fast-agent-mcp 0.1.12__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (169) hide show
  1. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/METADATA +3 -4
  2. fast_agent_mcp-0.2.0.dist-info/RECORD +123 -0
  3. mcp_agent/__init__.py +75 -0
  4. mcp_agent/agents/agent.py +61 -415
  5. mcp_agent/agents/base_agent.py +522 -0
  6. mcp_agent/agents/workflow/__init__.py +1 -0
  7. mcp_agent/agents/workflow/chain_agent.py +173 -0
  8. mcp_agent/agents/workflow/evaluator_optimizer.py +362 -0
  9. mcp_agent/agents/workflow/orchestrator_agent.py +591 -0
  10. mcp_agent/{workflows/orchestrator → agents/workflow}/orchestrator_models.py +11 -21
  11. mcp_agent/agents/workflow/parallel_agent.py +182 -0
  12. mcp_agent/agents/workflow/router_agent.py +307 -0
  13. mcp_agent/app.py +15 -19
  14. mcp_agent/cli/commands/bootstrap.py +19 -38
  15. mcp_agent/cli/commands/config.py +4 -4
  16. mcp_agent/cli/commands/setup.py +7 -14
  17. mcp_agent/cli/main.py +7 -10
  18. mcp_agent/cli/terminal.py +3 -3
  19. mcp_agent/config.py +25 -40
  20. mcp_agent/context.py +12 -21
  21. mcp_agent/context_dependent.py +3 -5
  22. mcp_agent/core/agent_types.py +10 -7
  23. mcp_agent/core/direct_agent_app.py +179 -0
  24. mcp_agent/core/direct_decorators.py +443 -0
  25. mcp_agent/core/direct_factory.py +476 -0
  26. mcp_agent/core/enhanced_prompt.py +23 -55
  27. mcp_agent/core/exceptions.py +8 -8
  28. mcp_agent/core/fastagent.py +145 -371
  29. mcp_agent/core/interactive_prompt.py +424 -0
  30. mcp_agent/core/mcp_content.py +17 -17
  31. mcp_agent/core/prompt.py +6 -9
  32. mcp_agent/core/request_params.py +6 -3
  33. mcp_agent/core/validation.py +92 -18
  34. mcp_agent/executor/decorator_registry.py +9 -17
  35. mcp_agent/executor/executor.py +8 -17
  36. mcp_agent/executor/task_registry.py +2 -4
  37. mcp_agent/executor/temporal.py +19 -41
  38. mcp_agent/executor/workflow.py +3 -5
  39. mcp_agent/executor/workflow_signal.py +15 -21
  40. mcp_agent/human_input/handler.py +4 -7
  41. mcp_agent/human_input/types.py +2 -3
  42. mcp_agent/llm/__init__.py +2 -0
  43. mcp_agent/llm/augmented_llm.py +450 -0
  44. mcp_agent/llm/augmented_llm_passthrough.py +162 -0
  45. mcp_agent/llm/augmented_llm_playback.py +83 -0
  46. mcp_agent/llm/memory.py +103 -0
  47. mcp_agent/{workflows/llm → llm}/model_factory.py +22 -16
  48. mcp_agent/{workflows/llm → llm}/prompt_utils.py +1 -3
  49. mcp_agent/llm/providers/__init__.py +8 -0
  50. mcp_agent/{workflows/llm → llm/providers}/anthropic_utils.py +8 -25
  51. mcp_agent/{workflows/llm → llm/providers}/augmented_llm_anthropic.py +56 -194
  52. mcp_agent/llm/providers/augmented_llm_deepseek.py +53 -0
  53. mcp_agent/{workflows/llm → llm/providers}/augmented_llm_openai.py +99 -190
  54. mcp_agent/{workflows/llm → llm}/providers/multipart_converter_anthropic.py +72 -71
  55. mcp_agent/{workflows/llm → llm}/providers/multipart_converter_openai.py +65 -71
  56. mcp_agent/{workflows/llm → llm}/providers/openai_multipart.py +16 -44
  57. mcp_agent/{workflows/llm → llm/providers}/openai_utils.py +4 -4
  58. mcp_agent/{workflows/llm → llm}/providers/sampling_converter_anthropic.py +9 -11
  59. mcp_agent/{workflows/llm → llm}/providers/sampling_converter_openai.py +8 -12
  60. mcp_agent/{workflows/llm → llm}/sampling_converter.py +3 -31
  61. mcp_agent/llm/sampling_format_converter.py +37 -0
  62. mcp_agent/logging/events.py +1 -5
  63. mcp_agent/logging/json_serializer.py +7 -6
  64. mcp_agent/logging/listeners.py +20 -23
