flaxdiff 0.2.7__py3-none-any.whl → 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flaxdiff/data/dataloaders.py +23 -19
- flaxdiff/data/dataset_map.py +2 -1
- flaxdiff/data/sources/base.py +12 -0
- flaxdiff/data/sources/images.py +75 -3
- flaxdiff/data/sources/videos.py +5 -0
- flaxdiff/inference/utils.py +7 -1
- flaxdiff/models/common.py +1 -70
- flaxdiff/models/hilbert.py +617 -0
- flaxdiff/models/simple_dit.py +275 -0
- flaxdiff/models/simple_mmdit.py +730 -0
- flaxdiff/models/simple_vit.py +405 -145
- flaxdiff/models/vit_common.py +262 -0
- flaxdiff/trainer/general_diffusion_trainer.py +30 -10
- flaxdiff/trainer/simple_trainer.py +113 -19
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/METADATA +1 -1
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/RECORD +18 -15
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/WHEEL +1 -1
- flaxdiff/models/better_uvit.py +0 -380
- {flaxdiff-0.2.7.dist-info → flaxdiff-0.2.9.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,275 @@
|
|
1
|
+
import jax
|
2
|
+
import jax.numpy as jnp
|
3
|
+
from flax import linen as nn
|
4
|
+
from typing import Callable, Any, Optional, Tuple, Sequence, Union
|
5
|
+
import einops
|
6
|
+
from functools import partial
|
7
|
+
|
8
|
+
# Re-use existing components if they are suitable
|
9
|
+
from .vit_common import PatchEmbedding, unpatchify, RotaryEmbedding, RoPEAttention, AdaLNParams
|
10
|
+
from .common import kernel_init, FourierEmbedding, TimeProjection
|
11
|
+
# Using NormalAttention for RoPE integration
|
12
|
+
from .attention import NormalAttention
|
13
|
+
from flax.typing import Dtype, PrecisionLike
|
14
|
+
|
15
|
+
# Use our improved Hilbert implementation
|
16
|
+
from .hilbert import hilbert_indices, inverse_permutation, hilbert_patchify, hilbert_unpatchify
|
17
|
+
|
18
|
+
# --- DiT Block ---
|
19
|
+
class DiTBlock(nn.Module):
|
20
|
+
features: int
|
21
|
+
num_heads: int
|
22
|
+
rope_emb: RotaryEmbedding
|
23
|
+
mlp_ratio: int = 4
|
24
|
+
dropout_rate: float = 0.0
|
25
|
+
dtype: Optional[Dtype] = None
|
26
|
+
precision: PrecisionLike = None
|
27
|
+
use_flash_attention: bool = False # Keep placeholder
|
28
|
+
force_fp32_for_softmax: bool = True
|
29
|
+
norm_epsilon: float = 1e-5
|
30
|
+
use_gating: bool = True # Add flag to easily disable gating
|
31
|
+
|
32
|
+
def setup(self):
|
33
|
+
hidden_features = int(self.features * self.mlp_ratio)
|
34
|
+
# Get modulation parameters (scale, shift, gates)
|
35
|
+
self.ada_params_module = AdaLNParams( # Use the modified module
|
36
|
+
self.features, dtype=self.dtype, precision=self.precision)
|
37
|
+
|
38
|
+
# Layer Norms - one before Attn, one before MLP
|
39
|
+
self.norm1 = nn.LayerNorm(epsilon=self.norm_epsilon, use_scale=False, use_bias=False, dtype=self.dtype, name="norm1")
|
40
|
+
self.norm2 = nn.LayerNorm(epsilon=self.norm_epsilon, use_scale=False, use_bias=False, dtype=self.dtype, name="norm2")
|
41
|
+
|
42
|
+
self.attention = RoPEAttention(
|
43
|
+
query_dim=self.features,
|
44
|
+
heads=self.num_heads,
|
45
|
+
dim_head=self.features // self.num_heads,
|
46
|
+
dtype=self.dtype,
|
47
|
+
precision=self.precision,
|
48
|
+
use_bias=True,
|
49
|
+
force_fp32_for_softmax=self.force_fp32_for_softmax,
|
50
|
+
rope_emb=self.rope_emb
|
51
|
+
)
|
52
|
+
|
53
|
+
self.mlp = nn.Sequential([
|
54
|
+
nn.Dense(features=hidden_features, dtype=self.dtype, precision=self.precision),
|
55
|
+
nn.gelu, # Or swish as specified in SimpleDiT? Consider consistency.
