flipcosmo 1.0.0__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/conf.py +154 -0
- flip/__init__.py +4 -11
- flip/covariance/__init__.py +7 -8
- flip/covariance/analytical/__init__.py +11 -0
- flip/covariance/{adamsblake17plane → analytical/adamsblake17}/coefficients.py +1 -1
- flip/covariance/{adamsblake17plane → analytical/adamsblake17}/fisher_terms.py +1 -1
- flip/covariance/{adamsblake17 → analytical/adamsblake17}/flip_terms.py +0 -1
- flip/covariance/{adamsblake17 → analytical/adamsblake17plane}/coefficients.py +1 -1
- flip/covariance/{adamsblake17 → analytical/adamsblake17plane}/fisher_terms.py +1 -1
- flip/covariance/{adamsblake17plane → analytical/adamsblake17plane}/flip_terms.py +0 -1
- flip/covariance/{adamsblake17plane → analytical/adamsblake17plane}/generator.py +103 -19
- flip/covariance/{adamsblake20 → analytical/adamsblake20}/coefficients.py +1 -1
- flip/covariance/{adamsblake20 → analytical/adamsblake20}/fisher_terms.py +1 -1
- flip/covariance/{adamsblake20 → analytical/adamsblake20}/flip_terms.py +0 -1
- flip/covariance/{carreres23 → analytical/carreres23}/coefficients.py +1 -4
- flip/covariance/{ravouxnoanchor25 → analytical/carreres23}/fisher_terms.py +1 -1
- flip/covariance/{carreres23 → analytical/carreres23}/flip_terms.py +0 -1
- flip/covariance/analytical/carreres23/generator.py +198 -0
- flip/covariance/analytical/genericzdep/__init__.py +5 -0
- flip/covariance/analytical/genericzdep/coefficients.py +53 -0
- flip/covariance/analytical/genericzdep/flip_terms.py +99 -0
- flip/covariance/{lai22 → analytical/lai22}/coefficients.py +2 -3
- flip/covariance/{lai22 → analytical/lai22}/fisher_terms.py +1 -1
- flip/covariance/{lai22 → analytical/lai22}/flip_terms.py +0 -1
- flip/covariance/{lai22 → analytical/lai22}/generator.py +263 -58
- flip/covariance/{lai22 → analytical/lai22}/symbolic.py +55 -19
- flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/coefficients.py +1 -1
- flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/fisher_terms.py +1 -1
- flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/flip_terms.py +0 -1
- flip/covariance/{ravouxnoanchor25 → analytical/ravouxnoanchor25}/coefficients.py +3 -2
- flip/covariance/{carreres23 → analytical/ravouxnoanchor25}/fisher_terms.py +1 -1
- flip/covariance/{ravouxnoanchor25 → analytical/ravouxnoanchor25}/flip_terms.py +0 -9
- flip/covariance/{rcrk24 → analytical/rcrk24}/coefficients.py +6 -6
- flip/covariance/{rcrk24 → analytical/rcrk24}/fisher_terms.py +7 -9
- flip/covariance/{rcrk24 → analytical/rcrk24}/flip_terms.py +0 -8
- flip/covariance/contraction.py +82 -40
- flip/covariance/cov_utils.py +89 -81
- flip/covariance/covariance.py +172 -141
- flip/covariance/emulators/__init__.py +1 -1
- flip/covariance/emulators/generator.py +73 -3
- flip/covariance/emulators/gpmatrix.py +40 -1
- flip/covariance/emulators/nnmatrix.py +57 -1
- flip/covariance/emulators/skgpmatrix.py +125 -0
- flip/covariance/fisher.py +307 -0
- flip/{fit_utils.py → covariance/fit_utils.py} +185 -10
- flip/{fitter.py → covariance/fitter.py} +151 -125
- flip/covariance/generator.py +82 -106
- flip/{likelihood.py → covariance/likelihood.py} +286 -64
- flip/{plot_utils.py → covariance/plot_utils.py} +79 -4
- flip/covariance/symbolic.py +89 -44
- flip/data/__init__.py +1 -1
- flip/data/data_density.parquet +0 -0
- flip/data/data_velocity.parquet +0 -0
- flip/data/{grid_window_m.parquet → data_window_density.parquet} +0 -0
- flip/{gridding.py → data/gridding.py} +125 -130
- flip/data/load_data_test.py +102 -0
- flip/data/power_spectrum_mm.txt +2 -2
- flip/data/power_spectrum_mt.txt +2 -2
- flip/data/power_spectrum_tt.txt +2 -2
- flip/data/test_covariance_reference_values.json +145 -0
- flip/data/test_e2e_reference_values.json +14 -0
- flip/data_vector/basic.py +118 -101
- flip/data_vector/cosmo_utils.py +18 -0
- flip/data_vector/galaxypv_vectors.py +58 -94
- flip/data_vector/snia_vectors.py +60 -3
- flip/data_vector/vector_utils.py +47 -1
- flip/power_spectra/class_engine.py +36 -1
- flip/power_spectra/cosmoprimo_engine.py +37 -2
- flip/power_spectra/generator.py +47 -25
- flip/power_spectra/models.py +30 -31
- flip/power_spectra/pyccl_engine.py +36 -1