  65. mcp_agent/logging/logger.py +17 -19
  66. mcp_agent/logging/rich_progress.py +10 -8
  67. mcp_agent/logging/tracing.py +4 -6
  68. mcp_agent/logging/transport.py +22 -22
  69. mcp_agent/mcp/gen_client.py +1 -3
  70. mcp_agent/mcp/interfaces.py +117 -110
  71. mcp_agent/mcp/logger_textio.py +97 -0
  72. mcp_agent/mcp/mcp_agent_client_session.py +7 -7
  73. mcp_agent/mcp/mcp_agent_server.py +8 -8
  74. mcp_agent/mcp/mcp_aggregator.py +102 -143
  75. mcp_agent/mcp/mcp_connection_manager.py +20 -27
  76. mcp_agent/mcp/prompt_message_multipart.py +68 -16
  77. mcp_agent/mcp/prompt_render.py +77 -0
  78. mcp_agent/mcp/prompt_serialization.py +30 -48
  79. mcp_agent/mcp/prompts/prompt_constants.py +18 -0
  80. mcp_agent/mcp/prompts/prompt_helpers.py +327 -0
  81. mcp_agent/mcp/prompts/prompt_load.py +109 -0
  82. mcp_agent/mcp/prompts/prompt_server.py +155 -195
  83. mcp_agent/mcp/prompts/prompt_template.py +35 -66
  84. mcp_agent/mcp/resource_utils.py +7 -14
  85. mcp_agent/mcp/sampling.py +17 -17
  86. mcp_agent/mcp_server/agent_server.py +13 -17
  87. mcp_agent/mcp_server_registry.py +13 -22
  88. mcp_agent/resources/examples/{workflows → in_dev}/agent_build.py +3 -2
  89. mcp_agent/resources/examples/in_dev/slides.py +110 -0
  90. mcp_agent/resources/examples/internal/agent.py +6 -3
  91. mcp_agent/resources/examples/internal/fastagent.config.yaml +8 -2
  92. mcp_agent/resources/examples/internal/job.py +2 -1
  93. mcp_agent/resources/examples/internal/prompt_category.py +1 -1
  94. mcp_agent/resources/examples/internal/prompt_sizing.py +3 -5
  95. mcp_agent/resources/examples/internal/sizer.py +2 -1
  96. mcp_agent/resources/examples/internal/social.py +2 -1
  97. mcp_agent/resources/examples/prompting/agent.py +2 -1
  98. mcp_agent/resources/examples/prompting/image_server.py +4 -8
  99. mcp_agent/resources/examples/prompting/work_with_image.py +19 -0
  100. mcp_agent/ui/console_display.py +16 -20
  101. fast_agent_mcp-0.1.12.dist-info/RECORD +0 -161
  102. mcp_agent/core/agent_app.py +0 -646
  103. mcp_agent/core/agent_utils.py +0 -71
  104. mcp_agent/core/decorators.py +0 -455
  105. mcp_agent/core/factory.py +0 -463
  106. mcp_agent/core/proxies.py +0 -269
  107. mcp_agent/core/types.py +0 -24
  108. mcp_agent/eval/__init__.py +0 -0
  109. mcp_agent/mcp/stdio.py +0 -111
  110. mcp_agent/resources/examples/data-analysis/analysis-campaign.py +0 -188
  111. mcp_agent/resources/examples/data-analysis/analysis.py +0 -65
  112. mcp_agent/resources/examples/data-analysis/fastagent.config.yaml +0 -41
  113. mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv +0 -1471
  114. mcp_agent/resources/examples/mcp_researcher/researcher-eval.py +0 -53
  115. mcp_agent/resources/examples/researcher/fastagent.config.yaml +0 -66
  116. mcp_agent/resources/examples/researcher/researcher-eval.py +0 -53
  117. mcp_agent/resources/examples/researcher/researcher-imp.py +0 -190
  118. mcp_agent/resources/examples/researcher/researcher.py +0 -38
  119. mcp_agent/resources/examples/workflows/chaining.py +0 -44
  120. mcp_agent/resources/examples/workflows/evaluator.py +0 -78
  121. mcp_agent/resources/examples/workflows/fastagent.config.yaml +0 -24
  122. mcp_agent/resources/examples/workflows/human_input.py +0 -25
  123. mcp_agent/resources/examples/workflows/orchestrator.py +0 -73
  124. mcp_agent/resources/examples/workflows/parallel.py +0 -78
  125. mcp_agent/resources/examples/workflows/router.py +0 -53
  126. mcp_agent/resources/examples/workflows/sse.py +0 -23