|
56
|
+
nn.Dense(features=self.features, dtype=self.dtype, precision=self.precision)
|
57
|
+
])
|
58
|
+
|
59
|
+
@nn.compact
|
60
|
+
def __call__(self, x, conditioning, freqs_cis):
|
61
|
+
# Get scale/shift/gate parameters
|
62
|
+
# Shape: [B, 1, 6*F] -> split into 6 of [B, 1, F]
|
63
|
+
scale_mlp, shift_mlp, gate_mlp, scale_attn, shift_attn, gate_attn = jnp.split(
|
64
|
+
self.ada_params_module(conditioning), 6, axis=-1
|
65
|
+
)
|
66
|
+
|
67
|
+
# --- Attention Path ---
|
68
|
+
residual = x
|
69
|
+
norm_x_attn = self.norm1(x)
|
70
|
+
# Modulate after norm
|
71
|
+
x_attn_modulated = norm_x_attn * (1 + scale_attn) + shift_attn
|
72
|
+
attn_output = self.attention(x_attn_modulated, context=None, freqs_cis=freqs_cis)
|
73
|
+
|
74
|
+
if self.use_gating:
|
75
|
+
x = residual + gate_attn * attn_output
|
76
|
+
else:
|
77
|
+
x = residual + attn_output # Original DiT style without gate
|
78
|
+
|
79
|
+
# --- MLP Path ---
|
80
|
+
residual = x
|
81
|
+
norm_x_mlp = self.norm2(x) # Apply second LayerNorm
|
82
|
+
# Modulate after norm
|
83
|
+
x_mlp_modulated = norm_x_mlp * (1 + scale_mlp) + shift_mlp
|
84
|
+
mlp_output = self.mlp(x_mlp_modulated)
|
85
|
+
|
86
|
+
if self.use_gating:
|
87
|
+
x = residual + gate_mlp * mlp_output
|
88
|
+
else:
|
89
|
+
x = residual + mlp_output # Original DiT style without gate
|
90
|
+
|
91
|
+
return x
|
92
|
+
|
93
|
+
|
94
|
+
# --- Patch Embedding (reuse or define if needed) ---
|
95
|
+
# Assuming PatchEmbedding exists in simple_vit.py and is suitable
|
96
|
+
|
97
|
+
# --- DiT ---
|
98
|
+
|
99
|
+
class SimpleDiT(nn.Module):
|
100
|
+
output_channels: int = 3
|
101
|
+
patch_size: int = 16
|
102
|
+
emb_features: int = 768
|
103
|
+
num_layers: int = 12
|
104
|
+
num_heads: int = 12
|
105
|
+
mlp_ratio: int = 4
|
106
|
+
dropout_rate: float = 0.0 # Typically 0 for diffusion
|
107
|
+
dtype: Optional[Dtype] = None
|
108
|
+
precision: PrecisionLike = None
|
109
|
+
# Passed down, but RoPEAttention uses NormalAttention
|
110
|
+
use_flash_attention: bool = False
|
111
|
+
force_fp32_for_softmax: bool = True
|
112
|
+
norm_epsilon: float = 1e-5
|
113
|
+
learn_sigma: bool = False # Option to predict sigma like in DiT paper
|
114
|
+
use_hilbert: bool = False # Toggle Hilbert patch reorder
|
115
|
+
norm_groups: int = 0
|
116
|
+
activation: Callable = jax.nn.swish
|
117
|
+
|
118
|
+
def setup(self):
|
119
|
+
self.patch_embed = PatchEmbedding(
|
120
|
+
patch_size=self.patch_size,
|
121
|
+
embedding_dim=self.emb_features,
|
122
|
+
dtype=self.dtype,
|
123
|
+
precision=self.precision
|
124
|
+
)
|
125
|
+
|
126
|
+
# Add projection layer for Hilbert patches
|
127
|
+
if self.use_hilbert:
|
128
|
+
self.hilbert_proj = nn.Dense(
|
129
|
+
features=self.emb_features,
|
130
|
+
dtype=self.dtype,
|
131
|
+
precision=self.precision,
|
132
|
+
name="hilbert_projection"
|
133
|
+
)
|
134
|
+
|
135
|
+
# Time embedding projection
|
136
|
+
self.time_embed = nn.Sequential([
|
137
|
+
FourierEmbedding(features=self.emb_features),
|
138
|
+
TimeProjection(features=self.emb_features *
|
139
|
+
self.mlp_ratio), # Project to MLP dim
|
140
|
+
nn.Dense(features=self.emb_features, dtype=self.dtype,
|
141
|
+
precision=self.precision) # Final projection
|
142
|
+
])
|
143
|
+
|
144
|
+
# Text context projection (if used)
|
145
|
+
# Assuming textcontext is already projected to some dimension, project it to match emb_features
|
146
|
+
# This might need adjustment based on how text context is provided
|
147
|
+
self.text_proj = nn.Dense(features=self.emb_features, dtype=self.dtype,
|
148
|
+
precision=self.precision, name="text_context_proj")