- flip/simulation/__init__.py +0 -0
- flip/utils.py +62 -91
- flipcosmo-1.2.1.dist-info/METADATA +78 -0
- flipcosmo-1.2.1.dist-info/RECORD +109 -0
- {flipcosmo-1.0.0.dist-info → flipcosmo-1.2.1.dist-info}/WHEEL +1 -1
- flipcosmo-1.2.1.dist-info/top_level.txt +7 -0
- scripts/flip_compute_correlation_model.py +70 -0
- scripts/flip_compute_power_spectra.py +50 -0
- scripts/flip_fisher_forecast_velocity.py +70 -0
- scripts/flip_fisher_rcrk24.py +164 -0
- scripts/flip_launch_minuit_density_fit.py +91 -0
- scripts/flip_launch_minuit_full_fit.py +117 -0
- scripts/flip_launch_minuit_velocity_fit.py +78 -0
- scripts/flip_launch_minuit_velocity_fit_full.py +107 -0
- scripts/flip_launch_minuit_velocity_fit_interpolation.py +93 -0
- test/refresh_reference_values.py +43 -0
- test/test_covariance_assembly.py +102 -0
- test/test_covariance_reference_values.py +125 -0
- test/test_covariance_utils.py +34 -0
- test/test_e2e_density.py +50 -0
- test/test_e2e_joint.py +65 -0
- test/test_e2e_velocity.py +53 -0
- test/test_likelihood_inversions.py +31 -0
- flip/covariance/carreres23/generator.py +0 -132
- flip/data/density_data.parquet +0 -0
- flip/data/velocity_data.parquet +0 -0
- flip/fisher.py +0 -190
- flipcosmo-1.0.0.dist-info/METADATA +0 -32
- flipcosmo-1.0.0.dist-info/RECORD +0 -82
- flipcosmo-1.0.0.dist-info/top_level.txt +0 -1
- /flip/{config.py → _config.py} +0 -0
- /flip/covariance/{adamsblake17 → analytical/adamsblake17}/__init__.py +0 -0
- /flip/covariance/{adamsblake17plane → analytical/adamsblake17plane}/__init__.py +0 -0
- /flip/covariance/{adamsblake20 → analytical/adamsblake20}/__init__.py +0 -0
- /flip/covariance/{carreres23 → analytical/carreres23}/__init__.py +0 -0
- /flip/covariance/{lai22 → analytical/lai22}/__init__.py +0 -0
- /flip/covariance/{lai22 → analytical/lai22}/h_terms.py +0 -0
- /flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/__init__.py +0 -0
- /flip/covariance/{ravouxcarreres → analytical/ravouxcarreres}/flip_terms_lmax.py +0 -0
- /flip/covariance/{ravouxnoanchor25 → analytical/ravouxnoanchor25}/__init__.py +0 -0
- /flip/covariance/{rcrk24 → analytical/rcrk24}/__init__.py +0 -0
- {flipcosmo-1.0.0.dist-info → flipcosmo-1.2.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
docs/conf.py,sha256=oQH2FVsFdgs7Z2z0qyORgjUz1Wn35TS-oyd3GaQ8Uos,4694
|
|
2
|
+
flip/__init__.py,sha256=nvvWo-nfwNPaATqooXCW0p6EPun32rOQ385ilNb2H_A,419
|
|
3
|
+
flip/_config.py,sha256=wf09C_i7q-G8v3ADk63WtrSEZyXQhy4zNzQ9AY3Qq9U,19
|
|
4
|
+
flip/utils.py,sha256=mkLEW-qDWYRSpycnF6MxWUtTOAqogKZb708I8ys14p0,5462
|
|
5
|
+
flip/covariance/__init__.py,sha256=bzxPuQOFUX7YfFb5WmoWE-ykQWK7sLh_zQHyRuvF2ng,233
|
|
6
|
+
flip/covariance/contraction.py,sha256=p3PyF_YufUxxC3ZqBe0OUPGXRWGOMUrdXXCaVpD4R2g,14085
|
|
7
|
+
flip/covariance/cov_utils.py,sha256=uYbrtlLs8-NJTfmdNgyywvo96et8ukyhztGfhbCy9zo,14797
|
|
8
|
+
flip/covariance/covariance.py,sha256=-1grj42Bbq8x9OUitJFck4tPx8mKD7_ebjgkeRaOpCk,31553
|
|
9
|
+
flip/covariance/fisher.py,sha256=0iu_jRcgfJYG3WnchaKP5QuhMPAOAwpaQ4AiHb_qS9o,10743
|
|
10
|
+
flip/covariance/fit_utils.py,sha256=jeC2rMCzy3gcxFFgg1QpkKeh_uI6oB_LrdVbHUI6QcI,34513
|
|
11
|
+
flip/covariance/fitter.py,sha256=xeHdoSN_jEOV-c6XJf-nsxFsdcWx2mX1SqRF0ekAbNM,18884
|
|
12
|
+
flip/covariance/generator.py,sha256=WZ13KZMcfa1sCgqaAmpMrFF7INmoo05WD1Tb7Rihef8,25667
|
|
13
|
+
flip/covariance/likelihood.py,sha256=jiGE0aGuKqnBkz8OXOV7z7IqHQGdXuWD_fpjv6oc4zo,28834
|
|
14
|
+
flip/covariance/plot_utils.py,sha256=UZl5-JC862eKAfd8OxKSlDQmvuXEsUhuSyUP9QW60B0,20311
|
|
15
|
+
flip/covariance/symbolic.py,sha256=xtbOjqXHweFiTCNEnDKgYaq7pW49WxEyLJJ1nVtJbgw,46150
|
|
16
|
+
flip/covariance/analytical/__init__.py,sha256=FTyOWgE55JzfCgLIAI00zrGvnVUZiKoppqJ3WvMSsxw,175
|
|
17
|
+
flip/covariance/analytical/adamsblake17/__init__.py,sha256=94NXeySXL0ZqT_-bBk_CmsB0-aOMm5qp8kG-r7UbrBI,148
|
|
18
|
+
flip/covariance/analytical/adamsblake17/coefficients.py,sha256=OXVyHIdJz7xO8IjpL4G-O960LQklI8qdMY7oO7N7JZ4,972
|
|
19
|
+
flip/covariance/analytical/adamsblake17/fisher_terms.py,sha256=L8p--sXm4SuwtfOl4a3DvdJUk8k1Z8Y51xN75Y0JZjo,8683
|
|
20
|
+
flip/covariance/analytical/adamsblake17/flip_terms.py,sha256=OY_wyOA_l46o0J0nTyOMCUYGNR70jnrtFGHRIMkHA3U,1208
|
|
21
|
