flipcosmo 1.0.0__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (113) hide show
  1. docs/conf.py +154 -0
  2. flip/__init__.py +4 -11
  3. flip/covariance/__init__.py +7 -8
  4. flip/covariance/analytical/__init__.py +11 -0
  5. flip/covariance/{adamsblake17plane → analytical/adamsblake17}/coefficients.py +1 -1
  6. flip/covariance/{adamsblake17plane → analytical/adamsblake17}/fisher_terms.py +1 -1
  7. flip/covariance/{adamsblake17 → analytical/adamsblake17}/flip_terms.py +0 -1
  8. flip/covariance/{adamsblake17 → analytical/adamsblake17plane}/coefficients.py +1 -1
  9. flip/covariance/{adamsblake17 → analytical/adamsblake17plane}/fisher_terms.py +1 -1
  10. flip/covariance/{adamsblake17plane → analytical/adamsblake17plane}/flip_terms.py +0 -1
  11. flip/covariance/{adamsblake17plane → analytical/adamsblake17plane}/generator.py +103 -19
  12. flip/covariance/{adamsblake20 → analytical/adamsblake20}/coefficients.py +1 -1
  13. flip/covariance/{adamsblake20 → analytical/adamsblake20}/fisher_terms.py +1 -1
  14. flip/covariance/{adamsblake20 → analytical/adamsblake20}/flip_terms.py +0 -1
  15. flip/covariance/{carreres23 → analytical/carreres23}/coefficients.py +1 -4
  16. flip/covariance/{ravouxnoanchor25 → analytical/carreres23}/fisher_terms.py +1 -1
  17. flip/covariance/{carreres23 → analytical/carreres23}/flip_terms.py +0 -1
  18. flip/covariance/analytical/carreres23/generator.py +198 -0
  19. flip/covariance/analytical/genericzdep/__init__.py +5 -0
  20. flip/covariance/analytical/genericzdep/coefficients.py +53 -0
  21. flip/covariance/analytical/genericzdep/flip_terms.py +99 -0
  22. flip/covariance/{lai22 → analytical/lai22}/coefficients.py +2 -3
  23. flip/covariance/{lai22 → analytical/lai22}/fisher_terms.py +1 -1
  24. flip/covariance/{lai22 → analytical/lai22}/flip_terms.py +0 -1
  25. flip/covariance/{lai22 → analytical/lai22}/generator.py +263 -58
  26. flip/covariance/{lai22 → analytical/lai22}/symbolic.py +55 -19
  27. flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/coefficients.py +1 -1
  28. flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/fisher_terms.py +1 -1
  29. flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/flip_terms.py +0 -1
  30. flip/covariance/{ravouxnoanchor25 → analytical/ravouxnoanchor25}/coefficients.py +3 -2
  31. flip/covariance/{carreres23 → analytical/ravouxnoanchor25}/fisher_terms.py +1 -1
  32. flip/covariance/{ravouxnoanchor25 → analytical/ravouxnoanchor25}/flip_terms.py +0 -9
  33. flip/covariance/{rcrk24 → analytical/rcrk24}/coefficients.py +6 -6
  34. flip/covariance/{rcrk24 → analytical/rcrk24}/fisher_terms.py +7 -9
  35. flip/covariance/{rcrk24 → analytical/rcrk24}/flip_terms.py +0 -8
  36. flip/covariance/contraction.py +82 -40
  37. flip/covariance/cov_utils.py +89 -81
  38. flip/covariance/covariance.py +172 -141
  39. flip/covariance/emulators/__init__.py +1 -1
  40. flip/covariance/emulators/generator.py +73 -3
  41. flip/covariance/emulators/gpmatrix.py +40 -1
  42. flip/covariance/emulators/nnmatrix.py +57 -1
  43. flip/covariance/emulators/skgpmatrix.py +125 -0
  44. flip/covariance/fisher.py +307 -0
  45. flip/{fit_utils.py → covariance/fit_utils.py} +185 -10
  46. flip/{fitter.py → covariance/fitter.py} +151 -125
  47. flip/covariance/generator.py +82 -106
  48. flip/{likelihood.py → covariance/likelihood.py} +286 -64
  49. flip/{plot_utils.py → covariance/plot_utils.py} +79 -4
  50. flip/covariance/symbolic.py +89 -44
  51. flip/data/__init__.py +1 -1
  52. flip/data/data_density.parquet +0 -0
  53. flip/data/data_velocity.parquet +0 -0
  54. flip/data/{grid_window_m.parquet → data_window_density.parquet} +0 -0
  55. flip/{gridding.py → data/gridding.py} +125 -130
  56. flip/data/load_data_test.py +102 -0