|
149
|
+
|
150
|
+
# Rotary Positional Embedding
|
151
|
+
# Max length needs to be estimated or set large enough.
|
152
|
+
# For images, seq len = (H/P) * (W/P). Example: 256/16 * 256/16 = 16*16 = 256
|
153
|
+
# Add 1 if a class token is used, or more for text tokens if concatenated.
|
154
|
+
# Let's assume max seq len accommodates patches + time + text tokens if needed, or just patches.
|
155
|
+
# If only patches use RoPE, max_len = max_image_tokens
|
156
|
+
# If time/text are concatenated *before* blocks, max_len needs to include them.
|
157
|
+
# DiT typically applies PE only to patch tokens. Let's follow that.
|
158
|
+
# max_len should be max number of patches.
|
159
|
+
# Example: max image size 512x512, patch 16 -> (512/16)^2 = 32^2 = 1024 patches
|
160
|
+
self.rope = RotaryEmbedding(
|
161
|
+
dim=self.emb_features // self.num_heads, max_seq_len=4096, dtype=self.dtype) # Dim per head
|
162
|
+
|
163
|
+
# Transformer Blocks
|
164
|
+
self.blocks = [
|
165
|
+
DiTBlock(
|
166
|
+
features=self.emb_features,
|
167
|
+
num_heads=self.num_heads,
|
168
|
+
mlp_ratio=self.mlp_ratio,
|
169
|
+
dropout_rate=self.dropout_rate,
|
170
|
+
dtype=self.dtype,
|
171
|
+
precision=self.precision,
|
172
|
+
use_flash_attention=self.use_flash_attention,
|
173
|
+
force_fp32_for_softmax=self.force_fp32_for_softmax,
|
174
|
+
norm_epsilon=self.norm_epsilon,
|
175
|
+
rope_emb=self.rope, # Pass RoPE instance
|
176
|
+
name=f"dit_block_{i}"
|
177
|
+
) for i in range(self.num_layers)
|
178
|
+
]
|
179
|
+
|
180
|
+
# Final Layer (Normalization + Linear Projection)
|
181
|
+
self.final_norm = nn.LayerNorm(
|
182
|
+
epsilon=self.norm_epsilon, dtype=self.dtype, name="final_norm")
|
183
|
+
# self.final_norm = nn.RMSNorm(epsilon=self.norm_epsilon, dtype=self.dtype, name="final_norm")
|
184
|
+
|
185
|
+
# Predict patch pixels + potentially sigma
|
186
|
+
output_dim = self.patch_size * self.patch_size * self.output_channels
|
187
|
+
if self.learn_sigma:
|
188
|
+
output_dim *= 2 # Predict both mean and variance (or log_variance)
|
189
|
+
|
190
|
+
self.final_proj = nn.Dense(
|
191
|
+
features=output_dim,
|
192
|
+
dtype=self.dtype,
|
193
|
+
precision=self.precision,
|
194
|
+
kernel_init=nn.initializers.zeros, # Initialize final layer to zero
|
195
|
+
name="final_proj"
|
196
|
+
)
|
197
|
+
|
198
|
+
@nn.compact
|
199
|
+
def __call__(self, x, temb, textcontext=None):
|
200
|
+
B, H, W, C = x.shape
|
201
|
+
assert H % self.patch_size == 0 and W % self.patch_size == 0, "Image dimensions must be divisible by patch size"
|
202
|
+
|
203
|
+
# Compute dimensions in terms of patches
|
204
|
+
H_P = H // self.patch_size
|
205
|
+
W_P = W // self.patch_size
|
206
|
+
|
207
|
+
# 1. Patch Embedding
|
208
|
+
if self.use_hilbert:
|
209
|
+
# Use hilbert_patchify which handles both patchification and reordering
|
210
|
+
patches_raw, hilbert_inv_idx = hilbert_patchify(x, self.patch_size) # Shape [B, S, P*P*C]
|
211
|
+
# Apply projection
|
212
|
+