+
flip/covariance/analytical/adamsblake17plane/__init__.py,sha256=94NXeySXL0ZqT_-bBk_CmsB0-aOMm5qp8kG-r7UbrBI,148
|
|
22
|
+
flip/covariance/analytical/adamsblake17plane/coefficients.py,sha256=OXVyHIdJz7xO8IjpL4G-O960LQklI8qdMY7oO7N7JZ4,972
|
|
23
|
+
flip/covariance/analytical/adamsblake17plane/fisher_terms.py,sha256=L8p--sXm4SuwtfOl4a3DvdJUk8k1Z8Y51xN75Y0JZjo,8683
|
|
24
|
+
flip/covariance/analytical/adamsblake17plane/flip_terms.py,sha256=kuvD6CD4WHqP-V3stHJxvsaOdDz5InYso2EpvvPwQhs,1105
|
|
25
|
+
flip/covariance/analytical/adamsblake17plane/generator.py,sha256=svprrN4mjqjcX5cDoDWJ8LgRjeOUQX2Vr7Edu1boMG4,10775
|
|
26
|
+
flip/covariance/analytical/adamsblake20/__init__.py,sha256=TYS1sGySDUru6s5Wk4wd-3TnRa3PVjEsIQEuwOkXhr8,239
|
|
27
|
+
flip/covariance/analytical/adamsblake20/coefficients.py,sha256=hJ8VMmHKF9BRuelqnaJvWPHuxxWn7f-boZa4Gah7f08,1837
|
|
28
|
+
flip/covariance/analytical/adamsblake20/fisher_terms.py,sha256=-1sMM2Ydsb35hhH2xYDc9Itn7ElyGzBNSsyOyIe8EYM,27920
|
|
29
|
+
flip/covariance/analytical/adamsblake20/flip_terms.py,sha256=45TFyFv0CRsmFjEfhvTbQz9BO0AWOAjwfSeOHlBZmLY,8069
|
|
30
|
+
flip/covariance/analytical/carreres23/__init__.py,sha256=X8EBISybyz4sgkXE2q8dEkZjqGHi6oqgb6QU0_isM2Q,165
|
|
31
|
+
flip/covariance/analytical/carreres23/coefficients.py,sha256=uw96hxCLDra_0qLFpKHITORb15ZcHQATX8rpxEHXpm0,433
|
|
32
|
+
flip/covariance/analytical/carreres23/fisher_terms.py,sha256=CsPlO6gtnm0XwRkGoiM48HrPkduvikX_YC_A5p0UJIE,1453
|
|
33
|
+
flip/covariance/analytical/carreres23/flip_terms.py,sha256=2taKNb4OjyszZ5g03bgGk1KIaDPrO5fA0S9erKtXaJY,770
|
|
34
|
+
flip/covariance/analytical/carreres23/generator.py,sha256=FcegRe3rCXigsg_q1B19Jp67cTq-dLKrhyXZvrnDAh8,5882
|
|
35
|
+
flip/covariance/analytical/genericzdep/__init__.py,sha256=xX5ncmn3AyUz8ReiC5Hb6v_qeeWXiu8c4ET7dtLNBSU,111
|
|
36
|
+
flip/covariance/analytical/genericzdep/coefficients.py,sha256=9J0iPiOAfwjcojnhg_mpctUMaNRO-BoEshwlcD6Ymmo,1351
|
|
37
|
+
flip/covariance/analytical/genericzdep/flip_terms.py,sha256=Xo_esbVyOr2aGuiAmaDa67rURTcucmwC__tMzwdQ3mI,1599
|
|
38
|
+
flip/covariance/analytical/lai22/__init__.py,sha256=hnYxdGuS7nSAUuvpckk7VA_WCAUe6SHPYGz32tGLUWM,240
|
|
39
|
+
flip/covariance/analytical/lai22/coefficients.py,sha256=MrZe1N85atAGGUKGckv-FUqfz-mrUdJSeWmBmybBisQ,3336
|
|
40
|
+
flip/covariance/analytical/lai22/fisher_terms.py,sha256=nvvvwIL8w_jub_3mvkjSZmKuciWO9L5PFQMlZHjvhro,170032
|
|
41
|
+
flip/covariance/analytical/lai22/flip_terms.py,sha256=fPi2nu38GI5S9Ie57zyRgXH-OyLoICg9jyNPZhuED4k,472248
|
|
42
|
+
flip/covariance/analytical/lai22/generator.py,sha256=YqfJ4HLs5Kew0l0_P4ai6wNbVwEdeAlgtPKCdVGrE70,36164
|
|
43
|
+
flip/covariance/analytical/lai22/h_terms.py,sha256=RWIAabFHhvaXQnz9QO9MCUKT0mVAsKTKAqcvH4ZKOcU,78216
|
|
44
|
+
flip/covariance/analytical/lai22/symbolic.py,sha256=Unp_75EkUX2XN8Yxm_MVTXdwcIblKjFG5G7T7efZ6co,6074
|
|
45
|
+
flip/covariance/analytical/ravouxcarreres/__init__.py,sha256=TYS1sGySDUru6s5Wk4wd-3TnRa3PVjEsIQEuwOkXhr8,239
|
|
46
|
+
flip/covariance/analytical/ravouxcarreres/coefficients.py,sha256=hJ8VMmHKF9BRuelqnaJvWPHuxxWn7f-boZa4Gah7f08,1837
|
|
47
|
+
flip/covariance/analytical/ravouxcarreres/fisher_terms.py,sha256=-1sMM2Ydsb35hhH2xYDc9Itn7ElyGzBNSsyOyIe8EYM,27920
|
|
48
|
+
flip/covariance/analytical/ravouxcarreres/flip_terms.py,sha256=3o_xlQRU3Pfuw_gmxw9FJFYgadTTTV7WgxwUXnrY6k8,23089
|
|
49
|
+
flip/covariance/analytical/ravouxcarreres/flip_terms_lmax.py,sha256=4parR15Q9oepgYN39rm3DGdnTmbw3Zi5SjmGhpUUqOo,100630
|
|
50
|
+
flip/covariance/analytical/ravouxnoanchor25/__init__.py,sha256=AYe85mOOwW9pjQ4nSCeNPTj2IHJA8T_o9rFmVnFs53M,152
|
|
51
|
+
flip/covariance/analytical/ravouxnoanchor25/coefficients.py,sha256=5JEXibojBvlIXUCq90sK_se27CM2Q-_-Va1gy65w8SY,1505
|
|
52
|
+
flip/covariance/analytical/ravouxnoanchor25/fisher_terms.py,sha256=CsPlO6gtnm0XwRkGoiM48HrPkduvikX_YC_A5p0UJIE,1453
|
|
53
|
+
flip/covariance/analytical/ravouxnoanchor25/flip_terms.py,sha256=PlyYRlNCnRT55piDdnunl7QIwEkNbGotOfo6kIGOqs0,780
|
|
54
|
+
flip/covariance/analytical/rcrk24/__init__.py,sha256=_ebQvTeBW0pZAZ9KO7vHwdc1qTkMgOoNGr2ki_ahOUs,252
|
|
55
|
+
flip/covariance/analytical/rcrk24/coefficients.py,sha256=XhPU_3-QzcBkJcakcmzThN3ZcZCeTXekqxWI6cwq0_g,6427
