fastembed-bio 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. fastembed/__init__.py +24 -0
  2. fastembed/bio/__init__.py +3 -0
  3. fastembed/bio/protein_embedding.py +456 -0
  4. fastembed/common/__init__.py +3 -0
  5. fastembed/common/model_description.py +52 -0
  6. fastembed/common/model_management.py +471 -0
  7. fastembed/common/onnx_model.py +188 -0
  8. fastembed/common/preprocessor_utils.py +84 -0
  9. fastembed/common/types.py +27 -0
  10. fastembed/common/utils.py +69 -0
  11. fastembed/embedding.py +24 -0
  12. fastembed/image/__init__.py +3 -0
  13. fastembed/image/image_embedding.py +135 -0
  14. fastembed/image/image_embedding_base.py +55 -0
  15. fastembed/image/onnx_embedding.py +217 -0
  16. fastembed/image/onnx_image_model.py +156 -0
  17. fastembed/image/transform/functional.py +221 -0
  18. fastembed/image/transform/operators.py +499 -0
  19. fastembed/late_interaction/__init__.py +5 -0
  20. fastembed/late_interaction/colbert.py +301 -0
  21. fastembed/late_interaction/jina_colbert.py +58 -0
  22. fastembed/late_interaction/late_interaction_embedding_base.py +80 -0
  23. fastembed/late_interaction/late_interaction_text_embedding.py +180 -0
  24. fastembed/late_interaction/token_embeddings.py +83 -0
  25. fastembed/late_interaction_multimodal/__init__.py +5 -0
  26. fastembed/late_interaction_multimodal/colmodernvbert.py +532 -0
  27. fastembed/late_interaction_multimodal/colpali.py +327 -0
  28. fastembed/late_interaction_multimodal/late_interaction_multimodal_embedding.py +189 -0
  29. fastembed/late_interaction_multimodal/late_interaction_multimodal_embedding_base.py +86 -0
  30. fastembed/late_interaction_multimodal/onnx_multimodal_model.py +291 -0
  31. fastembed/parallel_processor.py +253 -0
  32. fastembed/postprocess/__init__.py +3 -0
  33. fastembed/postprocess/muvera.py +362 -0
  34. fastembed/py.typed +1 -0
  35. fastembed/rerank/cross_encoder/__init__.py +3 -0
  36. fastembed/rerank/cross_encoder/custom_text_cross_encoder.py +47 -0
  37. fastembed/rerank/cross_encoder/onnx_text_cross_encoder.py +239 -0
  38. fastembed/rerank/cross_encoder/onnx_text_model.py +204 -0
  39. fastembed/rerank/cross_encoder/text_cross_encoder.py +178 -0
  40. fastembed/rerank/cross_encoder/text_cross_encoder_base.py +63 -0
  41. fastembed/sparse/__init__.py +4 -0
  42. fastembed/sparse/bm25.py +359 -0
  43. fastembed/sparse/bm42.py +369 -0
  44. fastembed/sparse/minicoil.py +372 -0
  45. fastembed/sparse/sparse_embedding_base.py +90 -0
  46. fastembed/sparse/sparse_text_embedding.py +143 -0
  47. fastembed/sparse/splade_pp.py +196 -0
  48. fastembed/sparse/utils/minicoil_encoder.py +146 -0
  49. fastembed/sparse/utils/sparse_vectors_converter.py +244 -0
  50. fastembed/sparse/utils/tokenizer.py +120 -0
  51. fastembed/sparse/utils/vocab_resolver.py +202 -0
  52. fastembed/text/__init__.py +3 -0
  53. fastembed/text/clip_embedding.py +56 -0
  54. fastembed/text/custom_text_embedding.py +97 -0
  55. fastembed/text/multitask_embedding.py +109 -0
  56. fastembed/text/onnx_embedding.py +353 -0
  57. fastembed/text/onnx_text_model.py +180 -0
  58. fastembed/text/pooled_embedding.py +136 -0
  59. fastembed/text/pooled_normalized_embedding.py +164 -0
  60. fastembed/text/text_embedding.py +228 -0
  61. fastembed/text/text_embedding_base.py +75 -0
