flaxdiff 0.2.7__py3-none-any.whl → 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flaxdiff/data/dataloaders.py +23 -19
- flaxdiff/data/dataset_map.py +2 -1
- flaxdiff/data/sources/base.py +12 -0
- flaxdiff/data/sources/images.py +75 -3
- flaxdiff/data/sources/videos.py +5 -0
- flaxdiff/inference/utils.py +7 -1
- flaxdiff/models/common.py +1 -70
- flaxdiff/models/hilbert.py +617 -0
- flaxdiff/models/simple_dit.py +275 -0
- flaxdiff/models/simple_mmdit.py +730 -0
- flaxdiff/models/simple_vit.py +405 -145
- flaxdiff/models/vit_common.py +262 -0
- flaxdiff/trainer/general_diffusion_trainer.py +30 -10
- flaxdiff/trainer/simple_trainer.py +113 -19
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/METADATA +1 -1
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/RECORD +18 -15
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/WHEEL +1 -1
- flaxdiff/models/better_uvit.py +0 -380
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/top_level.txt +0 -0
flaxdiff/models/better_uvit.py
DELETED
@@ -1,380 +0,0 @@
|
|
1
|
-
# flaxdiff/models/better_uvit.py
|
2
|
-
import jax
|
3
|
-
import jax.numpy as jnp
|
4
|
-
from flax import linen as nn
|
5
|
-
from typing import Callable, Any, Optional, Tuple, Sequence, Union
|
6
|
-
import einops
|
7
|
-
from functools import partial
|
8
|
-
|
9
|
-
# Re-use existing components if they are suitable
|
10
|
-
from .common import kernel_init, FourierEmbedding, TimeProjection, hilbert_indices, inverse_permutation
|
11
|
-
from .attention import NormalAttention # Using NormalAttention for RoPE integration
|
12
|
-
from flax.typing import Dtype, PrecisionLike
|
13
|
-
|
14
|
-
# --- Rotary Positional Embedding (RoPE) ---
|
15
|
-
# Adapted from https://github.com/google-deepmind/ring_attention/blob/main/ring_attention/layers/rotary.py
|
16
|
-
|
17
|
-
def _rotate_half(x: jax.Array) -> jax.Array:
|
18
|
-
"""Rotates half the hidden dims of the input."""
|
19
|
-
x1 = x[..., : x.shape[-1] // 2]
|
20
|
-
x2 = x[..., x.shape[-1] // 2 :]
|
21
|
-
return jnp.concatenate((-x2, x1), axis=-1)
|
22
|
-
|
23
|
-
def apply_rotary_embedding(
|
24
|
-
x: jax.Array, freqs_cis: jax.Array
|
25
|
-
) -> jax.Array:
|
26
|
-
"""Applies rotary embedding to the input tensor using rotate_half method."""
|
27
|
-
# x shape: [..., Sequence, Dimension] e.g. [B, H, S, D] or [B, S, D]
|
28
|
-
# freqs_cis shape: complex [Sequence, Dimension / 2]
|
29
|
-
|
30
|
-
# Extract cos and sin from the complex freqs_cis
|
31
|
-
cos_freqs = jnp.real(freqs_cis) # Shape [S, D/2]
|
32
|
-
sin_freqs = jnp.imag(freqs_cis) # Shape [S, D/2]
|
33
|
-
|
34
|
-
# Expand dims for broadcasting: [1, 1, S, D/2] or [1, S, D/2]
|
35
|
-
if x.ndim == 4: # [B, H, S, D]
|
36
|
-
cos_freqs = jnp.expand_dims(cos_freqs, axis=(0, 1))
|
37
|
-
sin_freqs = jnp.expand_dims(sin_freqs, axis=(0, 1))
|
38
|
-
elif x.ndim == 3: # [B, S, D]
|
39
|
-
cos_freqs = jnp.expand_dims(cos_freqs, axis=0)
|
40
|
-
sin_freqs = jnp.expand_dims(sin_freqs, axis=0)