|
|
56
|
+
flip/covariance/analytical/rcrk24/fisher_terms.py,sha256=tipukrVhe4s9y4CC6aPsPfhyxoIILTsLFt5jUKLrItA,3372
|
|
57
|
+
flip/covariance/analytical/rcrk24/flip_terms.py,sha256=M4DkzboJBtYuGVFWqwG4-2ceWPrYHjDKE7pDFrwJ-D4,785
|
|
58
|
+
flip/covariance/emulators/__init__.py,sha256=3izGJjEL-aBelpfUsuts1dWqha_JBaKDSUVnrNHootw,115
|
|
59
|
+
flip/covariance/emulators/generator.py,sha256=Uvtz1DcpQVKBW3qJzHHm_XqrvqwRKe1-CssKCJGGgNU,12868
|
|
60
|
+
flip/covariance/emulators/gpmatrix.py,sha256=INa1IkBjVOKKi44-GVVEYTVPcZzp2xf42KeKhK04cHQ,4748
|
|
61
|
+
flip/covariance/emulators/nnmatrix.py,sha256=yzR3q1S5egvJ2IYCxlJvfPhO_i4clW7q3UaAtxSu8K8,9057
|
|
62
|
+
flip/covariance/emulators/skgpmatrix.py,sha256=JGQiPvuVLN2oZkwwHaC3i1llzzqfWg5vwZWiEh3WI2U,3877
|
|
63
|
+
flip/data/__init__.py,sha256=8OBjUqbJBny0jMSCxCyKVi4-MNjR6vg3ZTGCGX8Vgf4,72
|
|
64
|
+
flip/data/data_density.parquet,sha256=_156O6Q05FQDqQj9QaStQBpiS1eWngTHN_QdBsfos2M,14061
|
|
65
|
+
flip/data/data_velocity.parquet,sha256=m5WkL3LRzwHKl-AgxMVnhn_8IaB5extm1Fipo3fKR1c,181039
|
|
66
|
+
flip/data/data_window_density.parquet,sha256=vSF7GGJzIkzGNTnhksFa-zJlEs9i5THugEzUl52si2o,40372
|
|
67
|
+
flip/data/gridding.py,sha256=_3PHazY-KbxQyHKWxQguB4LGJ1yU-uHNcQqzQSk5O8c,30864
|
|
68
|
+
flip/data/load_data_test.py,sha256=DmHn3gJTDtGqJCGObnpvhKm0YDGlhTM8kJuHIZUxZ9Q,2871
|
|
69
|
+
flip/data/power_spectrum_mm.txt,sha256=TltaM8gxTnyUR3eLM1GHf6HCctRA1F6cHmuhjRYkj8M,50085
|
|
70
|
+
flip/data/power_spectrum_mt.txt,sha256=S9fuSnNoW9qwJL7xuRUoVSz_EzmgEJENy3td8u9FkXU,50085
|
|
71
|
+
flip/data/power_spectrum_tt.txt,sha256=Ws3b8XtzZJ0aNKT7g3PRb0NQWDtvpFBTU6nCi0G5ZXc,50085
|
|
72
|
+
flip/data/style.mplstyle,sha256=2og3sSZU3SqBBB1Jm4alodk3jJF-PMyf7XZqCvItwdA,2341
|
|
73
|
+
flip/data/test_covariance_reference_values.json,sha256=O6Z-QeDBMjWQUKpLqbhwilGfO-fQaGGRjAdfHuq_WvQ,3360
|
|
74
|
+
flip/data/test_e2e_reference_values.json,sha256=qfqJDGL2CCiR4xiiYW6SX4_FdzawXQLodFXQREmT_Y0,256
|
|
75
|
+
flip/data_vector/__init__.py,sha256=ZUGmpWl3D_PvZSmQNte4L-sW7trfL-SJj7jtzeysnwM,129
|
|
76
|
+
flip/data_vector/basic.py,sha256=e5hsvSB19JA5QDeaNMdAQndLbDqcrNxx6zdCKeTTM5o,12362
|
|
77
|
+
flip/data_vector/cosmo_utils.py,sha256=WvrQmWM0lPkdy1Ak8NMe3IzauRcBV9bubAQ3YGCdqQo,624
|
|
78
|
+
flip/data_vector/galaxypv_vectors.py,sha256=VI897662S5s7g6iwAsQssvKK6ydBto1LBmvjBez6mfA,14890
|
|
79
|
+
flip/data_vector/snia_vectors.py,sha256=IzM2nH7y1y9puWGugLfLUJURpRksBNg2w5XZxypoWPY,7978
|
|
80
|
+
flip/data_vector/vector_utils.py,sha256=P0AfdyYUU5F6ClgrhyASmqs3ai6PsKmB_o_KnHlWVJY,6715
|
|
81
|
+
flip/power_spectra/__init__.py,sha256=9XDOGCo4YFXg0QdQ6gEC66oVaB1Q_NtCmqMn8PZs30w,118
|
|
82
|
+
flip/power_spectra/class_engine.py,sha256=MWKvSFKOK242JRpc4wNxbT_1ldH9c00umVW75A4px-A,5964
|
|
83
|
+
flip/power_spectra/cosmoprimo_engine.py,sha256=tftCtZO1YTQTKie44qdRPzT3WNTpZmW5fbw66qnKchk,3005
|
|
84
|
+
flip/power_spectra/generator.py,sha256=X6AAsuiYWXNjfJDdYGd0Pna1wgXH0_eNEZefGNcxZEM,6656
|
|
85
|
+
flip/power_spectra/models.py,sha256=bRR5lIQHyoRtE0lqQKjiPxCdQNqwK1ZG5zrjMPQmzoo,3544
|
|
86
|
+
flip/power_spectra/pyccl_engine.py,sha256=D8PTQaB43L6A0VhiQs55kuk8t6uOcDIxwLNW6i8Ja6w,3527
|
|
87
|
+
flip/simulation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
88
|
+
flipcosmo-1.2.1.dist-info/licenses/LICENSE,sha256=jQfEFGXoNPb52M0jMfnWZtz8reTMYXItOx9-wevuHWg,1071
|
|
89
|
+
scripts/flip_compute_correlation_model.py,sha256=9IhGD2rctHIuE_FeOuTze22EEqGVWUqFzoTle1HNQ6k,1710
|
|
90
|
+
scripts/flip_compute_power_spectra.py,sha256=Ez36BS8bmxPs0iSeHVGIhzXcohlRb8BG6NxsioN7S0Y,1298
|
|
91
|
+
scripts/flip_fisher_forecast_velocity.py,sha256=coQ_YdsSouq-4AGXExwojr1fIC_tO0wz4-3HU9ZYTco,1838
|
|
92
|
+
scripts/flip_fisher_rcrk24.py,sha256=NhfGJgxuzKnodl2tzl5YS3MD_Cs2MDqWKgCGirvH3Fk,4899
|
|
93
|
+
scripts/flip_launch_minuit_density_fit.py,sha256=0sBaCGhvszBJ2_iwUPJh1LMT9duEe9jxEr_jWxuMQCU,2185
|
|
94
|
+
scripts/flip_launch_minuit_full_fit.py,sha256=PJiyhP5Nrguu_oogRTjlRXcr_0RDBsUY5EOaAg1CR-w,3225
|
|
95
|
+
scripts/flip_launch_minuit_velocity_fit.py,sha256=rcBa8CO04TVMeIRGdB_Oyp-RdFud_uU8tv9Wx_vuE24,1946
|
|
96
|
+
scripts/flip_launch_minuit_velocity_fit_full.py,sha256=wzHp-cns2ADzp02vQVyySbpNMS2EPddBM5NX3S3O1ew,2537