  57. flip/data/power_spectrum_mm.txt +2 -2
  58. flip/data/power_spectrum_mt.txt +2 -2
  59. flip/data/power_spectrum_tt.txt +2 -2
  60. flip/data/test_covariance_reference_values.json +145 -0
  61. flip/data/test_e2e_reference_values.json +14 -0
  62. flip/data_vector/basic.py +118 -101
  63. flip/data_vector/cosmo_utils.py +18 -0
  64. flip/data_vector/galaxypv_vectors.py +58 -94
  65. flip/data_vector/snia_vectors.py +60 -3
  66. flip/data_vector/vector_utils.py +47 -1
  67. flip/power_spectra/class_engine.py +36 -1
  68. flip/power_spectra/cosmoprimo_engine.py +37 -2
  69. flip/power_spectra/generator.py +47 -25
  70. flip/power_spectra/models.py +30 -31
  71. flip/power_spectra/pyccl_engine.py +36 -1
  72. flip/simulation/__init__.py +0 -0
  73. flip/utils.py +62 -91
  74. flipcosmo-1.2.1.dist-info/METADATA +78 -0
  75. flipcosmo-1.2.1.dist-info/RECORD +109 -0
  76. {flipcosmo-1.0.0.dist-info → flipcosmo-1.2.1.dist-info}/WHEEL +1 -1
  77. flipcosmo-1.2.1.dist-info/top_level.txt +7 -0
  78. scripts/flip_compute_correlation_model.py +70 -0
  79. scripts/flip_compute_power_spectra.py +50 -0
  80. scripts/flip_fisher_forecast_velocity.py +70 -0
  81. scripts/flip_fisher_rcrk24.py +164 -0
  82. scripts/flip_launch_minuit_density_fit.py +91 -0
  83. scripts/flip_launch_minuit_full_fit.py +117 -0
  84. scripts/flip_launch_minuit_velocity_fit.py +78 -0
  85. scripts/flip_launch_minuit_velocity_fit_full.py +107 -0
  86. scripts/flip_launch_minuit_velocity_fit_interpolation.py +93 -0
  87. test/refresh_reference_values.py +43 -0
  88. test/test_covariance_assembly.py +102 -0
  89. test/test_covariance_reference_values.py +125 -0
  90. test/test_covariance_utils.py +34 -0
  91. test/test_e2e_density.py +50 -0
  92. test/test_e2e_joint.py +65 -0
  93. test/test_e2e_velocity.py +53 -0
  94. test/test_likelihood_inversions.py +31 -0
  95. flip/covariance/carreres23/generator.py +0 -132
  96. flip/data/density_data.parquet +0 -0
  97. flip/data/velocity_data.parquet +0 -0
  98. flip/fisher.py +0 -190
  99. flipcosmo-1.0.0.dist-info/METADATA +0 -32
  100. flipcosmo-1.0.0.dist-info/RECORD +0 -82
  101. flipcosmo-1.0.0.dist-info/top_level.txt +0 -1
  102. /flip/{config.py → _config.py} +0 -0
  103. /flip/covariance/{adamsblake17 → analytical/adamsblake17}/__init__.py +0 -0
  104. /flip/covariance/{adamsblake17plane → analytical/adamsblake17plane}/__init__.py +0 -0
  105. /flip/covariance/{adamsblake20 → analytical/adamsblake20}/__init__.py +0 -0
  106. /flip/covariance/{carreres23 → analytical/carreres23}/__init__.py +0 -0
  107. /flip/covariance/{lai22 → analytical/lai22}/__init__.py +0 -0
  108. /flip/covariance/{lai22 → analytical/lai22}/h_terms.py +0 -0
  109. /flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/__init__.py +0 -0
  110. /flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/flip_terms_lmax.py +0 -0
  111. /flip/covariance/{ravouxnoanchor25 → analytical/ravouxnoanchor25}/__init__.py +0 -0
  112. /flip/covariance/{rcrk24 → analytical/rcrk24}/__init__.py +0 -0
  113. {flipcosmo-1.0.0.dist-info → flipcosmo-1.2.1.dist-info}/licenses/LICENSE +0 -0
@@ -880,5 +880,4 @@ dictionary_subterms = {
880
880
  "vv_0_2": 1,
881
881
  }
882
882
  multi_index_model = False
883
- redshift_dependent_model = False
884
883
  regularize_M_terms = {"gg": "mpmath", "gv": "mpmath", "vv": None}
@@ -7,11 +7,12 @@ def get_coefficients(
7
7
  model_kind,
8
8
  parameter_values_dict,
9
9
  variant=None,
10
- redshift_dict=None,
10
+ covariance_prefactor_dict=None,
11
11
  ):
12
12
  H0 = parameter_values_dict["H0"]
13
13
  Omega_m0 = parameter_values_dict["Omega_m0"]
14
- redshift_velocity = redshift_dict["v"]
14
+
15
+ redshift_velocity = covariance_prefactor_dict["redshift_velocity"]
15
16
 