|
41
|
-
|
42
|
-
# Duplicate cos and sin for the full dimension D
|
43
|
-
# Shape becomes [..., S, D]
|
44
|
-
cos_freqs = jnp.concatenate([cos_freqs, cos_freqs], axis=-1)
|
45
|
-
sin_freqs = jnp.concatenate([sin_freqs, sin_freqs], axis=-1)
|
46
|
-
|
47
|
-
# Apply rotation: x * cos + rotate_half(x) * sin
|
48
|
-
x_rotated = x * cos_freqs + _rotate_half(x) * sin_freqs
|
49
|
-
return x_rotated.astype(x.dtype)
|
50
|
-
|
51
|
-
|
52
|
-
class RotaryEmbedding(nn.Module):
|
53
|
-
dim: int # Dimension of the head
|
54
|
-
max_seq_len: int = 2048
|
55
|
-
base: int = 10000
|
56
|
-
dtype: Dtype = jnp.float32
|
57
|
-
|
58
|
-
def setup(self):
|
59
|
-
inv_freq = 1.0 / (
|
60
|
-
self.base ** (jnp.arange(0, self.dim, 2, dtype=jnp.float32) / self.dim)
|
61
|
-
)
|
62
|
-
t = jnp.arange(self.max_seq_len, dtype=jnp.float32)
|
63
|
-
freqs = jnp.outer(t, inv_freq) # Shape: [max_seq_len, dim / 2]
|
64
|
-
|
65
|
-
# Precompute the complex form: cos(theta) + i * sin(theta)
|
66
|
-
self.freqs_cis_complex = jnp.cos(freqs) + 1j * jnp.sin(freqs)
|
67
|
-
# Shape: [max_seq_len, dim / 2]
|
68
|
-
|
69
|
-
def __call__(self, seq_len: int):
|
70
|
-
if seq_len > self.max_seq_len:
|
71
|
-
raise ValueError(f"Sequence length {seq_len} exceeds max_seq_len {self.max_seq_len}")
|
72
|
-
# Return complex shape [seq_len, dim / 2]
|
73
|
-
return self.freqs_cis_complex[:seq_len, :]
|
74
|
-
|
75
|
-
# --- Attention with RoPE ---
|
76
|
-
|
77
|
-
class RoPEAttention(NormalAttention):
|
78
|
-
rope_emb: RotaryEmbedding
|
79
|
-
|
80
|
-
@nn.compact
|
81
|
-
def __call__(self, x, context=None, freqs_cis=None):
|
82
|
-
# x has shape [B, H, W, C] or [B, S, C]
|
83
|
-
orig_x_shape = x.shape
|
84
|
-
is_4d = len(orig_x_shape) == 4
|
85
|
-
if is_4d:
|
86
|
-
B, H, W, C = x.shape
|
87
|
-
seq_len = H * W
|
88
|
-
x = x.reshape((B, seq_len, C))
|
89
|
-
else:
|
90
|
-
B, seq_len, C = x.shape
|
91
|
-
|
92
|
-
context = x if context is None else context
|
93
|
-
if len(context.shape) == 4:
|
94
|
-
_B, _H, _W, _C = context.shape
|
95
|
-
context_seq_len = _H * _W
|
96
|
-
context = context.reshape((B, context_seq_len, _C))
|
97
|
-
else:
|
98
|
-
_B, context_seq_len, _C = context.shape
|
99
|
-
|
100
|
-
query = self.query(x) # [B, S, H, D]
|
101
|
-
key = self.key(context) # [B, S_ctx, H, D]
|
102
|
-
value = self.value(context) # [B, S_ctx, H, D]
|
103
|
-
|
104
|
-
# Apply RoPE to query and key
|
105
|
-
if freqs_cis is not None:
|
106
|
-
# Permute to [B, H, S, D] for RoPE application if needed by apply_rotary_embedding
|
107
|
-
query = einops.rearrange(query, 'b s h d -> b h s d')
|
108
|
-
key = einops.rearrange(key, 'b s h d -> b h s d')
|
109
|
-
|
110
|
-
query = apply_rotary_embedding(query, freqs_cis)
|
111
|
-
key = apply_rotary_embedding(key, freqs_cis) # Apply to key as well
|
112
|
-
|
113
|
-
# Permute back to [B, S, H, D] for dot_product_attention
|
114
|
-
query = einops.rearrange(query, 'b h s d -> b s h d')
|
115
|
-