  62. fastembed_bio-0.1.0.dist-info/METADATA +339 -0
  63. fastembed_bio-0.1.0.dist-info/RECORD +66 -0
  64. fastembed_bio-0.1.0.dist-info/WHEEL +4 -0
  65. fastembed_bio-0.1.0.dist-info/licenses/LICENSE +201 -0
  66. fastembed_bio-0.1.0.dist-info/licenses/NOTICE +22 -0
@@ -0,0 +1,339 @@
1
+ Metadata-Version: 2.4
2
+ Name: fastembed-bio
3
+ Version: 0.1.0
4
+ Summary: Fast, light, accurate library for biological sequence embeddings (proteins, DNA, RNA)
5
+ License: Apache License
6
+ License-File: LICENSE
7
+ License-File: NOTICE
8
+ Keywords: vector,embedding,protein,esm2,bioinformatics,onnx,biological-sequences
9
+ Author: Nathan LeRoy
10
+ Author-email: nathanjleroy@gmail.com
11
+ Requires-Python: >=3.10.0
12
+ Classifier: License :: Other/Proprietary License
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Classifier: Programming Language :: Python :: 3.12
17
+ Classifier: Programming Language :: Python :: 3.13
18
+ Classifier: Programming Language :: Python :: 3.14
19
+ Requires-Dist: huggingface-hub (>=0.20,<2.0)
20
+ Requires-Dist: loguru (>=0.7.2,<0.8.0)
21
+ Requires-Dist: mmh3 (>=4.1.0,<6.0.0)
22
+ Requires-Dist: numpy (>=1.21) ; python_version == "3.11"
23
+ Requires-Dist: numpy (>=1.21,<2.3.0) ; python_version == "3.10"
24
+ Requires-Dist: numpy (>=1.26) ; python_version == "3.12"
25
+ Requires-Dist: numpy (>=2.1.0) ; python_version == "3.13"
26
+ Requires-Dist: numpy (>=2.3.0) ; python_version >= "3.14"
27
+ Requires-Dist: onnxruntime (>1.20.0) ; python_version >= "3.13"
28
+ Requires-Dist: onnxruntime (>=1.17.0,!=1.20.0) ; python_version >= "3.10" and python_version < "3.13"
29
+ Requires-Dist: pillow (>=10.3.0,<11.0) ; python_version < "3.10"
30
+ Requires-Dist: pillow (>=10.3.0,<12.0) ; python_version >= "3.10" and python_version < "3.13"
31
+ Requires-Dist: pillow (>=11.0.0,<12.0) ; python_version >= "3.13"
32
+ Requires-Dist: py-rust-stemmers (>=0.1.0,<0.2.0)
33
+ Requires-Dist: requests (>=2.31,<3.0)
34
+ Requires-Dist: tokenizers (>=0.15,<1.0)
35
+ Requires-Dist: tqdm (>=4.66,<5.0)
36
+ Project-URL: Homepage, https://github.com/nleroy917/fastembed-bio
37
+ Project-URL: Repository, https://github.com/nleroy917/fastembed-bio
38
+ Description-Content-Type: text/markdown
39
+
40
+ # ⚡️ What is FastEmbed?
41
+
42
+ FastEmbed is a lightweight, fast, Python library built for embedding generation. We [support popular text models](https://qdrant.github.io/fastembed/examples/Supported_Models/). Please [open a GitHub issue](https://github.com/qdrant/fastembed/issues/new) if you want us to add a new model.
43
+
44
+ The default text embedding (`TextEmbedding`) model is Flag Embedding, presented in the [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard. It supports "query" and "passage" prefixes for the input text. Here is an example for [Retrieval Embedding Generation](https://qdrant.github.io/fastembed/qdrant/Retrieval_with_FastEmbed/) and how to use [FastEmbed with Qdrant](https://qdrant.github.io/fastembed/qdrant/Usage_With_Qdrant/).
45
+
46
+ ## 📈 Why FastEmbed?
47
+
48
+ 1. Light: FastEmbed is a lightweight library with few external dependencies. We don't require a GPU and don't download GBs of PyTorch dependencies, and instead use the ONNX Runtime. This makes it a great candidate for serverless runtimes like AWS Lambda.