  127. mcp_agent/telemetry/__init__.py +0 -0
  128. mcp_agent/telemetry/usage_tracking.py +0 -18
  129. mcp_agent/workflows/__init__.py +0 -0
  130. mcp_agent/workflows/embedding/__init__.py +0 -0
  131. mcp_agent/workflows/embedding/embedding_base.py +0 -61
  132. mcp_agent/workflows/embedding/embedding_cohere.py +0 -49
  133. mcp_agent/workflows/embedding/embedding_openai.py +0 -46
  134. mcp_agent/workflows/evaluator_optimizer/__init__.py +0 -0
  135. mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py +0 -481
  136. mcp_agent/workflows/intent_classifier/__init__.py +0 -0
  137. mcp_agent/workflows/intent_classifier/intent_classifier_base.py +0 -120
  138. mcp_agent/workflows/intent_classifier/intent_classifier_embedding.py +0 -134
  139. mcp_agent/workflows/intent_classifier/intent_classifier_embedding_cohere.py +0 -45
  140. mcp_agent/workflows/intent_classifier/intent_classifier_embedding_openai.py +0 -45
  141. mcp_agent/workflows/intent_classifier/intent_classifier_llm.py +0 -161
  142. mcp_agent/workflows/intent_classifier/intent_classifier_llm_anthropic.py +0 -60
  143. mcp_agent/workflows/intent_classifier/intent_classifier_llm_openai.py +0 -60
  144. mcp_agent/workflows/llm/__init__.py +0 -0
  145. mcp_agent/workflows/llm/augmented_llm.py +0 -753
  146. mcp_agent/workflows/llm/augmented_llm_passthrough.py +0 -241
  147. mcp_agent/workflows/llm/augmented_llm_playback.py +0 -109
  148. mcp_agent/workflows/llm/providers/__init__.py +0 -8
  149. mcp_agent/workflows/llm/sampling_format_converter.py +0 -22
  150. mcp_agent/workflows/orchestrator/__init__.py +0 -0
  151. mcp_agent/workflows/orchestrator/orchestrator.py +0 -578
  152. mcp_agent/workflows/parallel/__init__.py +0 -0
  153. mcp_agent/workflows/parallel/fan_in.py +0 -350
  154. mcp_agent/workflows/parallel/fan_out.py +0 -187
  155. mcp_agent/workflows/parallel/parallel_llm.py +0 -166
  156. mcp_agent/workflows/router/__init__.py +0 -0
  157. mcp_agent/workflows/router/router_base.py +0 -368
  158. mcp_agent/workflows/router/router_embedding.py +0 -240
  159. mcp_agent/workflows/router/router_embedding_cohere.py +0 -59
  160. mcp_agent/workflows/router/router_embedding_openai.py +0 -59
  161. mcp_agent/workflows/router/router_llm.py +0 -320
  162. mcp_agent/workflows/swarm/__init__.py +0 -0
  163. mcp_agent/workflows/swarm/swarm.py +0 -320
  164. mcp_agent/workflows/swarm/swarm_anthropic.py +0 -42
  165. mcp_agent/workflows/swarm/swarm_openai.py +0 -41
  166. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/WHEEL +0 -0
  167. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/entry_points.txt +0 -0
  168. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/licenses/LICENSE +0 -0
  169. /mcp_agent/{workflows/orchestrator → agents/workflow}/orchestrator_prompts.py +0 -0
@@ -1,59 +0,0 @@
1
- from typing import Callable, List, Optional, TYPE_CHECKING
2
-
3
- from mcp_agent.agents.agent import Agent
4
- from mcp_agent.workflows.embedding.embedding_openai import OpenAIEmbeddingModel
5
- from mcp_agent.workflows.router.router_embedding import EmbeddingRouter
6
-
7
- if TYPE_CHECKING:
8
- from mcp_agent.context import Context
9
-
10
-
11
- class OpenAIEmbeddingRouter(EmbeddingRouter):
12
- """
13
- A router that uses OpenAI embedding similarity to route requests to appropriate categories.
14
- This class helps to route an input to a specific MCP server, an Agent (an aggregation of MCP servers),
15
- or a function (any Callable).