key = einops.rearrange(key, 'b h s d -> b s h d')
|
116
|
-
|
117
|
-
hidden_states = nn.dot_product_attention(
|
118
|
-
query, key, value, dtype=self.dtype, broadcast_dropout=False,
|
119
|
-
dropout_rng=None, precision=self.precision, force_fp32_for_softmax=self.force_fp32_for_softmax,
|
120
|
-
deterministic=True
|
121
|
-
) # Output shape [B, S, H, D]
|
122
|
-
|
123
|
-
proj = self.proj_attn(hidden_states) # Output shape [B, S, C]
|
124
|
-
|
125
|
-
if is_4d:
|
126
|
-
proj = proj.reshape(orig_x_shape) # Reshape back if input was 4D
|
127
|
-
|
128
|
-
return proj
|
129
|
-
|
130
|
-
# --- adaLN-Zero ---
|
131
|
-
|
132
|
-
class AdaLNZero(nn.Module):
|
133
|
-
features: int
|
134
|
-
dtype: Optional[Dtype] = None
|
135
|
-
precision: PrecisionLike = None
|
136
|
-
norm_epsilon: float = 1e-5 # Standard LayerNorm epsilon
|
137
|
-
|
138
|
-
@nn.compact
|
139
|
-
def __call__(self, x, conditioning):
|
140
|
-
# Project conditioning signal to get scale and shift parameters
|
141
|
-
# Conditioning shape: [B, D_cond] -> [B, 1, ..., 1, 6 * features] for broadcasting
|
142
|
-
# Or [B, 1, 6*features] if x is [B, S, F]
|
143
|
-
|
144
|
-
# Ensure conditioning has seq dim if x does
|
145
|
-
if x.ndim == 3 and conditioning.ndim == 2: # x=[B,S,F], cond=[B,D_cond]
|
146
|
-
conditioning = jnp.expand_dims(conditioning, axis=1) # cond=[B,1,D_cond]
|
147
|
-
|
148
|
-
# Project conditioning to get 6 params per feature (scale_mlp, shift_mlp, gate_mlp, scale_attn, shift_attn, gate_attn)
|
149
|
-
# Using nn.DenseGeneral for flexibility if needed, but nn.Dense is fine if cond is [B, D_cond] or [B, 1, D_cond]
|
150
|
-
ada_params = nn.Dense(
|
151
|
-
features=6 * self.features,
|
152
|
-
dtype=self.dtype,
|
153
|
-
precision=self.precision,
|
154
|
-
kernel_init=nn.initializers.zeros, # Initialize projection to zero (Zero init)
|
155
|
-
name="ada_proj"
|
156
|
-
)(conditioning)
|
157
|
-
|
158
|
-
# Split into scale, shift, gate for MLP and Attention
|
159
|
-
scale_mlp, shift_mlp, gate_mlp, scale_attn, shift_attn, gate_attn = jnp.split(ada_params, 6, axis=-1)
|
160
|
-
|
161
|
-
# Apply Layer Normalization
|
162
|
-
norm = nn.LayerNorm(epsilon=self.norm_epsilon, use_scale=False, use_bias=False, dtype=self.dtype)
|
163
|
-
# norm = nn.RMSNorm(epsilon=self.norm_epsilon, dtype=self.dtype) # Alternative: RMSNorm
|
164
|
-
|
165
|
-
norm_x = norm(x)
|
166
|
-
|
167
|
-
# Modulate for Attention path
|
168
|
-
x_attn = norm_x * (1 + scale_attn) + shift_attn
|
169
|
-
|
170
|
-
# Modulate for MLP path
|
171
|
-
x_mlp = norm_x * (1 + scale_mlp) + shift_mlp
|
172
|
-
|
173
|
-
# Return modulated outputs and gates
|
174
|
-
return x_attn, gate_attn, x_mlp, gate_mlp
|
175
|
-
|
176
|
-
|
177
|
-
# --- DiT Block ---
|
178
|
-
|
179
|
-
class DiTBlock(nn.Module):
|
180
|
-
features: int
|
181
|
-
num_heads: int
|
182
|
-
mlp_ratio: int = 4
|
183
|
-
dropout_rate: float = 0.0 # Typically dropout is not used in diffusion models
|
184
|
-