patches = self.hilbert_proj(patches_raw) # Shape [B, S, emb_features]
|
213
|
+
else:
|
214
|
+
patches = self.patch_embed(x) # Shape: [B, num_patches, emb_features]
|
215
|
+
hilbert_inv_idx = None
|
216
|
+
|
217
|
+
num_patches = patches.shape[1]
|
218
|
+
x_seq = patches
|
219
|
+
|
220
|
+
# 2. Prepare Conditioning Signal (Time + Text Context)
|
221
|
+
t_emb = self.time_embed(temb) # Shape: [B, emb_features]
|
222
|
+
|
223
|
+
cond_emb = t_emb
|
224
|
+
if textcontext is not None:
|
225
|
+
# Shape: [B, num_text_tokens, emb_features]
|
226
|
+
text_emb = self.text_proj(textcontext)
|
227
|
+
# Pool or select text embedding (e.g., mean pool or use CLS token)
|
228
|
+
# Assuming mean pooling for simplicity
|
229
|
+
# Shape: [B, emb_features]
|
230
|
+
text_emb_pooled = jnp.mean(text_emb, axis=1)
|
231
|
+
cond_emb = cond_emb + text_emb_pooled # Combine time and text embeddings
|
232
|
+
|
233
|
+
# 3. Apply RoPE
|
234
|
+
# Get RoPE frequencies for the sequence length (number of patches)
|
235
|
+
# Shape [num_patches, D_head/2]
|
236
|
+
freqs_cos, freqs_sin = self.rope(seq_len=num_patches)
|
237
|
+
|
238
|
+
# 4. Apply Transformer Blocks with adaLN-Zero conditioning
|
239
|
+
for block in self.blocks:
|
240
|
+
x_seq = block(x_seq, conditioning=cond_emb, freqs_cis=(freqs_cos, freqs_sin))
|
241
|
+
|
242
|
+
# 5. Final Layer
|
243
|
+
x_out = self.final_norm(x_seq)
|
244
|
+
# Shape: [B, num_patches, patch_pixels (*2 if learn_sigma)]
|
245
|
+
x_out = self.final_proj(x_out)
|
246
|
+
|
247
|
+
# 6. Unpatchify
|
248
|
+
if self.use_hilbert:
|
249
|
+
# For Hilbert mode, we need to use the specialized unpatchify function
|
250
|
+
if self.learn_sigma:
|
251
|
+
# Split into mean and variance predictions
|
252
|
+
x_mean, x_logvar = jnp.split(x_out, 2, axis=-1)
|
253
|
+
x_image = hilbert_unpatchify(x_mean, hilbert_inv_idx, self.patch_size, H, W, self.output_channels)
|
254
|
+
# If needed, also unpack the logvar
|
255
|
+
# logvar_image = hilbert_unpatchify(x_logvar, hilbert_inv_idx, self.patch_size, H, W, self.output_channels)
|
256
|
+
# return x_image, logvar_image
|
257
|
+
return x_image
|
258
|
+
else:
|
259
|
+
x_image = hilbert_unpatchify(x_out, hilbert_inv_idx, self.patch_size, H, W, self.output_channels)
|
260
|
+
return x_image
|
261
|
+
else:
|
262
|
+
# Standard patch ordering - use the existing unpatchify function
|
263
|
+
if self.learn_sigma:
|
264
|
+
# Split into mean and variance predictions
|
265
|
+
x_mean, x_logvar = jnp.split(x_out, 2, axis=-1)
|
266
|
+
x = unpatchify(x_mean, channels=self.output_channels)
|
267
|
+
# Return both mean and logvar if needed by the loss function
|
268
|
+
# For now, just returning the mean prediction like standard diffusion models
|
269
|
+
# logvar = unpatchify(x_logvar, channels=self.output_channels)
|
270
|
+
# return x, logvar
|
271
|
+
return x
|
272
|
+
else:
|
273
|
+
# Shape: [B, H, W, C]
|
274
|
+
x = unpatchify(x_out, channels=self.output_channels)
|
275
|
+
return x
|