49
+
50
+ 2. Fast: FastEmbed is designed for speed. We use the ONNX Runtime, which is faster than PyTorch. We also use data parallelism for encoding large datasets.
51
+
52
+ 3. Accurate: FastEmbed is better than OpenAI Ada-002. We also [support](https://qdrant.github.io/fastembed/examples/Supported_Models/) an ever-expanding set of models, including a few multilingual models.
53
+
54
+ ## 🚀 Installation
55
+
56
+ To install the FastEmbed library, pip works best. You can install it with or without GPU support:
57
+
58
+ ```bash
59
+ pip install fastembed
60
+
61
+ # or with GPU support
62
+
63
+ pip install fastembed-gpu
64
+ ```
65
+
66
+ ## 📖 Quickstart
67
+
68
+ ```python
69
+ from fastembed import TextEmbedding
70
+
71
+
72
+ # Example list of documents
73
+ documents: list[str] = [
74
+ "This is built to be faster and lighter than other embedding libraries e.g. Transformers, Sentence-Transformers, etc.",
75
+ "fastembed is supported by and maintained by Qdrant.",
76
+ ]
77
+
78
+ # This will trigger the model download and initialization
79
+ embedding_model = TextEmbedding()
80
+ print("The model BAAI/bge-small-en-v1.5 is ready to use.")
81
+
82
+ embeddings_generator = embedding_model.embed(documents) # reminder this is a generator
83
+ embeddings_list = list(embedding_model.embed(documents))
84
+ # you can also convert the generator to a list, and that to a numpy array
85
+ len(embeddings_list[0]) # Vector of 384 dimensions
86
+ ```
87
+
88
+ Fastembed supports a variety of models for different tasks and modalities.
89
+ The list of all the available models can be found [here](https://qdrant.github.io/fastembed/examples/Supported_Models/)
90
+ ### 🎒 Dense text embeddings
91
+
92
+ ```python
93
+ from fastembed import TextEmbedding
94
+
95
+ model = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
96
+ embeddings = list(model.embed(documents))
97
+
98
+ # [
99
+ # array([-0.1115, 0.0097, 0.0052, 0.0195, ...], dtype=float32),
100
+ # array([-0.1019, 0.0635, -0.0332, 0.0522, ...], dtype=float32)
101
+ # ]
102
+
103
+ ```
104
+
105
+ Dense text embedding can also be extended with models which are not in the list of supported models.
106
+
107
+ ```python
108
+ from fastembed import TextEmbedding
109
+ from fastembed.common.model_description import PoolingType, ModelSource
110
+
111
+ TextEmbedding.add_custom_model(
112
+ model="intfloat/multilingual-e5-small",
113
+ pooling=PoolingType.MEAN,
114
+ normalization=True,
115
+ sources=ModelSource(hf="intfloat/multilingual-e5-small"), # can be used with an `url` to load files from a private storage
116
+ dim=384,
117
+ model_file="onnx/model.onnx", # can be used to load an already supported model with another optimization or quantization, e.g. onnx/model_O4.onnx
118
+ )
119
+ model = TextEmbedding(model_name="intfloat/multilingual-e5-small")
120
+ embeddings = list(model.embed(documents))
121
+ ```
122
+
123
+
124
+ ### 🔱 Sparse text embeddings
125
+
126
+ * SPLADE++
127
+
128
+ ```python
129
+ from fastembed import SparseTextEmbedding
130
+
131
+ model = SparseTextEmbedding(model_name="prithivida/Splade_PP_en_v1")
132
+ embeddings = list(model.embed(documents))
133
+
134
+ # [
135
+ # SparseEmbedding(indices=[ 17, 123, 919, ... ], values=[0.71, 0.22, 0.39, ...]),
136
+ # SparseEmbedding(indices=[ 38, 12, 91, ... ], values=[0.11, 0.22, 0.39, ...])