|
|
97
|
+
scripts/flip_launch_minuit_velocity_fit_interpolation.py,sha256=KAK7A_HU-FYorUEcPAXVCtBqRPEL3cugSUxcHVcEu24,2401
|
|
98
|
+
test/refresh_reference_values.py,sha256=T5Fs5iiKpeWUIyC0OHBrnXoPjfdAyfXMjE-YVK-pXLY,1148
|
|
99
|
+
test/test_covariance_assembly.py,sha256=kq8i9I6iYPwXAZ1zW9nHoxHL3e_3ppJ9dJ5Owy8OfQY,3601
|
|
100
|
+
test/test_covariance_reference_values.py,sha256=jwL1aLVGwRm0UcIMf7vUSrlLrG50vrN_rdfCxOBwdlo,4104
|
|
101
|
+
test/test_covariance_utils.py,sha256=mSd5FrjQI9HTtAUo_qJCO8XGdQl2TtG-0MPCqoZxtAU,1051
|
|
102
|
+
test/test_e2e_density.py,sha256=vVaRphhfGdHxKknzVOYbH3YMGma7BUk7o2PCqebHSr0,1833
|
|
103
|
+
test/test_e2e_joint.py,sha256=GfQkm2_NGPXiZWRxmbk1xX0Q8JXtfue59klDD6tHOBE,2386
|
|
104
|
+
test/test_e2e_velocity.py,sha256=FebMsWwzqvfhkest5kkXTdkW6Me-q1gTypcU6Qc4Kh4,1796
|
|
105
|
+
test/test_likelihood_inversions.py,sha256=RE2IiCtBPKJzlvEaFQysYh1nht9wTQo2Bfsfa0hChaY,830
|
|
106
|
+
flipcosmo-1.2.1.dist-info/METADATA,sha256=WxnK7RJ3Nxyc0gaH7IipR1SepPDVo4AUaWsVuMZj8iE,3616
|
|
107
|
+
flipcosmo-1.2.1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
108
|
+
flipcosmo-1.2.1.dist-info/top_level.txt,sha256=9MRA5iw3NarUSIfyQLBZB_b_44iHdvuTW9CjqvMi8_4,44
|
|
109
|
+
flipcosmo-1.2.1.dist-info/RECORD,,
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from flip.covariance import contraction
|
|
5
|
+
from pkg_resources import resource_filename
|
|
6
|
+
from scipy.interpolate import RegularGridInterpolator
|
|
7
|
+
|
|
8
|
+
from flip import utils
|
|
9
|
+
|
|
10
|
+
flip_base = resource_filename("flip", ".")
|
|
11
|
+
data_path = os.path.join(flip_base, "data")
|
|
12
|
+
|
|
13
|
+
sigmau_fiducial = 15.0
|
|
14
|
+
sigmag_fiducial = 3.0
|
|
15
|
+
|
|
16
|
+
r_array = np.linspace(10, 200, 100)
|
|
17
|
+
mu_array = np.linspace(-1, 1, 100)
|
|
18
|
+
|
|
19
|
+
r_reference = 10_000
|
|
20
|
+
mu_reference = 0
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
ktt, ptt = np.loadtxt(os.path.join(data_path, "power_spectrum_tt.txt"))
|
|
24
|
+
kmt, pmt = np.loadtxt(os.path.join(data_path, "power_spectrum_mt.txt"))
|
|
25
|
+
kmm, pmm = np.loadtxt(os.path.join(data_path, "power_spectrum_mm.txt"))
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
power_spectrum_dict = {
|
|
29
|
+
"gg": [[kmm, pmm], [kmt, pmt], [ktt, ptt]],
|
|
30
|
+
"gv": [
|
|
31
|
+
[kmt, pmt * utils.Du(kmt, sigmau_fiducial)],
|
|
32
|
+
[ktt, ptt * utils.Du(kmt, sigmau_fiducial)],
|
|
33
|
+
],
|
|
34
|
+
"vv": [[ktt, ptt * utils.Du(ktt, sigmau_fiducial) ** 2]],
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
correlation = contraction.Contraction.init_from_flip(
|
|
39
|
+
"adamsblake20",
|
|
40
|
+
"full",
|
|
41
|
+
power_spectrum_dict,
|
|
42
|
+
r_array,
|
|
43
|
+
mu_array,
|
|
44
|
+
r_reference,
|
|
45
|
+
mu_reference,
|
|
46
|
+
additional_parameters_values=(sigmag_fiducial,),
|
|
47
|
+
coordinate_type="rmu",
|
|
48
|
+
basis_definition="bisector",
|
|
49
|
+
number_worker=8,
|
|
50
|
+
hankel=True,
|
|
51
|
+
variant="nobeta",
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
parameter_dict = {
|
|
56
|
+
"fs8": 0.4,
|
|
57
|
+
"bs8": 1.8,
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
contraction_sum = correlation.compute_contraction_sum(parameter_dict)
|
|
62
|
+
xi_vv_interp = RegularGridInterpolator(
|
|
63
|
+
(r_array, mu_array), contraction_sum["vv"], method="cubic"
|
|
64
|
+
)
|
|
65
|
+
xi_vg_interp = RegularGridInterpolator(
|
|
66
|
+
(r_array, mu_array), contraction_sum["gv"], method="cubic"
|
|
67
|
+
)
|
|
68
|
+
xi_gg_interp = RegularGridInterpolator(
|
|
69
|
+
(r_array, mu_array), contraction_sum["gg"], method="cubic"
|
|
70
|
+
)
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
from flip.power_spectra import generator
|
|
2
|
+
|
|
3
|
+
power_spectrum_engine = "class_engine"
|
|
4
|
+
|
|
5
|
+
power_spectrum_settings = {
|
|
6
|
+
"h": 0.6766,
|
|
7
|
+
"omega_b": 0.02242,
|
|
8
|
+
"omega_cdm": 0.11933,
|
|
9
|
+
"sigma8": 0.8102,
|
|
10
|
+
"n_s": 0.9665,
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
minimal_wavenumber = 0.0005
|
|
15
|
+
maximal_wavenumber = 1.000
|
|
16
|
+
number_points = 1000
|
|
17
|
+
logspace = True
|
|
18