16
- """
17
-
18
- def __init__(
19
- self,
20
- server_names: List[str] | None = None,
21
- agents: List[Agent] | None = None,
22
- functions: List[Callable] | None = None,
23
- embedding_model: OpenAIEmbeddingModel | None = None,
24
- context: Optional["Context"] = None,
25
- **kwargs,
26
- ):
27
- embedding_model = embedding_model or OpenAIEmbeddingModel()
28
-
29
- super().__init__(
30
- embedding_model=embedding_model,
31
- server_names=server_names,
32
- agents=agents,
33
- functions=functions,
34
- context=context,
35
- **kwargs,
36
- )
37
-
38
- @classmethod
39
- async def create(
40
- cls,
41
- embedding_model: OpenAIEmbeddingModel | None = None,
42
- server_names: List[str] | None = None,
43
- agents: List[Agent] | None = None,
44
- functions: List[Callable] | None = None,
45
- context: Optional["Context"] = None,
46
- ) -> "OpenAIEmbeddingRouter":
47
- """
48
- Factory method to create and initialize a router.
49
- Use this instead of constructor since we need async initialization.
50
- """
51
- instance = cls(
52
- server_names=server_names,
53
- agents=agents,
54
- functions=functions,
55
- embedding_model=embedding_model,
56
- context=context,
57
- )
58
- await instance.initialize()
59
- return instance
@@ -1,320 +0,0 @@
1
- from typing import Callable, List, Literal, Optional, TYPE_CHECKING
2
-
3
- from pydantic import BaseModel
4
-
5
- from mcp_agent.agents.agent import Agent
6
- from mcp_agent.workflows.llm.augmented_llm import AugmentedLLM, RequestParams
7
- from mcp_agent.workflows.router.router_base import ResultT, Router, RouterResult
8
- from mcp_agent.logging.logger import get_logger
9
- from mcp_agent.event_progress import ProgressAction
10
-
11
- if TYPE_CHECKING:
12
- from mcp_agent.context import Context
13
-
14
- logger = get_logger(__name__)
15
-
16
- # TODO -- reinstate function/server routing
17
- # TODO -- Generate the Example Schema from the Pydantic Model
18
- DEFAULT_ROUTING_INSTRUCTION = """
19
- You are a highly accurate request router that directs incoming requests to the most appropriate category.
20
- A category is a specialized destination, such as a Function, an MCP Server (a collection of tools/functions), or an Agent (a collection of servers).
21
-
22
- <fastagent:data>
23
- <fastagent:categories>
24
- {context}
25
- </fastagent:categories>
26
-
27
- <fastagent:request>
28
- {request}
29
- </fastagent:request>
30
- </fastagent:data>
31
-
32
- Your task is to analyze the request and determine the most appropriate categories from the options above. Consider:
33
- - The specific capabilities and tools each destination offers
34
- - How well the request matches the category's description
35
- - Whether the request might benefit from multiple categories (up to {top_k})
36
-
37
- <fastagent:instruction>
38
- Respond in JSON format. NEVER include Code Fences:
39
- {{
40
- "categories": [
41
- {{
42
- "category": <category name>,
43
- "confidence": <high, medium or low>,
44
- "reasoning": <brief explanation>
45
- }}
46
- ]
47
- }}
48
-
49
- Only include categories that are truly relevant. You may return fewer than {top_k} if appropriate.
50
- If none of the categories are relevant, return an empty list.
51
- </fastagent:instruction>
52
- """
53
-
54
- ROUTING_SYSTEM_INSTRUCTION = """
55
- You are a highly accurate request router that directs incoming requests to the most appropriate category.
56
- A category is a specialized destination, such as a Function, an MCP Server (a collection of tools/functions), or an Agent (a collection of servers).
57
-
58
- You will analyze requests and choose the most appropriate categories based on their capabilities and descriptions.
59
- You can choose one or more categories, or choose none if no category is appropriate.
60
-
61
- Follow these guidelines:
62
- - Carefully match the request's needs with category capabilities
63
- - Consider which tools or servers would best address the request
64
- - If multiple categories could help, select all relevant ones
65
- - Only include truly relevant categories, not tangentially related ones
66
- """
67
-
68
-
69
- class ConfidenceRating(BaseModel):
70
- """Base class for models with confidence ratings and reasoning"""
71
-
72
- """The confidence level of the routing decision."""
73
- confidence: Literal["high", "medium", "low"]
74
- """A brief explanation of the routing decision."""
75
- reasoning: str | None = None # Make nullable to support both use cases
76
-
77
-
78
- # Used for LLM output parsing
79
- class StructuredResponseCategory(ConfidenceRating):
80
- """The name of the category (i.e. MCP server, Agent or function) to route the input to."""