137
+ # ]
138
+ ```
139
+
140
+ <!--
141
+ * BM42 - ([link](ToDo))
142
+
143
+ ```
144
+ from fastembed import SparseTextEmbedding
145
+
146
+ model = SparseTextEmbedding(model_name="Qdrant/bm42-all-minilm-l6-v2-attentions")
147
+ embeddings = list(model.embed(documents))
148
+
149
+ # [
150
+ # SparseEmbedding(indices=[ 17, 123, 919, ... ], values=[0.71, 0.22, 0.39, ...]),
151
+ # SparseEmbedding(indices=[ 38, 12, 91, ... ], values=[0.11, 0.22, 0.39, ...])
152
+ # ]
153
+ ```
154
+ -->
155
+
156
+ ### 🦥 Late interaction models (aka ColBERT)
157
+
158
+
159
+ ```python
160
+ from fastembed import LateInteractionTextEmbedding
161
+
162
+ model = LateInteractionTextEmbedding(model_name="colbert-ir/colbertv2.0")
163
+ embeddings = list(model.embed(documents))
164
+
165
+ # [
166
+ # array([
167
+ # [-0.1115, 0.0097, 0.0052, 0.0195, ...],
168
+ # [-0.1019, 0.0635, -0.0332, 0.0522, ...],
169
+ # ]),
170
+ # array([
171
+ # [-0.9019, 0.0335, -0.0032, 0.0991, ...],
172
+ # [-0.2115, 0.8097, 0.1052, 0.0195, ...],
173
+ # ]),
174
+ # ]
175
+ ```
176
+
177
+ ### 🖼️ Image embeddings
178
+
179
+ ```python
180
+ from fastembed import ImageEmbedding
181
+
182
+ images = [
183
+ "./path/to/image1.jpg",
184
+ "./path/to/image2.jpg",
185
+ ]
186
+
187
+ model = ImageEmbedding(model_name="Qdrant/clip-ViT-B-32-vision")
188
+ embeddings = list(model.embed(images))
189
+
190
+ # [
191
+ # array([-0.1115, 0.0097, 0.0052, 0.0195, ...], dtype=float32),
192
+ # array([-0.1019, 0.0635, -0.0332, 0.0522, ...], dtype=float32)
193
+ # ]
194
+ ```
195
+
196
+ ### 🧬 Protein embeddings
197
+
198
+ ```python
199
+ from fastembed import ProteinEmbedding
200
+
201
+ sequences = [
202
+ "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG",
203
+ "GKGDPKKPRGKMSSYAFFVQTSREEHKKKHPDASVNFSEFSKKCSERWKTMSAKEKGKFEDMAK",
204
+ ]
205
+
206
+ model = ProteinEmbedding(model_name="facebook/esm2_t12_35M_UR50D")
207
+ embeddings = list(model.embed(sequences))
208
+
209
+ # [
210
+ # array([-0.0055, -0.0144, 0.0355, -0.0049, ...], dtype=float32),
211
+ # array([ 0.0114, 0.0020, -0.0247, 0.0060, ...], dtype=float32)
212
+ # ]
213
+ ```
214
+
215
+ ### Late interaction multimodal models (ColPali)
216
+
217
+ ```python
218
+ from fastembed import LateInteractionMultimodalEmbedding
219
+
220
+ doc_images = [
221
+ "./path/to/qdrant_pdf_doc_1_screenshot.jpg",
222
+ "./path/to/colpali_pdf_doc_2_screenshot.jpg",
223
+ ]
224
+
225
+ query = "What is Qdrant?"
226
+
227
+ model = LateInteractionMultimodalEmbedding(model_name="Qdrant/colpali-v1.3-fp16")
228
+ doc_images_embeddings = list(model.embed_image(doc_images))
229
+ # shape (2, 1030, 128)
230
+ # [array([[-0.03353882, -0.02090454, ..., -0.15576172, -0.07678223]], dtype=float32)]
231
+ query_embedding = model.embed_text(query)
232
+ # shape (1, 20, 128)
233
+ # [array([[-0.00218201, 0.14758301, ..., -0.02207947, 0.16833496]], dtype=float32)]
234
+ ```
235
+
236
+ ### 🔄 Rerankers
237
+ ```python
238
+ from fastembed.rerank.cross_encoder import TextCrossEncoder
239
+
240
+ query = "Who is maintaining Qdrant?"