|
+
redshift = 0.0
|
|
19
|
+
|
|
20
|
+
# Can be changed by "growth_rate" (fsigma_8^fid normalization) or "no_normalization"
|
|
21
|
+
# Here, it normalize by sigma_8^fid
|
|
22
|
+
normalization_power_spectrum = "growth_amplitude"
|
|
23
|
+
|
|
24
|
+
# If you want to add non linearity, what model to use
|
|
25
|
+
power_spectrum_non_linear_model = "halofit"
|
|
26
|
+
|
|
27
|
+
# Model used to compute matter and velocity divergence power spectra
|
|
28
|
+
power_spectrum_model = "linearbel"
|
|
29
|
+
|
|
30
|
+
save_path = "./" # If not None, will save all calculated power spectra in this folder
|
|
31
|
+
|
|
32
|
+
(
|
|
33
|
+
wavenumber,
|
|
34
|
+
power_spectrum_mm,
|
|
35
|
+
power_spectrum_mt,
|
|
36
|
+
power_spectrum_tt,
|
|
37
|
+
fiducial,
|
|
38
|
+
) = generator.compute_power_spectra(
|
|
39
|
+
power_spectrum_engine,
|
|
40
|
+
power_spectrum_settings,
|
|
41
|
+
redshift,
|
|
42
|
+
minimal_wavenumber,
|
|
43
|
+
maximal_wavenumber,
|
|
44
|
+
number_points,
|
|
45
|
+
logspace=logspace,
|
|
46
|
+
normalization_power_spectrum=normalization_power_spectrum,
|
|
47
|
+
power_spectrum_non_linear_model=power_spectrum_non_linear_model,
|
|
48
|
+
power_spectrum_model=power_spectrum_model,
|
|
49
|
+
save_path=save_path,
|
|
50
|
+
)
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from flip.covariance import covariance, fisher
|
|
6
|
+
from pkg_resources import resource_filename
|
|
7
|
+
|
|
8
|
+
from flip import data_vector, utils
|
|
9
|
+
|
|
10
|
+
flip_base = resource_filename("flip", ".")
|
|
11
|
+
data_path = os.path.join(flip_base, "data")
|
|
12
|
+
|
|
13
|
+
### Load data
|
|
14
|
+
sn_data = pd.read_parquet(os.path.join(data_path, "data_velocity.parquet"))
|
|
15
|
+
|
|
16
|
+
coordinates_velocity = np.array([sn_data["ra"], sn_data["dec"], sn_data["rcom_zobs"]])
|
|
17
|
+
|
|
18
|
+
data_velocity = sn_data.to_dict("list")
|
|
19
|
+
for key in data_velocity.keys():
|
|
20
|
+
data_velocity[key] = np.array(data_velocity[key])
|
|
21
|
+
data_velocity["velocity"] = data_velocity.pop("vpec")
|
|
22
|
+
data_velocity["velocity_error"] = np.zeros_like(data_velocity["velocity"])
|
|
23
|
+
|
|
24
|
+
data_velocity_object = data_vector.DirectVel(data_velocity)
|
|
25
|
+
|
|
26
|
+
ktt, ptt = np.loadtxt(os.path.join(data_path, "power_spectrum_tt.txt"))
|
|
27
|
+
kmt, pmt = np.loadtxt(os.path.join(data_path, "power_spectrum_mt.txt"))
|
|
28
|
+
kmm, pmm = np.loadtxt(os.path.join(data_path, "power_spectrum_mm.txt"))
|
|
29
|
+
|
|
30
|
+
sigmau_fiducial = 15
|
|
31
|
+
|
|
32
|
+
power_spectrum_dict = {"vv": [[ktt, ptt * utils.Du(ktt, sigmau_fiducial) ** 2]]}
|
|
33
|
+
|
|
34
|
+
### Compute covariance
|
|
35
|
+
size_batch = 10_000
|
|
36
|
+
number_worker = 16
|
|
37
|
+
|
|
38
|
+
covariance_fit = covariance.CovMatrix.init_from_flip(
|
|
39
|
+
"carreres23",
|
|
40
|
+
"velocity",
|
|
41
|
+
power_spectrum_dict,
|
|
42
|
+
coordinates_velocity=coordinates_velocity,
|
|
43
|
+
size_batch=size_batch,
|
|
44
|
+
number_worker=number_worker,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
### Load fitter
|
|
49
|
+
|
|
50
|
+
fisher_properties = {
|
|
51
|
+
"inversion_method": "inverse",
|
|
52
|
+
"velocity_type": "scatter",
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
variant = None # can be replaced by growth_index
|
|
56
|
+
|
|
57
|
+
parameter_dict = {
|
|
58
|
+
"fs8": 0.4,
|
|
59
|
+
"sigv": 200,
|
|
60
|
+
"sigma_M": 0.12,
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
Fisher = fisher.FisherMatrix.init_from_covariance(
|
|
64
|
+
covariance_fit,
|
|
65
|
+
data_velocity_object,
|
|
66
|
+
parameter_dict,
|
|
67
|
+
fisher_properties=fisher_properties,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
parameter_name_list, fisher_matrix = Fisher.compute_fisher_matrix()
|
|
@@ -0,0 +1,164 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from flip.covariance import covariance, fisher
|
|
6
|
+
from pkg_resources import resource_filename
|
|
7
|
+
|
|
8
|
+
from flip import data_vector, utils
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def main(parameter_dict=None, variant="growth_rate"):
|
|
12
|
+
flip_base = resource_filename("flip", ".")