81
-
82
- category: str # Category name for lookup
83
-
84
-
85
- class StructuredResponse(BaseModel):
86
- categories: List[StructuredResponseCategory]
87
-
88
-
89
- # Used for final router output
90
- class LLMRouterResult(RouterResult[ResultT], ConfidenceRating):
91
- # Inherits 'result' from RouterResult
92
- # Inherits 'confidence' and 'reasoning' from ConfidenceRating
93
- pass
94
-
95
-
96
- class LLMRouter(Router):
97
- """
98
- A router that uses an LLM to route an input to a specific category.
99
- """
100
-
101
- def __init__(
102
- self,
103
- llm_factory: Callable[..., AugmentedLLM],
104
- name: str = "LLM Router",
105
- server_names: List[str] | None = None,
106
- agents: List[Agent] | None = None,
107
- functions: List[Callable] | None = None,
108
- routing_instruction: str | None = None,
109
- context: Optional["Context"] = None,
110
- default_request_params: Optional[RequestParams] = None,
111
- **kwargs,
112
- ):
113
- # Extract verb from kwargs to avoid passing it up the inheritance chain
114
- self._llm_verb = kwargs.pop("verb", None)
115
-
116
- super().__init__(
117
- server_names=server_names,
118
- agents=agents,
119
- functions=functions,
120
- routing_instruction=routing_instruction,
121
- context=context,
122
- **kwargs,
123
- )
124
-
125
- self.name = name
126
- self.llm_factory = llm_factory
127
- self.default_request_params = default_request_params or RequestParams()
128
- self.llm = None # Will be initialized in create()
129
-
130
- @classmethod
131
- async def create(
132
- cls,
133
- llm_factory: Callable[..., AugmentedLLM],
134
- name: str = "LLM Router",
135
- server_names: List[str] | None = None,
136
- agents: List[Agent] | None = None,
137
- functions: List[Callable] | None = None,
138
- routing_instruction: str | None = None,
139
- context: Optional["Context"] = None,
140
- default_request_params: Optional[RequestParams] = None,
141
- ) -> "LLMRouter":
142
- """
143
- Factory method to create and initialize a router.
144
- Use this instead of constructor since we need async initialization.
145
- """
146
- instance = cls(
147
- llm_factory=llm_factory,
148
- name=name,
149
- server_names=server_names,
150
- agents=agents,
151
- functions=functions,
152
- routing_instruction=DEFAULT_ROUTING_INSTRUCTION,
153
- context=context,
154
- default_request_params=default_request_params,
155
- )
156
- await instance.initialize()
157
- return instance
158
-
159
- async def initialize(self):
160
- """Initialize the router and create the LLM instance."""
161
- if not self.initialized:
162
- await super().initialize()
163
- router_params = RequestParams(
164
- systemPrompt=ROUTING_SYSTEM_INSTRUCTION,
165
- use_history=False, # Router should be stateless :)
166
- )
167
-
168
- # Merge with any provided default params
169
- if self.default_request_params:
170
- params_dict = router_params.model_dump()
171
- params_dict.update(
172
- self.default_request_params.model_dump(exclude_unset=True)
173
- )
174
- router_params = RequestParams(**params_dict)
175
- # Set up router-specific request params with routing instruction
176
- router_params.use_history = False
177
- # Use the stored verb if available, otherwise default to ROUTING
178
- verb_param = (
179
- self._llm_verb
180
- if hasattr(self, "_llm_verb") and self._llm_verb
181
- else ProgressAction.ROUTING
182
- )
183
-
184
- self.llm = self.llm_factory(
185
- agent=None, # Router doesn't need an agent context
186
- name=self.name, # Use the name provided during initialization
187
- default_request_params=router_params,
188
- verb=verb_param, # Use stored verb parameter or default to ROUTING
189
- )
190
- self.initialized = True
191
-
192
- async def route(
193
- self, request: str, top_k: int = 1
194
- ) -> List[LLMRouterResult[str | Agent | Callable]]:
195
- if not self.initialized:
196
- await self.initialize()
197
-
198
- return await self._route_with_llm(request, top_k)
199
-
200
- async def route_to_server(
201
- self, request: str, top_k: int = 1
202
- ) -> List[LLMRouterResult[str]]:
203
- if not self.initialized:
204
- await self.initialize()
205
-
206
- return await self._route_with_llm(
207
- request,
208
- top_k,
209
- include_servers=True,
210
- include_agents=False,
211
- include_functions=False,
212
- )