241
+ documents: list[str] = [
242
+ "This is built to be faster and lighter than other embedding libraries e.g. Transformers, Sentence-Transformers, etc.",
243
+ "fastembed is supported by and maintained by Qdrant.",
244
+ ]
245
+ encoder = TextCrossEncoder(model_name="Xenova/ms-marco-MiniLM-L-6-v2")
246
+ scores = list(encoder.rerank(query, documents))
247
+
248
+ # [-11.48061752319336, 5.472434997558594]
249
+ ```
250
+
251
+ Text cross encoders can also be extended with models which are not in the list of supported models.
252
+
253
+ ```python
254
+ from fastembed.rerank.cross_encoder import TextCrossEncoder
255
+ from fastembed.common.model_description import ModelSource
256
+
257
+ TextCrossEncoder.add_custom_model(
258
+ model="Xenova/ms-marco-MiniLM-L-4-v2",
259
+ model_file="onnx/model.onnx",
260
+ sources=ModelSource(hf="Xenova/ms-marco-MiniLM-L-4-v2"),
261
+ )
262
+ model = TextCrossEncoder(model_name="Xenova/ms-marco-MiniLM-L-4-v2")
263
+ scores = list(model.rerank_pairs(
264
+ [("What is AI?", "Artificial intelligence is ..."), ("What is ML?", "Machine learning is ..."),]
265
+ ))
266
+ ```
267
+
268
+ ## ⚡️ FastEmbed on a GPU
269
+
270
+ FastEmbed supports running on GPU devices.
271
+ It requires installation of the `fastembed-gpu` package.
272
+
273
+ ```bash
274
+ pip install fastembed-gpu
275
+ ```
276
+
277
+ Check our [example](https://qdrant.github.io/fastembed/examples/FastEmbed_GPU/) for detailed instructions, CUDA 12.x support and troubleshooting of the common issues.
278
+
279
+ ```python
280
+ from fastembed import TextEmbedding
281
+
282
+ embedding_model = TextEmbedding(
283
+ model_name="BAAI/bge-small-en-v1.5",
284
+ providers=["CUDAExecutionProvider"]
285
+ )
286
+ print("The model BAAI/bge-small-en-v1.5 is ready to use on a GPU.")
287
+
288
+ ```
289
+
290
+ ## Usage with Qdrant
291
+
292
+ Installation with Qdrant Client in Python:
293
+
294
+ ```bash
295
+ pip install qdrant-client[fastembed]
296
+ ```
297
+
298
+ or
299
+
300
+ ```bash
301
+ pip install qdrant-client[fastembed-gpu]
302
+ ```
303
+
304
+ You might have to use quotes ```pip install 'qdrant-client[fastembed]'``` on zsh.
305
+
306
+ ```python
307
+ from qdrant_client import QdrantClient, models
308
+
309
+ # Initialize the client
310
+ client = QdrantClient("localhost", port=6333) # For production
311
+ # client = QdrantClient(":memory:") # For experimentation
312
+
313
+ model_name = "sentence-transformers/all-MiniLM-L6-v2"
314
+ payload = [
315
+ {"document": "Qdrant has Langchain integrations", "source": "Langchain-docs", },
316
+ {"document": "Qdrant also has Llama Index integrations", "source": "LlamaIndex-docs"},
317
+ ]
318
+ docs = [models.Document(text=data["document"], model=model_name) for data in payload]