16
17
  D1_z = D1_function(redshift_velocity, Omega_m0)
17
18
  D1_0 = D1_function(0, Omega_m0)
@@ -5,7 +5,7 @@ def get_partial_derivative_coefficients(
5
5
  model_kind,
6
6
  parameter_values_dict,
7
7
  variant=None,
8
- redshift_dict=None,
8
+ covariance_prefactor_dict=None,
9
9
  ):
10
10
  if variant == "growth_index":
11
11
  partial_coefficients_dict = {
@@ -2,8 +2,6 @@ import mpmath
2
2
  import numpy
3
3
  import scipy
4
4
 
5
- from flip.covariance.ravouxnoanchor25.coefficients import D1_function
6
-
7
5
 
8
6
  def set_backend(module):
9
7
  global np, erf
@@ -40,15 +38,8 @@ def N_vv_0_2_0(theta, phi):
40
38
  return (9 / 2) * np.cos(2 * phi) + (3 / 2) * np.cos(theta)
41
39
 
42
40
 
43
- def Z_vv_0(k, redshift_1, redshift_2, Omega_m0, knl):
44
- D1_z1 = D1_function(redshift_1, Omega_m0)
45
- D1_z2 = D1_function(redshift_2, Omega_m0)
46
- return np.exp(np.outer((D1_z1 - D1_z2) ** 2, -((k / knl) ** 2)))
47
-
48
-
49
41
  dictionary_terms = {"vv": ["0"]}
50
42
  dictionary_lmax = {"vv": [2]}
51
43
  dictionary_subterms = {"vv_0_0": 1, "vv_0_1": 0, "vv_0_2": 1}
52
44
  multi_index_model = False
53
- redshift_dependent_model = True
54
45
  regularize_M_terms = None
@@ -204,10 +204,10 @@ def get_coefficients(
204
204
  parameter_values_dict,
205
205
  model_kind,
206
206
  variant=None,
207
- redshift_dict=None,
207
+ covariance_prefactor_dict=None,
208
208
  ):
209
- redshift_velocities = redshift_dict["v"]
210
- a = 1 / (1 + redshift_velocities)
209
+ redshift_velocity = covariance_prefactor_dict["redshift_velocity"]
210
+ a = 1 / (1 + redshift_velocity)
211
211
 
212
212
  coefficients_dict = {}
213
213
  if variant == "growth_index":
@@ -220,9 +220,9 @@ def get_coefficients(
220
220
  gamma = parameter_values_dict["gamma"]
221
221
 
222
222
  coefficient_vector = (
223
- aH(1 / (1 + redshift_velocities))
223
+ aH(1 / (1 + redshift_velocity))
224
224
  * f(a, Om0, gamma)
225
- * s8_approx(redshift_velocities, Om0, gamma)
225
+ * s8_approx(redshift_velocity, Om0, gamma)
226
226
  )
227
227
 
228
228
  coefficients_dict["vv"] = [np.outer(coefficient_vector, coefficient_vector)]
@@ -233,7 +233,7 @@ def get_coefficients(
233
233
  # P = (aHfs8)(aHfs8) (P_fid/s8^2_fid)
234
234
 
235
235
  fs8 = parameter_values_dict["fs8"]
236
- coefficient_vector = aH(1 / (1 + redshift_velocities)) * fs8
236
+ coefficient_vector = aH(1 / (1 + redshift_velocity)) * fs8
237
237
 