213
-
214
- async def route_to_agent(
215
- self, request: str, top_k: int = 1
216
- ) -> List[LLMRouterResult[Agent]]:
217
- if not self.initialized:
218
- await self.initialize()
219
-
220
- return await self._route_with_llm(
221
- request,
222
- top_k,
223
- include_servers=False,
224
- include_agents=True,
225
- include_functions=False,
226
- )
227
-
228
- async def route_to_function(
229
- self, request: str, top_k: int = 1
230
- ) -> List[LLMRouterResult[Callable]]:
231
- if not self.initialized:
232
- await self.initialize()
233
-
234
- return await self._route_with_llm(
235
- request,
236
- top_k,
237
- include_servers=False,
238
- include_agents=False,
239
- include_functions=True,
240
- )
241
-
242
- async def _route_with_llm(
243
- self,
244
- request: str,
245
- top_k: int = 1,
246
- include_servers: bool = True,
247
- include_agents: bool = True,
248
- include_functions: bool = True,
249
- ) -> List[LLMRouterResult]:
250
- if not self.initialized:
251
- await self.initialize()
252
-
253
- routing_instruction = self.routing_instruction or DEFAULT_ROUTING_INSTRUCTION
254
-
255
- # Generate the categories context
256
- context = self._generate_context(
257
- include_servers=include_servers,
258
- include_agents=include_agents,
259
- include_functions=include_functions,
260
- )
261
-
262
- # Format the prompt with all the necessary information
263
- prompt = routing_instruction.format(
264
- context=context, request=request, top_k=top_k
265
- )
266
-
267
- response = await self.llm.generate_structured(
268
- message=prompt,
269
- response_model=StructuredResponse,
270
- )
271
-
272
- # Construct the result
273
- if not response or not response.categories:
274
- return []
275
-
276
- result: List[LLMRouterResult] = []
277
- for r in response.categories:
278
- router_category = self.categories.get(r.category)
279
- if not router_category:
280
- # TODO: log or raise an error
281
- continue
282
-
283
- result.append(
284
- LLMRouterResult(
285
- result=router_category.category,
286
- confidence=r.confidence,
287
- reasoning=r.reasoning,
288
- )
289
- )
290
-
291
- return result[:top_k]
292
-
293
- def _generate_context(
294
- self,
295
- include_servers: bool = True,
296
- include_agents: bool = True,
297
- include_functions: bool = True,
298
- ) -> str:
299
- """Generate a formatted context list of categories."""
300
-
301
- context_list = []
302
- idx = 1
303
-
304
- # Format all categories
305
- if include_servers:
306
- for category in self.server_categories.values():
307
- context_list.append(self.format_category(category, idx))
308
- idx += 1
309
-
310
- if include_agents:
311
- for category in self.agent_categories.values():
312
- context_list.append(self.format_category(category, idx))
313
- idx += 1
314
-
315
- if include_functions:
316
- for category in self.function_categories.values():
317
- context_list.append(self.format_category(category, idx))
318
- idx += 1
319
-
320
- return "\n\n".join(context_list)
File without changes
@@ -1,320 +0,0 @@
1
- from typing import Callable, Dict, Generic, List, Optional, TYPE_CHECKING
2
- from collections import defaultdict
3
-
4
- from pydantic import AnyUrl, BaseModel, ConfigDict
5
- from mcp.types import (
6
- CallToolRequest,
7
- EmbeddedResource,
8
- CallToolResult,
9
- TextContent,
10
- TextResourceContents,
11
- Tool,
12
- )
13
-
14
- from mcp_agent.agents.agent import Agent
15
- from mcp_agent.human_input.types import HumanInputCallback
16
- from mcp_agent.workflows.llm.augmented_llm import (
17
- AugmentedLLM,
18
- MessageParamT,
19
- MessageT,
20
- )
21
- from mcp_agent.logging.logger import get_logger
22
-
23
- if TYPE_CHECKING:
24
- from mcp_agent.context import Context
25
-
26
- logger = get_logger(__name__)
27
-
28
-
29
- class AgentResource(EmbeddedResource):
30
- """
31
- A resource that returns an agent. Meant for use with tool calls that want to return an Agent for further processing.
32
- """
33
-
34
- agent: Optional["Agent"] = None
35
-
36
- model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
37
-
38
-
39
- class AgentFunctionResultResource(EmbeddedResource):
40
- """
41
- A resource that returns an AgentFunctionResult.
42
- Meant for use with tool calls that return an AgentFunctionResult for further processing.