dtype: Optional[Dtype] = None
|
185
|
-
precision: PrecisionLike = None
|
186
|
-
use_flash_attention: bool = False # Keep option, but RoPEAttention uses NormalAttention base
|
187
|
-
force_fp32_for_softmax: bool = True
|
188
|
-
norm_epsilon: float = 1e-5
|
189
|
-
rope_emb: RotaryEmbedding # Pass RoPE module
|
190
|
-
|
191
|
-
def setup(self):
|
192
|
-
hidden_features = int(self.features * self.mlp_ratio)
|
193
|
-
self.ada_ln_zero = AdaLNZero(self.features, dtype=self.dtype, precision=self.precision, norm_epsilon=self.norm_epsilon)
|
194
|
-
|
195
|
-
# Use RoPEAttention
|
196
|
-
self.attention = RoPEAttention(
|
197
|
-
query_dim=self.features,
|
198
|
-
heads=self.num_heads,
|
199
|
-
dim_head=self.features // self.num_heads,
|
200
|
-
dtype=self.dtype,
|
201
|
-
precision=self.precision,
|
202
|
-
use_bias=True, # Bias is common in DiT attention proj
|
203
|
-
force_fp32_for_softmax=self.force_fp32_for_softmax,
|
204
|
-
rope_emb=self.rope_emb # Pass RoPE module instance
|
205
|
-
)
|
206
|
-
|
207
|
-
# Standard MLP block
|
208
|
-
self.mlp = nn.Sequential([
|
209
|
-
nn.Dense(features=hidden_features, dtype=self.dtype, precision=self.precision),
|
210
|
-
nn.gelu,
|
211
|
-
nn.Dense(features=self.features, dtype=self.dtype, precision=self.precision)
|
212
|
-
])
|
213
|
-
|
214
|
-
@nn.compact
|
215
|
-
def __call__(self, x, conditioning, freqs_cis):
|
216
|
-
# x shape: [B, S, F]
|
217
|
-
# conditioning shape: [B, D_cond]
|
218
|
-
|
219
|
-
residual = x
|
220
|
-
|
221
|
-
# Apply adaLN-Zero to get modulated inputs and gates
|
222
|
-
x_attn, gate_attn, x_mlp, gate_mlp = self.ada_ln_zero(x, conditioning)
|
223
|
-
|
224
|
-
# Attention block
|
225
|
-
attn_output = self.attention(x_attn, context=None, freqs_cis=freqs_cis) # Self-attention only
|
226
|
-
x = residual + gate_attn * attn_output
|
227
|
-
|
228
|
-
# MLP block
|
229
|
-
mlp_output = self.mlp(x_mlp)
|
230
|
-
x = x + gate_mlp * mlp_output
|
231
|
-
|
232
|
-
return x
|
233
|
-
|
234
|
-
# --- Patch Embedding (reuse or define if needed) ---
|
235
|
-
# Assuming PatchEmbedding exists in simple_vit.py and is suitable
|
236
|
-
from .simple_vit import PatchEmbedding, unpatchify
|
237
|
-
|
238
|
-
# --- Better UViT (DiT Style) ---
|
239
|
-
|
240
|
-
class BetterUViT(nn.Module):
|
241
|
-
output_channels: int = 3
|
242
|
-
patch_size: int = 16
|
243
|
-
emb_features: int = 768
|
244
|
-
num_layers: int = 12
|
245
|
-
num_heads: int = 12
|
246
|
-
mlp_ratio: int = 4
|
247
|
-
dropout_rate: float = 0.0 # Typically 0 for diffusion
|
248
|
-
dtype: Optional[Dtype] = None
|
249
|
-
precision: PrecisionLike = None
|
250
|
-
use_flash_attention: bool = False # Passed down, but RoPEAttention uses NormalAttention
|
251
|
-
force_fp32_for_softmax: bool = True
|
252
|
-
norm_epsilon: float = 1e-5
|
253
|
-
learn_sigma: bool = False # Option to predict sigma like in DiT paper
|
254
|
-
use_hilbert: bool = False # Toggle Hilbert patch reorder
|
255
|
-
|