238
238
  coefficients_dict["vv"] = [np.outer(coefficient_vector, coefficient_vector)]
239
239
  else:
@@ -1,7 +1,5 @@
1
1
  import numpy as np
2
- from astropy.cosmology import FlatLambdaCDM
3
-
4
- from flip.covariance.rcrk24.coefficients import (
2
+ from flip.covariance.analytical.rcrk24.coefficients import (
5
3
  aH,
6
4
  dfdgamma,
7
5
  dfdOm0,
@@ -29,11 +27,11 @@ def get_partial_derivative_coefficients(
29
27
  model_kind,
30
28
  parameter_values_dict,
31
29
  variant=None,
32
- redshift_dict=None,
30
+ covariance_prefactor_dict=None,
33
31
  ):
34
32
  partial_coefficients_dict = None
35
- redshift_velocities = redshift_dict["v"]
36
- a = 1 / (1 + redshift_velocities)
33
+ redshift_velocity = covariance_prefactor_dict["redshift_velocity"]
34
+ a = 1 / (1 + redshift_velocity)
37
35
 
38
36
  if variant == "growth_index":
39
37
  # vv
@@ -46,20 +44,20 @@ def get_partial_derivative_coefficients(
46
44
  # The Om0-gamma model f=Omega(Om0)^gamma
47
45
  aH_values = aH(a)
48
46
  f_values = f(a, Om0, gamma) # cosmoOm ** parameter_values_dict["gamma"]
49
- s8_values = s8(redshift_velocities, Om0, gamma)
47
+ s8_values = s8(redshift_velocity, Om0, gamma)
50
48
  aHfs8 = aH_values * f_values * s8_values
51
49
 
52
50
  dfdOm0_values = dfdOm0(a, Om0, gamma)
53
51
  dfdgamma_values = dfdgamma(a, Om0, gamma)
54
52
 
55
53
  ds8dO0_values = ds8dO0(
56
- redshift_velocities,
54
+ redshift_velocity,
57
55
  Om0,
58
56
  gamma,
59
57
  s8_values=s8_values,
60
58
  )
61
59
  ds8dgamma_values = ds8dgamma(
62
- redshift_velocities,
60
+ redshift_velocity,
63
61
  Om0,
64
62
  gamma,
65
63
  s8_values=s8_values,
@@ -15,9 +15,6 @@ def set_backend(module):
15
15
 
16
16
  set_backend("numpy")
17
17
 
18
- import scipy.integrate as integrate
19
- from astropy.cosmology import FlatLambdaCDM
20
-
21
18
  exact = False
22
19
 
23
20
 
@@ -43,13 +40,8 @@ def N_vv_0_2_0(theta, phi):
43
40
  return (9 / 2) * np.cos(2 * phi) + (3 / 2) * np.cos(theta)
44
41
 
45
42
 
46
- def Z_vv_0(k, redshift_1, redshift_2):
47
- return 1
48
-
49
-
50
43
  dictionary_terms = {"vv": ["0"]}
51
44
  dictionary_lmax = {"vv": [2]}
52
45
  dictionary_subterms = {"vv_0_0": 1, "vv_0_1": 0, "vv_0_2": 1}
53
46
  multi_index_model = False
54
- redshift_dependent_model = True
55
47
  regularize_M_terms = None
@@ -2,7 +2,6 @@ import importlib
2
2
 
3
3
  import numpy as np
4
4
 
5
- from flip.covariance import cov_utils
6
5
  from flip.covariance import generator as generator_flip
7
6
  from flip.utils import create_log
8
7
 
@@ -10,6 +9,13 @@ log = create_log()
10
9
 
11
10
 
12
11
  class Contraction:
12
+ """Container for contracted covariance components and coordinates.
13
+
14
+ Holds precomputed contraction tensors (per block gg/gv/vv) and the
15
+ corresponding coordinate grids. Provides utilities to build from flip
16
+ covariance generators and to evaluate weighted sums via model coefficients.
17
+ """
18
+
13
19
  def __init__(
14
20
  self,
15
21
  model_name=None,
@@ -17,15 +23,23 @@ class Contraction:
17
23
  contraction_dict=None,
18
24
  coordinates_dict=None,
19
25
  basis_definition=None,
20
- redshift_dict=None,
21
26
  variant=None,
22
27
  ):
28
+ """Initialize the contraction container.
29
+
30
+ Args:
31
+ model_name (str|None): Covariance model package name.
32
+ model_kind (str|None): `"density"`, `"velocity"`, `"full"`, or `"density_velocity"`.
33
+ contraction_dict (dict|None): Arrays per block (e.g., `{"gg": [..], "vv": [..]}`).
34
+ coordinates_dict (dict|None): Coordinates like `r_perpendicular`, `r_parallel`, etc.
35
+ basis_definition (str|None): Basis choice, e.g., `"bisector"`, `"mean"`, `"endpoint"`.
36
+ variant (str|None): Optional model variant.
37
+ """
23
38
  self.model_name = model_name
24
39
  self.model_kind = model_kind
25
40
  self.contraction_dict = contraction_dict
26
41
  self.coordinates_dict = coordinates_dict
27
42
  self.basis_definition = basis_definition
28
- self.redshift_dict = redshift_dict
29
43
  self.variant = variant
30
44
 
