fast-agent-mcp 0.1.12__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (169) hide show
  1. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/METADATA +3 -4
  2. fast_agent_mcp-0.2.0.dist-info/RECORD +123 -0
  3. mcp_agent/__init__.py +75 -0
  4. mcp_agent/agents/agent.py +61 -415
  5. mcp_agent/agents/base_agent.py +522 -0
  6. mcp_agent/agents/workflow/__init__.py +1 -0
  7. mcp_agent/agents/workflow/chain_agent.py +173 -0
  8. mcp_agent/agents/workflow/evaluator_optimizer.py +362 -0
  9. mcp_agent/agents/workflow/orchestrator_agent.py +591 -0
  10. mcp_agent/{workflows/orchestrator → agents/workflow}/orchestrator_models.py +11 -21
  11. mcp_agent/agents/workflow/parallel_agent.py +182 -0
  12. mcp_agent/agents/workflow/router_agent.py +307 -0
  13. mcp_agent/app.py +15 -19
  14. mcp_agent/cli/commands/bootstrap.py +19 -38
  15. mcp_agent/cli/commands/config.py +4 -4
  16. mcp_agent/cli/commands/setup.py +7 -14
  17. mcp_agent/cli/main.py +7 -10
  18. mcp_agent/cli/terminal.py +3 -3
  19. mcp_agent/config.py +25 -40
  20. mcp_agent/context.py +12 -21
  21. mcp_agent/context_dependent.py +3 -5
  22. mcp_agent/core/agent_types.py +10 -7
  23. mcp_agent/core/direct_agent_app.py +179 -0
  24. mcp_agent/core/direct_decorators.py +443 -0
  25. mcp_agent/core/direct_factory.py +476 -0
  26. mcp_agent/core/enhanced_prompt.py +23 -55
  27. mcp_agent/core/exceptions.py +8 -8
  28. mcp_agent/core/fastagent.py +145 -371
  29. mcp_agent/core/interactive_prompt.py +424 -0
  30. mcp_agent/core/mcp_content.py +17 -17
  31. mcp_agent/core/prompt.py +6 -9
  32. mcp_agent/core/request_params.py +6 -3
  33. mcp_agent/core/validation.py +92 -18
  34. mcp_agent/executor/decorator_registry.py +9 -17
  35. mcp_agent/executor/executor.py +8 -17
  36. mcp_agent/executor/task_registry.py +2 -4
  37. mcp_agent/executor/temporal.py +19 -41
  38. mcp_agent/executor/workflow.py +3 -5
  39. mcp_agent/executor/workflow_signal.py +15 -21
  40. mcp_agent/human_input/handler.py +4 -7
  41. mcp_agent/human_input/types.py +2 -3
  42. mcp_agent/llm/__init__.py +2 -0
  43. mcp_agent/llm/augmented_llm.py +450 -0
  44. mcp_agent/llm/augmented_llm_passthrough.py +162 -0
  45. mcp_agent/llm/augmented_llm_playback.py +83 -0
  46. mcp_agent/llm/memory.py +103 -0
  47. mcp_agent/{workflows/llm → llm}/model_factory.py +22 -16
  48. mcp_agent/{workflows/llm → llm}/prompt_utils.py +1 -3
  49. mcp_agent/llm/providers/__init__.py +8 -0
  50. mcp_agent/{workflows/llm → llm/providers}/anthropic_utils.py +8 -25
  51. mcp_agent/{workflows/llm → llm/providers}/augmented_llm_anthropic.py +56 -194
  52. mcp_agent/llm/providers/augmented_llm_deepseek.py +53 -0
  53. mcp_agent/{workflows/llm → llm/providers}/augmented_llm_openai.py +99 -190
  54. mcp_agent/{workflows/llm → llm}/providers/multipart_converter_anthropic.py +72 -71
  55. mcp_agent/{workflows/llm → llm}/providers/multipart_converter_openai.py +65 -71
  56. mcp_agent/{workflows/llm → llm}/providers/openai_multipart.py +16 -44
  57. mcp_agent/{workflows/llm → llm/providers}/openai_utils.py +4 -4
  58. mcp_agent/{workflows/llm → llm}/providers/sampling_converter_anthropic.py +9 -11