256
|
-
def setup(self):
|
257
|
-
self.patch_embed = PatchEmbedding(
|
258
|
-
patch_size=self.patch_size,
|
259
|
-
embedding_dim=self.emb_features,
|
260
|
-
dtype=self.dtype,
|
261
|
-
precision=self.precision
|
262
|
-
)
|
263
|
-
|
264
|
-
# Time embedding projection
|
265
|
-
self.time_embed = nn.Sequential([
|
266
|
-
FourierEmbedding(features=self.emb_features),
|
267
|
-
TimeProjection(features=self.emb_features * self.mlp_ratio), # Project to MLP dim
|
268
|
-
nn.Dense(features=self.emb_features, dtype=self.dtype, precision=self.precision) # Final projection
|
269
|
-
])
|
270
|
-
|
271
|
-
# Text context projection (if used)
|
272
|
-
# Assuming textcontext is already projected to some dimension, project it to match emb_features
|
273
|
-
# This might need adjustment based on how text context is provided
|
274
|
-
self.text_proj = nn.Dense(features=self.emb_features, dtype=self.dtype, precision=self.precision, name="text_context_proj")
|
275
|
-
|
276
|
-
# Rotary Positional Embedding
|
277
|
-
# Max length needs to be estimated or set large enough.
|
278
|
-
# For images, seq len = (H/P) * (W/P). Example: 256/16 * 256/16 = 16*16 = 256
|
279
|
-
# Add 1 if a class token is used, or more for text tokens if concatenated.
|
280
|
-
# Let's assume max seq len accommodates patches + time + text tokens if needed, or just patches.
|
281
|
-
# If only patches use RoPE, max_len = max_image_tokens
|
282
|
-
# If time/text are concatenated *before* blocks, max_len needs to include them.
|
283
|
-
# DiT typically applies PE only to patch tokens. Let's follow that.
|
284
|
-
# max_len should be max number of patches.
|
285
|
-
# Example: max image size 512x512, patch 16 -> (512/16)^2 = 32^2 = 1024 patches
|
286
|
-
self.rope = RotaryEmbedding(dim=self.emb_features // self.num_heads, max_seq_len=4096, dtype=self.dtype) # Dim per head
|
287
|
-
|
288
|
-
# Transformer Blocks
|
289
|
-
self.blocks = [
|
290
|
-
DiTBlock(
|
291
|
-
features=self.emb_features,
|
292
|
-
num_heads=self.num_heads,
|
293
|
-
mlp_ratio=self.mlp_ratio,
|
294
|
-
dropout_rate=self.dropout_rate,
|
295
|
-
dtype=self.dtype,
|
296
|
-
precision=self.precision,
|
297
|
-
use_flash_attention=self.use_flash_attention,
|
298
|
-
force_fp32_for_softmax=self.force_fp32_for_softmax,
|
299
|
-
norm_epsilon=self.norm_epsilon,
|
300
|
-
rope_emb=self.rope, # Pass RoPE instance
|
301
|
-
name=f"dit_block_{i}"
|
302
|
-
) for i in range(self.num_layers)
|
303
|
-
]
|
304
|
-
|
305
|
-
# Final Layer (Normalization + Linear Projection)
|
306
|
-
self.final_norm = nn.LayerNorm(epsilon=self.norm_epsilon, dtype=self.dtype, name="final_norm")
|
307
|
-
# self.final_norm = nn.RMSNorm(epsilon=self.norm_epsilon, dtype=self.dtype, name="final_norm")
|
308
|
-
|
309
|
-
# Predict patch pixels + potentially sigma
|
310
|
-
output_dim = self.patch_size * self.patch_size * self.output_channels
|
311
|
-
if self.learn_sigma:
|
312
|
-
output_dim *= 2 # Predict both mean and variance (or log_variance)