31
45
  @classmethod
@@ -45,10 +59,29 @@ class Contraction:
45
59
  variant=None,
46
60
  **kwargs,
47
61
  ):
62
+ """Build a `Contraction` from flip covariance generator outputs.
63
+
64
+ Args:
65
+ model_name (str): Covariance model name under `flip.covariance`.
66
+ model_kind (str): `"density"`, `"velocity"`, `"full"`, or `"density_velocity"`.
67
+ power_spectrum_dict (dict): Power spectra per block: keys `gg`, `vv`, and optional `gv`.
68
+ coord_1 (ndarray): First coordinate grid (e.g., `r_perp` or `r`).
69
+ coord_2 (ndarray): Second coordinate grid (e.g., `r_par` or `mu`).
70
+ coord_1_reference (float): Reference point first coordinate.
71
+ coord_2_reference (float): Reference point second coordinate.
72
+ coordinate_type (str): `"rprt"` or `"rmu"`.
73
+ additional_parameters_values (dict|None): Extra model parameters.
74
+ basis_definition (str): Basis choice for angular definitions.
75
+ redshift (float|None): Optional redshift context.
76
+ variant (str|None): Model variant.
77
+ **kwargs: Options forwarded to generator.
78
+
79
+ Returns:
80
+ Contraction: Initialized instance with tensors and coordinates.
81
+ """
48
82
  (
49
83
  contraction_dict,
50
84
  coordinates_dict,
51
- redshift_dict,
52
85
  ) = contract_covariance(
53
86
  model_name,
54
87
  model_kind,
@@ -70,25 +103,15 @@ class Contraction:
70
103
  contraction_dict=contraction_dict,
71
104
  coordinates_dict=coordinates_dict,
72
105
  basis_definition=basis_definition,
73
- redshift_dict=redshift_dict,
74
106
  variant=variant,
75
107
  )
76
108
 
77
109
  @property
78
110
  def type(self):
79
- """
80
- The type function is used to determine the type of covariance model that will be computed.
81
- The options are:
82
- - velocity: The covariance model is computed for velocity only.
83
- - density: The covariance model is computed for density only.
84
- - density_velocity: The covariance model is computed for both velocity and density, without cross-term (i.e., the covariances between velocities and densities are zero). This option should be used when computing a full 3D tomography in which we want to compute a separate 1D tomography along each axis (x, y, z
85
-
86
- Args:
87
- self: Represent the instance of the class
111
+ """Return the model kind and log a short description.
88
112
 
89
113
  Returns:
90
- The type of the model
91
-
114
+ str: `model_kind` as provided on initialization.
92
115
  """
93
116
  if self.model_kind == "velocity":
94
117
  log.add("The covariance model is computed for velocity")
@@ -108,27 +131,22 @@ class Contraction:
108
131
  self,
109
132
  parameter_values_dict,
110
133
  ):
111
- """
112
- The compute_contraction_sum function computes the sum of all the contractions
113
- for a given model type and parameter values.
134
+ """Compute weighted sum of contraction tensors using model coefficients.
114
135
 
115
136
  Args:
116
- self: Make the function a method of the class
117
- parameter_values_dict: Get the coefficients for each of the covariances
118
- : Get the coefficients of the model
137
+ parameter_values_dict (dict): Parameters to obtain coefficients.
119
138
 
120
139
  Returns:
121
- A dictionary of contraction_covariance_sum
140
+ dict: Sum per block, e.g., `{"gg": array, "vv": array, "gv": array}`.
122
141
  """
123
142
  coefficients = importlib.import_module(
124
- f"flip.covariance.{self.model_name}.coefficients"
143
+ f"flip.covariance.analytical.{self.model_name}.coefficients"
125
144
  )
126
145
 