319
+ ids = [42, 2]
320
+
321
+ client.create_collection(
322
+ "demo_collection",
323
+ vectors_config=models.VectorParams(
324
+ size=client.get_embedding_size(model_name), distance=models.Distance.COSINE)
325
+ )
326
+
327
+ client.upload_collection(
328
+ collection_name="demo_collection",
329
+ vectors=docs,
330
+ ids=ids,
331
+ payload=payload,
332
+ )
333
+
334
+ search_result = client.query_points(
335
+ collection_name="demo_collection",
336
+ query=models.Document(text="This is a query document", model=model_name)
337
+ ).points
338
+ print(search_result)
339
+ ```
@@ -0,0 +1,66 @@
1
+ fastembed/__init__.py,sha256=iBe5F0lHKt5afy7Le8IUdXzviXecZF6Cq6OZr991CVU,775
2
+ fastembed/bio/__init__.py,sha256=iJk6HYld250zKFwjwD3F75ygO6rHsQdAyaNZxt86sPc,92
3
+ fastembed/bio/protein_embedding.py,sha256=HzO0AoRtCdBXQsoIaHfYD5qId3cBFdNND7zkkUk2I88,15600
4
+ fastembed/common/__init__.py,sha256=0LEXYNgM7iW7uYe1O7Qd8HVBpQ19fcdfTkjLAjXgY7c,126
5
+ fastembed/common/model_description.py,sha256=bZEpQse1TmLHjn0lmoy3DtPjh3IU0tE-LlqTGdYQkYo,1324
6
+ fastembed/common/model_management.py,sha256=XA14sQlgdjMrMK0JwzMhePqgedEJQ7cIL4XNz1IAjis,17204
7
+ fastembed/common/onnx_model.py,sha256=iy2FQwAo38cF-zaPvfWPd57_OHHfwfO5h-cTAt3bVm8,7213
8
+ fastembed/common/preprocessor_utils.py,sha256=TxMbpm1TPuWpEysxUEtNXYuzQYr6pudDh4K3wEuE-BA,3275
9
+ fastembed/common/types.py,sha256=CinhzeGqr5hbsO8-WXYwe6oTfzFk2WxKfoyBOrHycHE,554
10
+ fastembed/common/utils.py,sha256=rxHO5SrRW27aTWaXg4Q2Nu8r63ABqGBROdjNCazraGo,2126
11
+ fastembed/embedding.py,sha256=oEm_mmb6545xr3iiz7zvyiyKB34dVAkTC82LyqEQVi0,598
12
+ fastembed/image/__init__.py,sha256=YQ3NHSIW1ufR5iEaBzzJ1cVeOIFE5O6TpfdNKtWrbvg,89
13
+ fastembed/image/image_embedding.py,sha256=y4hrLoFV4ceMdOweoejPPZsLI6yE3Sqv9z3nZSCqJ1M,5048
14
+ fastembed/image/image_embedding_base.py,sha256=4Gt2zIfTvQNJx18bmsKDp0J6nR9WjE9FAwT9aKsA27s,1984
15
+ fastembed/image/onnx_embedding.py,sha256=uNccSfCRc_F5inOyYOHwOzThSV-f6lD3oesgHsGzzm8,8590
16
+ fastembed/image/onnx_image_model.py,sha256=HeXVIqL1yOxiwUiEGuaJ9xWoPhul9zuR-EBOEeHfTto,5877
17
+ fastembed/image/transform/functional.py,sha256=7R39GdHzFbbjiQWcRgegTXhuCr2Tvh2YdSxmaOQIBz4,6315
18
+ fastembed/image/transform/operators.py,sha256=FC9-mWVRBMNO6T24tCrbJFv7uphz6jnrbS1l8AUCQ7E,18448
19
+ fastembed/late_interaction/__init__.py,sha256=-Bi1ZtgzgpbFm9bpd5V3QcJROF4cOgyiZlEHl--zQSg,153
20
+ fastembed/late_interaction/colbert.py,sha256=hjEQR_8-4m-BIKK8Ngke2FrK7OBNiTKRVFY9i5w-Va8,12648
21
+ fastembed/late_interaction/jina_colbert.py,sha256=ofKNdUctw0l1JricHBtuYNpqzLibwb3eHdnfl_Q1ck4,2080
22
+ fastembed/late_interaction/late_interaction_embedding_base.py,sha256=Cd2T02RHOSHQbFZX0xstfvkC2Y3NewjB_TPgK4JLQkc,2693
23