43
- """
44
-
45
- result: "AgentFunctionResult"
46
-
47
- model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
48
-
49
-
50
- def create_agent_resource(agent: "Agent") -> AgentResource:
51
- return AgentResource(
52
- type="resource",
53
- agent=agent,
54
- resource=TextResourceContents(
55
- text=f"You are now Agent '{agent.name}'. Please review the messages and continue execution",
56
- uri=AnyUrl("http://fake.url"), # Required property but not needed
57
- ),
58
- )
59
-
60
-
61
- def create_agent_function_result_resource(
62
- result: "AgentFunctionResult",
63
- ) -> AgentFunctionResultResource:
64
- return AgentFunctionResultResource(
65
- type="resource",
66
- result=result,
67
- resource=TextResourceContents(
68
- text=result.value or result.agent.name or "AgentFunctionResult",
69
- uri=AnyUrl("http://fake.url"), # Required property but not needed
70
- ),
71
- )
72
-
73
-
74
- class SwarmAgent(Agent):
75
- """
76
- A SwarmAgent is an Agent that can spawn other agents and interactively resolve a task.
77
- Based on OpenAI Swarm: https://github.com/openai/swarm.
78
-
79
- SwarmAgents have access to tools available on the servers they are connected to, but additionally
80
- have a list of (possibly local) functions that can be called as tools.
81
- """
82
-
83
- def __init__(
84
- self,
85
- name: str,
86
- instruction: str | Callable[[Dict], str] = "You are a helpful agent.",
87
- server_names: list[str] = None,
88
- functions: List["AgentFunctionCallable"] = None,
89
- parallel_tool_calls: bool = True,
90
- human_input_callback: HumanInputCallback = None,
91
- context: Optional["Context"] = None,
92
- **kwargs,
93
- ):
94
- super().__init__(
95
- name=name,
96
- instruction=instruction,
97
- server_names=server_names,
98
- functions=functions,
99
- # TODO: saqadri - figure out if Swarm can maintain connection persistence
100
- # It's difficult because we don't know when the agent will be done with its task
101
- connection_persistence=False,
102
- human_input_callback=human_input_callback,
103
- context=context,
104
- **kwargs,
105
- )
106
- self.parallel_tool_calls = parallel_tool_calls
107
-
108
- async def call_tool(
109
- self, name: str, arguments: dict | None = None
110
- ) -> CallToolResult:
111
- if not self.initialized:
112
- await self.initialize()
113
-
114
- if name in self._function_tool_map:
115
- tool = self._function_tool_map[name]
116
- result = await tool.run(arguments)
117
-
118
- logger.debug(f"Function tool {name} result:", data=result)
119
-
120
- if isinstance(result, Agent) or isinstance(result, SwarmAgent):
121
- resource = create_agent_resource(result)
122
- return CallToolResult(content=[resource])
123
- elif isinstance(result, AgentFunctionResult):
124
- resource = create_agent_function_result_resource(result)
125
- return CallToolResult(content=[resource])
126
- elif isinstance(result, str):
127
- # TODO: saqadri - this is likely meant for returning context variables
128
- return CallToolResult(content=[TextContent(type="text", text=result)])
129
- elif isinstance(result, dict):
130
- return CallToolResult(
131
- content=[TextContent(type="text", text=str(result))]
132
- )
133
- else:
134
- logger.warning(f"Unknown result type: {result}, returning as text.")
135
- return CallToolResult(
136
- content=[TextContent(type="text", text=str(result))]
137
- )
138
-
139
- return await super().call_tool(name, arguments)
140
-
141
-
142
- class AgentFunctionResult(BaseModel):
143
- """
144
- Encapsulates the possible return values for a Swarm agent function.
145
-
146
- Attributes:
147
- value (str): The result value as a string.
148
- agent (Agent): The agent instance, if applicable.
149
- context_variables (dict): A dictionary of context variables.
150
- """
151
-
152
- value: str = ""
153
- agent: Agent | None = None
154
- context_variables: dict = {}
155
-
156
- model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
157
-
158
-
159
- AgentFunctionReturnType = str | Agent | dict | AgentFunctionResult
160
- """A type alias for the return type of a Swarm agent function."""
161
-
162
- AgentFunctionCallable = Callable[[], AgentFunctionReturnType]
163
-
164
-
165
- async def create_transfer_to_agent_tool(
166
- agent: "Agent", agent_function: Callable[[], None]
167
- ) -> Tool:
168
- return Tool(
169
- name="transfer_to_agent",
170
- description="Transfer control to the agent",
171
- agent_resource=create_agent_resource(agent),
172
- agent_function=agent_function,
173
- )
174
-
175
-
176
- async def create_agent_function_tool(agent_function: "AgentFunctionCallable") -> Tool:
177
- return Tool(
178
- name="agent_function",
179
- description="Agent function",
180
- agent_resource=None,
181
- agent_function=agent_function,
182
- )
183
-
184
-
185
- class Swarm(AugmentedLLM[MessageParamT, MessageT], Generic[MessageParamT, MessageT]):
186
- """
187
- Handles orchestrating agents that can use tools via MCP servers.