127
146
  coefficients_dict = coefficients.get_coefficients(
128
147
  parameter_values_dict,
129
148
  self.model_kind,
130
149
  variant=self.variant,
131
- redshift_dict=self.redshift_dict,
132
150
  )
133
151
  contraction_covariance_sum_dict = {}
134
152
  if self.model_kind == "density":
@@ -174,7 +192,7 @@ class Contraction:
174
192
  axis=0,
175
193
  )
176
194
  else:
177
- log.add(f"Wrong model type in the loaded covariance.")
195
+ log.add("Wrong model type in the loaded covariance.")
178
196
 
179
197
  return contraction_covariance_sum_dict
180
198
 
@@ -187,6 +205,23 @@ def compute_contraction_coordinates(
187
205
  coordinate_type,
188
206
  basis_definition,
189
207
  ):
208
+ """Compute coordinate grids and derived angles for contractions.
209
+
210
+ Supports `rmu` and `rprt` input coordinate parameterizations and basis
211
+ definitions `bisector`, `mean`, and `endpoint`.
212
+
213
+ Args:
214
+ coord_1 (ndarray): First coordinate grid.
215
+ coord_2 (ndarray): Second coordinate grid.
216
+ coord_1_reference (float): Reference first coordinate.
217
+ coord_2_reference (float): Reference second coordinate.
218
+ coordinate_type (str): `"rmu"` or `"rprt"`.
219
+ basis_definition (str): `"bisector"`, `"mean"`, or `"endpoint"`.
220
+
221
+ Returns:
222
+ tuple: `(coordinates_dict, coordinates)` where `coordinates_dict` holds
223
+ 2D grids and `coordinates` is a stacked array `[r, theta, phi]` per point.
224
+ """
190
225
  shape_coord_1_coord_2 = len(coord_1) * len(coord_2)
191
226
 
192
227
  if coordinate_type == "rmu":
@@ -285,6 +320,26 @@ def contract_covariance(
285
320
  number_worker=8,
286
321
  hankel=True,
287
322
  ):
323
+ """Generate contraction tensors for the specified model and blocks.
324
+
325
+ Args:
326
+ model_name (str): Covariance model name under `flip.covariance`.
327
+ model_kind (str): `"density"`, `"velocity"`, `"full"`, or `"density_velocity"`.
328
+ power_spectrum_dict (dict): Power spectra per block.
329
+ coord_1 (ndarray): First coordinate grid.
330
+ coord_2 (ndarray): Second coordinate grid.
331
+ coord_1_reference (float): Reference first coordinate.
332
+ coord_2_reference (float): Reference second coordinate.
333
+ coordinate_type (str): Input parameterization, `"rprt"` or `"rmu"`.
334
+ additional_parameters_values (dict|None): Extra model parameters.
335
+ basis_definition (str): Basis choice.
336
+ redshift (float|None): Optional redshift context.
337
+ number_worker (int): Parallel workers used by generator.
338
+ hankel (bool): Use FFTLog Hankel transform when True.
339
+
340
+ Returns:
341
+ tuple: `(contraction_dict, coordinates_dict)`.
342
+ """
288
343
  # r_perpendicular : coord_1, r_parallel : coord_2
289
344
  coordinates_dict, coordinates = compute_contraction_coordinates(
290
345
  coord_1,
@@ -295,19 +350,6 @@ def contract_covariance(
295
350
  basis_definition,
296
351
  )
297
352
 
298
- redshift_dependent_model = generator_flip.get_redshift_dependent_model_flag(
299
- model_name
300
- )
301
- if redshift_dependent_model:
302
- redshift_dict = cov_utils.generate_redshift_dict(
303
- model_name,
304
- model_kind,
305
- redshift_velocity=redshift,
306
- redshift_density=redshift,
307
- )
308
- else:
309
- redshift_dict = None
310
-
311
353
  contraction_dict = {}
312
354
  if model_kind in ["density", "full", "density_velocity"]:
313
355
  contraction_dict["gg"] = generator_flip.compute_coeficient(
@@ -342,4 +384,4 @@ def contract_covariance(
342
384
  hankel=hankel,
343
385
  )[:, :].reshape(-1, len(coord_1), len(coord_2))
344
386
 
345
- return contraction_dict, coordinates_dict, redshift_dict
387
+ return contraction_dict, coordinates_dict