+ fastembed/late_interaction/late_interaction_text_embedding.py,sha256=cjKYKO6dpvz2QnfGC2FgfYlsy-2BFE2xez8fdyGLRXc,6673
24
+ fastembed/late_interaction/token_embeddings.py,sha256=x9jigDRk_c5yLUXwyuzsd7H3D620G7430dKaJsxXbtE,2973
25
+ fastembed/late_interaction_multimodal/__init__.py,sha256=EAVhgEetaKZGOviQyIsnazP8n2YqtbiEdRNN1WyT1WY,182
26
+ fastembed/late_interaction_multimodal/colmodernvbert.py,sha256=z5xQ6zjN_5cBxirTOBqEDYa_I0o1KyaT7CKyJARHpRs,21350
27
+ fastembed/late_interaction_multimodal/colpali.py,sha256=ZsFFOybLQvRRVRUrt5iPjujKMgXpnAqWX1TmVmdIg0o,12785
28
+ fastembed/late_interaction_multimodal/late_interaction_multimodal_embedding.py,sha256=pmrb0dQ3lnVsGgqZdH1Hxagk22cXQpTCINV6YzAeKcI,7126
29
+ fastembed/late_interaction_multimodal/late_interaction_multimodal_embedding_base.py,sha256=VtvhQfQa0MegVA31SDF3cRPOBRZUMBo9WK2GsFqdXFE,3156
30
+ fastembed/late_interaction_multimodal/onnx_multimodal_model.py,sha256=4XaHWY_PtrjMxVtuua-oEJGNAdH80v-Xlza7Fcvm8Hw,10757
31
+ fastembed/parallel_processor.py,sha256=Bn1zQFex9e2NC_ufokljHXg2NvE5_HBDqaBICR6dnJ0,9103
32
+ fastembed/postprocess/__init__.py,sha256=ps068MgVjL6wBMmVqTQ2UGRLYm_L3elimnzojGG7auk,70
33
+ fastembed/postprocess/muvera.py,sha256=74E_HqP9g9mcOCeuBlXMUquj2ugTce2cUnnEUOtDuKE,15162
34
+ fastembed/py.typed,sha256=mDShSrm8qg9qjacQc2F-rI8ATllqP6EdgHuEYxuCXZ0,7
35
+ fastembed/rerank/cross_encoder/__init__.py,sha256=3AS7tS1WALEOJmNId9Xxk1BwI-x0fJKHFSVyJpSJvkc,111
36
+ fastembed/rerank/cross_encoder/custom_text_cross_encoder.py,sha256=qNHA1oJtQcKP70zOtbczoWRKl0L540gvrFvr26EuuF0,1463
37
+ fastembed/rerank/cross_encoder/onnx_text_cross_encoder.py,sha256=NLSa1uxUcK2ge6bBrSKBiyXHXL3WzXa_RkroXK0hxzM,9723
38
+ fastembed/rerank/cross_encoder/onnx_text_model.py,sha256=uXxMAWCOVemAWge8lJmqUkgKTx7dmSEqyLuP2iNM2b0,7529
39
+ fastembed/rerank/cross_encoder/text_cross_encoder.py,sha256=qwDKTxPI6LWmH8HZrTz1icn-adDjkrxchuGphUd289U,6752
40
+ fastembed/rerank/cross_encoder/text_cross_encoder_base.py,sha256=aJuiktQkJruKYmnpE1jY1n1bAmHHS1qGwmulZXxCezM,2427
41
+ fastembed/sparse/__init__.py,sha256=GeUoN_fpiBPoqkO1cOITxf8po0lVdcPV07CEfELsUI0,192
42
+ fastembed/sparse/bm25.py,sha256=hakax5WqM18pEm2wpH25rhWxRztfm673VbZk-gqhMIs,12479
43
+ fastembed/sparse/bm42.py,sha256=3wXvc7Q69h4Ew61PlptTpb_sK2GpgYhFfDnKJY4eIP8,15093
44
+ fastembed/sparse/minicoil.py,sha256=b-pOJJ7wdTRogdTI2-yfBc26PQjv_pR82DGTPEL3XvQ,15027
45
+ fastembed/sparse/sparse_embedding_base.py,sha256=Kq4WcUrcRE74dlI5L3C6H5wk7--HAFwP8QzMF4liPEE,3006
46
+ fastembed/sparse/sparse_text_embedding.py,sha256=6MTQs80SEFiSJGoMIZyRU1Q-Cl2CqBFunncaomemNcY,5328
47
+ fastembed/sparse/splade_pp.py,sha256=udDeAX-0JyHvhC0dAPq9SXGsYayRMJhlA3v1BDlLZM0,8169
48
+ fastembed/sparse/utils/minicoil_encoder.py,sha256=6PLiFmXyto4sySsEx9r8XQYqWiO8MDpx48VR8RTQ_z8,6396