|
|
13
|
+
data_path = os.path.join(flip_base, "data")
|
|
14
|
+
|
|
15
|
+
### Load data
|
|
16
|
+
sn_data = pd.read_parquet(os.path.join(data_path, "data_velocity.parquet"))
|
|
17
|
+
|
|
18
|
+
coordinates_velocity = np.array(
|
|
19
|
+
[sn_data["ra"], sn_data["dec"], sn_data["rcom_zobs"]]
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
data_velocity = sn_data.to_dict("list")
|
|
23
|
+
for key in data_velocity.keys():
|
|
24
|
+
data_velocity[key] = np.array(data_velocity[key])
|
|
25
|
+
data_velocity["velocity"] = data_velocity.pop("vpec")
|
|
26
|
+
data_velocity["velocity_error"] = np.zeros_like(data_velocity["velocity"])
|
|
27
|
+
|
|
28
|
+
data_velocity_object = data_vector.DirectVel(data_velocity)
|
|
29
|
+
|
|
30
|
+
ktt, ptt = np.loadtxt(os.path.join(data_path, "power_spectrum_tt.txt"))
|
|
31
|
+
|
|
32
|
+
sigmau_fiducial = 15
|
|
33
|
+
|
|
34
|
+
power_spectrum_dict = {"vv": [[ktt, ptt * utils.Du(ktt, sigmau_fiducial) ** 2]]}
|
|
35
|
+
|
|
36
|
+
size_batch = 10_000
|
|
37
|
+
number_worker = 16
|
|
38
|
+
|
|
39
|
+
covariance_fit = covariance.CovMatrix.init_from_flip(
|
|
40
|
+
"rcrk24",
|
|
41
|
+
"velocity",
|
|
42
|
+
power_spectrum_dict,
|
|
43
|
+
coordinates_velocity=coordinates_velocity,
|
|
44
|
+
size_batch=size_batch,
|
|
45
|
+
number_worker=number_worker,
|
|
46
|
+
variant=variant,
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
### Load fitter
|
|
50
|
+
|
|
51
|
+
fisher_properties = {
|
|
52
|
+
"inversion_method": "inverse",
|
|
53
|
+
"velocity_type": "scatter",
|
|
54
|
+
}
|
|
55
|
+
|
|
56
|
+
Fisher = fisher.FisherMatrix.init_from_covariance(
|
|
57
|
+
covariance_fit,
|
|
58
|
+
data_velocity_object,
|
|
59
|
+
parameter_dict,
|
|
60
|
+
fisher_properties=fisher_properties,
|
|
61
|
+
covariance_prefactor_dict={"redshift_velocity": data_velocity["zobs"]},
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
parameter_name_list, fisher_matrix = Fisher.compute_fisher_matrix(
|
|
65
|
+
covariance_prefactor_dict={"redshift_velocity": np.array(data_velocity["zobs"])}
|
|
66
|
+
)
|
|
67
|
+
return parameter_name_list, fisher_matrix
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def lnD(a, parameter_values_dict):
|
|
71
|
+
f0 = parameter_values_dict["Om0"] ** parameter_values_dict["gamma"]
|
|
72
|
+
return np.log(a) * (
|
|
73
|
+
f0
|
|
74
|
+
+ f0 * 3 * parameter_values_dict["gamma"] * (1 - parameter_values_dict["Om0"])
|
|
75
|
+
) + (1 - a) * f0 * 3 * parameter_values_dict["gamma"] * (
|
|
76
|
+
1 - parameter_values_dict["Om0"]
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def dlnDdOm0(a, parameter_values_dict):
|
|
81
|
+
lna = np.log(a)
|
|
82
|
+
return (
|
|
83
|
+
parameter_values_dict["gamma"]
|
|
84
|
+
* parameter_values_dict["Om0"] ** (parameter_values_dict["gamma"] - 1)
|
|
85
|
+
* (
|
|
86
|
+
3
|
|
87
|
+
* parameter_values_dict["gamma"]
|
|
88
|
+
* (parameter_values_dict["Om0"] - 1)
|
|
89
|
+
* (a - lna - 1)
|
|
90
|
+
+ 3 * (a - 1) * parameter_values_dict["Om0"]
|
|
91
|
+
- 3 * np.log(a) * parameter_values_dict["Om0"]
|
|
92
|
+
+ lna
|
|
93
|
+
)
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def dlnDdgamma(a, parameter_values_dict):
|
|
98
|
+
lna = np.log(a)
|
|
99
|
+
f0 = parameter_values_dict["Om0"] ** parameter_values_dict["gamma"]
|
|
100
|
+
return f0 * (
|
|
101
|
+
np.log(parameter_values_dict["Om0"])
|
|
102
|
+
* (
|
|
103
|
+
3
|
|
104
|
+
* parameter_values_dict["gamma"]
|
|
105
|
+
* (parameter_values_dict["Om0"] - 1)
|
|
106
|
+
* (a - lna - 1)
|
|
107
|
+
+ lna
|
|
108
|
+
)
|
|
109
|
+
+ 3 * (parameter_values_dict["Om0"] - 1) * (a - lna - 1)
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
if __name__ == "__main__":