|
313
|
-
|
314
|
-
self.final_proj = nn.Dense(
|
315
|
-
features=output_dim,
|
316
|
-
dtype=self.dtype,
|
317
|
-
precision=self.precision,
|
318
|
-
kernel_init=nn.initializers.zeros, # Initialize final layer to zero
|
319
|
-
name="final_proj"
|
320
|
-
)
|
321
|
-
|
322
|
-
@nn.compact
|
323
|
-
def __call__(self, x, temb, textcontext=None):
|
324
|
-
B, H, W, C = x.shape
|
325
|
-
assert H % self.patch_size == 0 and W % self.patch_size == 0, "Image dimensions must be divisible by patch size"
|
326
|
-
|
327
|
-
# 1. Patch Embedding
|
328
|
-
patches = self.patch_embed(x) # Shape: [B, num_patches, emb_features]
|
329
|
-
num_patches = patches.shape[1]
|
330
|
-
|
331
|
-
# Optional Hilbert reorder
|
332
|
-
if self.use_hilbert:
|
333
|
-
idx = hilbert_indices(H // self.patch_size, W // self.patch_size)
|
334
|
-
inv_idx = inverse_permutation(idx)
|
335
|
-
patches = patches[:, idx, :]
|
336
|
-
|
337
|
-
# replace x with patches
|
338
|
-
x_seq = patches
|
339
|
-
|
340
|
-
# 2. Prepare Conditioning Signal (Time + Text Context)
|
341
|
-
t_emb = self.time_embed(temb) # Shape: [B, emb_features]
|
342
|
-
|
343
|
-
cond_emb = t_emb
|
344
|
-
if textcontext is not None:
|
345
|
-
text_emb = self.text_proj(textcontext) # Shape: [B, num_text_tokens, emb_features]
|
346
|
-
# Pool or select text embedding (e.g., mean pool or use CLS token)
|
347
|
-
# Assuming mean pooling for simplicity
|
348
|
-
text_emb_pooled = jnp.mean(text_emb, axis=1) # Shape: [B, emb_features]
|
349
|
-
cond_emb = cond_emb + text_emb_pooled # Combine time and text embeddings
|
350
|
-
|
351
|
-
# 3. Apply RoPE
|
352
|
-
# Get RoPE frequencies for the sequence length (number of patches)
|
353
|
-
freqs_cis = self.rope(seq_len=num_patches) # Shape [num_patches, D_head/2]
|
354
|
-
|
355
|
-
# 4. Apply Transformer Blocks with adaLN-Zero conditioning
|
356
|
-
for block in self.blocks:
|
357
|
-
x_seq = block(x_seq, conditioning=cond_emb, freqs_cis=freqs_cis)
|
358
|
-
|
359
|
-
# 5. Final Layer
|
360
|
-
x_out = self.final_norm(x_seq)
|
361
|
-
x_out = self.final_proj(x_out) # Shape: [B, num_patches, patch_pixels (*2 if learn_sigma)]
|
362
|
-
|
363
|
-
# Optional Hilbert inverse reorder
|
364
|
-
if self.use_hilbert:
|
365
|
-
x_out = x_out[:, inv_idx, :]
|
366
|
-
|
367
|
-
# 6. Unpatchify
|
368
|
-
if self.learn_sigma:
|
369
|
-
# Split into mean and variance predictions
|
370
|
-
x_mean, x_logvar = jnp.split(x_out, 2, axis=-1)
|
371
|
-
x = unpatchify(x_mean, channels=self.output_channels)
|
372
|
-
# Return both mean and logvar if needed by the loss function
|
373
|
-
# For now, just returning the mean prediction like standard diffusion models
|
374
|
-
# logvar = unpatchify(x_logvar, channels=self.output_channels)
|
375
|
-
# return x, logvar
|
376
|
-
return x
|
377
|
-
else:
|
378
|
-
x = unpatchify(x_out, channels=self.output_channels) # Shape: [B, H, W, C]
|
379
|
-
return x
|
380
|
-
|
File without changes
|