49
+ fastembed/sparse/utils/sparse_vectors_converter.py,sha256=b5zuKkLAexyJbGx7bv_CafR9ewmlVDQa1I0SLbR-tGQ,9374
50
+ fastembed/sparse/utils/tokenizer.py,sha256=5bgI72YyqolTYufXxsCiuZP1jcIXMqD1oCaNaAxrPwY,3868
51
+ fastembed/sparse/utils/vocab_resolver.py,sha256=thFx5weMc__9yplXU-PA0Aanx2fR2qWjbBf8cURzo2E,6896
52
+ fastembed/text/__init__.py,sha256=5_J8_ASHoG-LrVFvJ_F5ow56PHv5i9j4sziAyxMqKdk,85
53
+ fastembed/text/clip_embedding.py,sha256=i3DQDVX9cl5PuSWzf74ho9ocvzxG17YpT02-GCw0or4,1779
54
+ fastembed/text/custom_text_embedding.py,sha256=-aaTF_zDcWvaXVpVX-T9N_9Tk5D7T6rxDyDT6G11omY,3279
55
+ fastembed/text/multitask_embedding.py,sha256=fzFRhRShzMljaFarZJE3FRuFsQs00Ms67cblbV4TAig,3845
56
+ fastembed/text/onnx_embedding.py,sha256=w3UnBSgLJ6dONNK3X0i8tKwOO6lvSoiX8Sc0I-RQgQA,13942
57
+ fastembed/text/onnx_text_model.py,sha256=8IZ9FuBYnayMxQQnxTwtGx_1yEI-Ax5kiGpH9M19xz8,6932
58
+ fastembed/text/pooled_embedding.py,sha256=p7YsfuydUG9FfHft5c3yl88LyJtt8puOLzwswTi6zlc,4969
59
+ fastembed/text/pooled_normalized_embedding.py,sha256=nADM3udF0nar3bkLChN299IDxFWso94JbrtK0ry0H2g,6147
60
+ fastembed/text/text_embedding.py,sha256=3nxsK7iwsF9wsC0LtiMI4c71DNsMYY_3TQ11WYrDJqc,8921
61
+ fastembed/text/text_embedding_base.py,sha256=Hj3XY59Az225Hoy5zkAhVw2Aoj21pwRd9hEWr5tEEMg,2621
62
+ fastembed_bio-0.1.0.dist-info/METADATA,sha256=EJfbvWFYrPgOwZCR14H2FKu0VXS6v6Ajhb4SoAZuBFE,11341
63
+ fastembed_bio-0.1.0.dist-info/WHEEL,sha256=3ny-bZhpXrU6vSQ1UPG34FoxZBp3lVcvK0LkgUz6VLk,88
64
+ fastembed_bio-0.1.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
65
+ fastembed_bio-0.1.0.dist-info/licenses/NOTICE,sha256=cReuFIFnRtulaJjqzwufwt_0fQukX2-A768Lyh4zIVc,883
66
+ fastembed_bio-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: poetry-core 2.3.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,22 @@
1
+ Copyright 2024 Qdrant
2
+
3
+ This product includes software developed by Qdrant
4
+
5
+ This distribution includes the following Jina AI models, each with its respective license:
6
+ - jinaai/jina-colbert-v2
7
+ - License: cc-by-nc-4.0
8
+ - jinaai/jina-reranker-v2-base-multilingual
9
+ - License: cc-by-nc-4.0
10
+ - jinaai/jina-embeddings-v3
11
+ - License: cc-by-nc-4.0
12
+
13
+ These models are developed by Jina (https://jina.ai/) and are subject to Jina AI's licensing terms.
14
+
15
+ This distribution includes the following Google models, each with its respective license:
16
+ - vidore/colpali-v1.3
17
+ - License: gemma
18
+
19
+ Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms
20
+
21
+ Additional Notes:
22
+ This project also includes third-party libraries with their respective licenses. Please refer to the documentation of each library for details regarding its usage and licensing terms.