|
|
114
|
+
|
|
115
|
+
# dictionary that describes the fiducial power spectrum
|
|
116
|
+
# should be specified by the
|
|
117
|
+
#
|
|
118
|
+
# parameters of the model
|
|
119
|
+
# s8 of the fiducial power spectrum
|
|
120
|
+
# z of the fiduccial power spectrum
|
|
121
|
+
|
|
122
|
+
# for now the dictionaries conflate the two models.
|
|
123
|
+
# Really should be for one model
|
|
124
|
+
|
|
125
|
+
parameter_dict = {
|
|
126
|
+
"gamma": 0.55,
|
|
127
|
+
"Om0": 0.3,
|
|
128
|
+
"s80": 0.832,
|
|
129
|
+
"fs8": 0.3**0.55 * 0.832,
|
|
130
|
+
"s8_cmb": 0.832 * 0.001176774706956903,
|
|
131
|
+
"sigv": 200,
|
|
132
|
+
"sigma_M": 0.12,
|
|
133
|
+
}
|
|
134
|
+
|
|
135
|
+
Om0_prior = 0.1
|
|
136
|
+
|
|
137
|
+
# growth index
|
|
138
|
+
parameter_name_list, fisher_matrix = main(
|
|
139
|
+
parameter_dict=parameter_dict, variant="growth_index"
|
|
140
|
+
)
|
|
141
|
+
cov = np.linalg.inv(fisher_matrix + np.array([[1 / Om0_prior**2, 0], [0, 0]]))
|
|
142
|
+
partials = parameter_dict["s80"] * np.array(
|
|
143
|
+
[
|
|
144
|
+
parameter_dict["gamma"]
|
|
145
|
+
* parameter_dict["Om0"] ** (parameter_dict["gamma"] - 1),
|
|
146
|
+
np.log(parameter_dict["Om0"])
|
|
147
|
+
* parameter_dict["Om0"] ** parameter_dict["gamma"],
|
|
148
|
+
]
|
|
149
|
+
)
|
|
150
|
+
partials = partials + parameter_dict["Om0"] ** parameter_dict[
|
|
151
|
+
"gamma"
|
|
152
|
+
] * parameter_dict["s80"] * np.array(
|
|
153
|
+
[dlnDdOm0(1.0, parameter_dict), dlnDdgamma(1.0, parameter_dict)]
|
|
154
|
+
)
|
|
155
|
+
print(
|
|
156
|
+
parameter_dict["Om0"] ** parameter_dict["gamma"] * parameter_dict["s80"],
|
|
157
|
+
np.sqrt(partials.T @ cov @ partials),
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
# growth rate
|
|
161
|
+
parameter_name_list, fisher_matrix = main(
|
|
162
|
+
parameter_dict=parameter_dict, variant="growth_rate"
|
|
163
|
+
)
|
|
164
|
+
print(parameter_dict["fs8"], 1 / np.sqrt(fisher_matrix))
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from flip.covariance import covariance, fitter
|
|
6
|
+
from pkg_resources import resource_filename
|
|
7
|
+
|
|
8
|
+
from flip import data_vector
|
|
9
|
+
|
|
10
|
+
flip_base = resource_filename("flip", ".")
|
|
11
|
+
data_path = os.path.join(flip_base, "data")
|
|
12
|
+
|
|
13
|
+
### Load data
|
|
14
|
+
grid = pd.read_parquet(os.path.join(data_path, "data_density.parquet"))
|
|
15
|
+
grid_window = pd.read_parquet(os.path.join(data_path, "data_window_density.parquet"))
|
|
16
|
+
|
|
17
|
+
coordinates_density = np.array([grid["ra"], grid["dec"], grid["rcom_zobs"]])
|
|
18
|
+
data_density = {
|
|
19
|
+
"density": np.array(grid["density"]),
|
|
20
|
+
"density_error": np.array(grid["density_error"]),
|
|
21
|
+
}
|
|
22
|
+
|
|
23
|
+
data_density_object = data_vector.Dens(data_density)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
ktt, ptt = np.loadtxt(os.path.join(data_path, "power_spectrum_tt.txt"))
|
|
27
|
+
kmt, pmt = np.loadtxt(os.path.join(data_path, "power_spectrum_mt.txt"))
|
|
28
|
+
kmm, pmm = np.loadtxt(os.path.join(data_path, "power_spectrum_mm.txt"))
|
|
29
|
+
|
|
30
|
+
sigmag_fiducial = 3.0
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
power_spectrum_dict_bias = {
|
|
34
|
+
"gg": [[kmm, pmm * np.array(grid_window["window_mm"]) ** 2]]
|
|
35
|
+
}
|
|
36
|
+
power_spectrum_dict = {
|
|
37
|
+
"gg": [
|
|
38
|
+
[kmm, pmm * np.array(grid_window["window_mm"]) ** 2],
|
|
39
|
+
[kmt, pmt * np.array(grid_window["window_mt"])],
|
|
40
|
+
[ktt, ptt],
|
|
41
|
+
]
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
### Compute covariance
|
|
46
|
+
size_batch = 500_000
|
|
47
|
+
number_worker = 8
|
|
48
|
+
|
|
49
|
+
covariance_fit = covariance.CovMatrix.init_from_flip(
|
|
50
|
+
"adamsblake20",
|
|
51
|
+
"density",
|
|
52
|
+
power_spectrum_dict,
|
|
53
|
+
coordinates_density=coordinates_density,
|
|
54
|
+
size_batch=size_batch,
|
|
55
|
+
number_worker=number_worker,
|
|
56
|
+
additional_parameters_values=(sigmag_fiducial,),
|
|
57
|
+
variant="nobeta",
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
### Load fitter
|
|
62
|
+
likelihood_type = "multivariate_gaussian"
|
|
63
|
+
likelihood_properties = {"inversion_method": "cholesky_inverse"}
|
|
64
|
+
|
|
65
|
+
parameter_dict = {
|
|
66
|
+
"bs8": {
|
|
67
|
+
"value": 1.0,
|
|
68
|
+
"limit_low": 0.0,
|
|
69
|
+
"limit_up": 3.0,
|
|
70
|
+
"fixed": False,
|
|
71
|
+
},
|
|
72
|
+
"fs8": {
|
|
73
|
+
"value": 0.4,
|
|
74
|
+
"limit_low": 0.0,
|
|
75
|
+
"limit_up": 1.0,
|
|
76
|
+
"fixed": False,
|
|
77
|
+
},
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
minuit_fitter = fitter.FitMinuit.init_from_covariance(
|
|
82
|
+
covariance_fit,
|
|
83
|
+
data_density_object,
|
|
84
|
+
parameter_dict,
|
|
85
|
+
likelihood_type=likelihood_type,
|
|
86
|
+
likelihood_properties=likelihood_properties,
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
### Fit
|
|
91
|
+
minuit_fitter.run()
|