188
-
189
- MCP version of the OpenAI Swarm class (https://github.com/openai/swarm.)
190
- """
191
-
192
- # TODO: saqadri - streaming isn't supported yet because the underlying AugmentedLLM classes don't support it
193
- def __init__(self, agent: SwarmAgent, context_variables: Dict[str, str] = None):
194
- """
195
- Initialize the LLM planner with an agent, which will be used as the
196
- starting point for the workflow.
197
- """
198
- super().__init__(agent=agent)
199
- self.context_variables = defaultdict(str, context_variables or {})
200
- self.instruction = (
201
- agent.instruction(self.context_variables)
202
- if isinstance(agent.instruction, Callable)
203
- else agent.instruction
204
- )
205
- logger.debug(
206
- f"Swarm initialized with agent {agent.name}",
207
- data={
208
- "context_variables": self.context_variables,
209
- "instruction": self.instruction,
210
- },
211
- )
212
-
213
- async def get_tool(self, tool_name: str) -> Tool | None:
214
- """Get the schema for a tool by name."""
215
- result = await self.aggregator.list_tools()
216
- for tool in result.tools:
217
- if tool.name == tool_name:
218
- return tool
219
-
220
- return None
221
-
222
- async def pre_tool_call(
223
- self, tool_call_id: str | None, request: CallToolRequest
224
- ) -> CallToolRequest | bool:
225
- if not self.aggregator:
226
- # If there are no agents, we can't do anything, so we should bail
227
- return False
228
-
229
- tool = await self.get_tool(request.params.name)
230
- if not tool:
231
- logger.warning(
232
- f"Warning: Tool '{request.params.name}' not found in agent '{self.aggregator.name}' tools. Proceeding with original request params."
233
- )
234
- return request
235
-
236
- # If the tool has a "context_variables" parameter, we set it to our context variables state
237
- if "context_variables" in tool.inputSchema:
238
- logger.debug(
239
- f"Setting context variables on tool_call '{request.params.name}'",
240
- data=self.context_variables,
241
- )
242
- request.params.arguments["context_variables"] = self.context_variables
243
-
244
- return request
245
-
246
- async def post_tool_call(
247
- self, tool_call_id: str | None, request: CallToolRequest, result: CallToolResult
248
- ) -> CallToolResult:
249
- contents = []
250
- for content in result.content:
251
- if isinstance(content, AgentResource):
252
- # Set the new agent as the current agent
253
- await self.set_agent(content.agent)
254
- contents.append(TextContent(type="text", text=content.resource.text))
255
- elif isinstance(content, AgentFunctionResult):
256
- logger.info(
257
- "Updating context variables with new context variables from agent function result",
258
- data=content.context_variables,
259
- )
260
- self.context_variables.update(content.context_variables)
261
- if content.agent:
262
- # Set the new agent as the current agent
263
- self.set_agent(content.agent)
264
-
265
- contents.append(TextContent(type="text", text=content.resource.text))
266
- else:
267
- contents.append(content)
268
-
269
- result.content = contents
270
- return result
271
-
272
- async def set_agent(
273
- self,
274
- agent: SwarmAgent,
275
- ):
276
- logger.info(
277
- f"Switching from agent '{self.aggregator.name}' -> agent '{agent.name if agent else 'NULL'}'"
278
- )
279
- if self.aggregator:
280
- # Close the current agent
281
- await self.aggregator.shutdown()
282
-
283
- # Initialize the new agent (if it's not None)
284
- self.aggregator = agent
285
-
286
- if not self.aggregator or isinstance(self.aggregator, DoneAgent):
287
- self.instruction = None
288
- return
289
-
290
- await self.aggregator.initialize()
291
- self.instruction = (
292
- agent.instruction(self.context_variables)
293
- if callable(agent.instruction)
294
- else agent.instruction
295
- )
296
-
297
- def should_continue(self) -> bool:
298
- """
299
- Returns True if the workflow should continue, False otherwise.
300
- """
301
- if not self.aggregator or isinstance(self.aggregator, DoneAgent):
302
- return False
303
-
304
- return True
305
-
306
-
307
- class DoneAgent(SwarmAgent):
308
- """
309
- A special agent that represents the end of a Swarm workflow.
310
- """
311
-
312
- def __init__(self):
313
- super().__init__(name="__done__", instruction="Swarm Workflow is complete.")
314
-
315
- async def call_tool(
316
- self, _name: str, _arguments: dict | None = None
317
- ) -> CallToolResult:
318
- return CallToolResult(
319
- content=[TextContent(type="text", text="Workflow is complete.")]
320
- )