2,
|
93
|
+
min_available_nodes: int = 2,
|
94
|
+
weighted_by_key: str = "num-examples",
|
95
|
+
arrayrecord_key: str = "arrays",
|
96
|
+
configrecord_key: str = "config",
|
97
|
+
train_metrics_aggr_fn: Optional[
|
98
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
99
|
+
] = None,
|
100
|
+
evaluate_metrics_aggr_fn: Optional[
|
101
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
102
|
+
] = None,
|
103
|
+
eta: float = 1e-1,
|
104
|
+
eta_l: float = 1e-1,
|
105
|
+
beta_1: float = 0.9,
|
106
|
+
beta_2: float = 0.99,
|
107
|
+
tau: float = 1e-3,
|
108
|
+
) -> None:
|
109
|
+
super().__init__(
|
110
|
+
fraction_train=fraction_train,
|
111
|
+
fraction_evaluate=fraction_evaluate,
|
112
|
+
min_train_nodes=min_train_nodes,
|
113
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
114
|
+
min_available_nodes=min_available_nodes,
|
115
|
+
weighted_by_key=weighted_by_key,
|
116
|
+
arrayrecord_key=arrayrecord_key,
|
117
|
+
configrecord_key=configrecord_key,
|
118
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
119
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
120
|
+
eta=eta,
|
121
|
+
eta_l=eta_l,
|
122
|
+
beta_1=beta_1,
|
123
|
+
beta_2=beta_2,
|
124
|
+
tau=tau,
|
125
|
+
)
|
126
|
+
|
127
|
+
def aggregate_train(
|
128
|
+
self,
|
129
|
+
server_round: int,
|
130
|
+
replies: Iterable[Message],
|
131
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
132
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
133
|
+
aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
|
134
|
+
server_round, replies
|
135
|
+
)
|
136
|
+
|
137
|
+
if aggregated_arrayrecord is None:
|
138
|
+
return aggregated_arrayrecord, aggregated_metrics
|
139
|
+
|
140
|
+
if self.current_arrays is None:
|
141
|
+
reason = (
|
142
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
143
|
+
"called before aggregation."
|
144
|
+
)
|
145
|
+
raise AggregationError(reason=reason)
|
146
|
+
|
147
|
+
# Compute intermediate variables
|
148
|
+
delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
|
149
|
+
aggregated_arrayrecord
|
150
|
+
)
|
151
|
+
|
152
|
+
# v_t
|
153
|
+
if not self.v_t:
|
154
|
+
self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
155
|
+
self.v_t = {
|
156
|
+
k: self.beta_2 * v + (1 - self.beta_2) * (delta_t[k] ** 2)
|
157
|
+
for k, v in self.v_t.items()
|
158
|
+
}
|
159
|
+
|
160
|
+
# Compute the bias-corrected learning rate, `eta_norm` for improving convergence
|
161
|
+
# in the early rounds of FL training. This `eta_norm` is `\alpha_t` in Kingma &
|
162
|
+
# Ba, 2014 (http://arxiv.org/abs/1412.6980) "Adam: A Method for Stochastic
|
163
|
+
# Optimization" in the formula line right before Section 2.1.
|
164
|
+
eta_norm = (
|
165
|
+
self.eta
|
166
|
+
* np.sqrt(1 - np.power(self.beta_2, server_round + 1.0))
|
167
|
+
/ (1 - np.power(self.beta_1, server_round + 1.0))
|
168
|
+
)
|
169
|
+
|
170
|
+
new_arrays = {
|
171
|
+
k: x + eta_norm * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
|
172
|
+
for k, x in self.current_arrays.items()
|
173
|
+
}
|
174
|
+
|
175
|
+
# Update current arrays
|
176
|
+
self.current_arrays = new_arrays
|
177
|
+
|
178
|
+
return (
|
179
|
+
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
180
|
+
aggregated_metrics,
|
181
|
+
)
|