  59. mcp_agent/{workflows/llm → llm}/providers/sampling_converter_openai.py +8 -12
  60. mcp_agent/{workflows/llm → llm}/sampling_converter.py +3 -31
  61. mcp_agent/llm/sampling_format_converter.py +37 -0
  62. mcp_agent/logging/events.py +1 -5
  63. mcp_agent/logging/json_serializer.py +7 -6
  64. mcp_agent/logging/listeners.py +20 -23
  65. mcp_agent/logging/logger.py +17 -19
  66. mcp_agent/logging/rich_progress.py +10 -8
  67. mcp_agent/logging/tracing.py +4 -6
  68. mcp_agent/logging/transport.py +22 -22
  69. mcp_agent/mcp/gen_client.py +1 -3
  70. mcp_agent/mcp/interfaces.py +117 -110
  71. mcp_agent/mcp/logger_textio.py +97 -0
  72. mcp_agent/mcp/mcp_agent_client_session.py +7 -7
  73. mcp_agent/mcp/mcp_agent_server.py +8 -8
  74. mcp_agent/mcp/mcp_aggregator.py +102 -143
  75. mcp_agent/mcp/mcp_connection_manager.py +20 -27
  76. mcp_agent/mcp/prompt_message_multipart.py +68 -16
  77. mcp_agent/mcp/prompt_render.py +77 -0
  78. mcp_agent/mcp/prompt_serialization.py +30 -48
  79. mcp_agent/mcp/prompts/prompt_constants.py +18 -0
  80. mcp_agent/mcp/prompts/prompt_helpers.py +327 -0
  81. mcp_agent/mcp/prompts/prompt_load.py +109 -0
  82. mcp_agent/mcp/prompts/prompt_server.py +155 -195
  83. mcp_agent/mcp/prompts/prompt_template.py +35 -66
  84. mcp_agent/mcp/resource_utils.py +7 -14
  85. mcp_agent/mcp/sampling.py +17 -17
  86. mcp_agent/mcp_server/agent_server.py +13 -17
  87. mcp_agent/mcp_server_registry.py +13 -22
  88. mcp_agent/resources/examples/{workflows → in_dev}/agent_build.py +3 -2
  89. mcp_agent/resources/examples/in_dev/slides.py +110 -0
  90. mcp_agent/resources/examples/internal/agent.py +6 -3
  91. mcp_agent/resources/examples/internal/fastagent.config.yaml +8 -2
  92. mcp_agent/resources/examples/internal/job.py +2 -1
  93. mcp_agent/resources/examples/internal/prompt_category.py +1 -1
  94. mcp_agent/resources/examples/internal/prompt_sizing.py +3 -5
  95. mcp_agent/resources/examples/internal/sizer.py +2 -1
  96. mcp_agent/resources/examples/internal/social.py +2 -1
  97. mcp_agent/resources/examples/prompting/agent.py +2 -1
  98. mcp_agent/resources/examples/prompting/image_server.py +4 -8
  99. mcp_agent/resources/examples/prompting/work_with_image.py +19 -0
  100. mcp_agent/ui/console_display.py +16 -20
  101. fast_agent_mcp-0.1.12.dist-info/RECORD +0 -161
  102. mcp_agent/core/agent_app.py +0 -646
  103. mcp_agent/core/agent_utils.py +0 -71
  104. mcp_agent/core/decorators.py +0 -455
  105. mcp_agent/core/factory.py +0 -463
  106. mcp_agent/core/proxies.py +0 -269
  107. mcp_agent/core/types.py +0 -24
  108. mcp_agent/eval/__init__.py +0 -0
  109. mcp_agent/mcp/stdio.py +0 -111
  110. mcp_agent/resources/examples/data-analysis/analysis-campaign.py +0 -188
  111. mcp_agent/resources/examples/data-analysis/analysis.py +0 -65
  112. mcp_agent/resources/examples/data-analysis/fastagent.config.yaml +0 -41
  113. mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv +0 -1471
  114. mcp_agent/resources/examples/mcp_researcher/researcher-eval.py +0 -53
  115. mcp_agent/resources/examples/researcher/fastagent.config.yaml +0 -66
  116. mcp_agent/resources/examples/researcher/researcher-eval.py +0 -53
  117. mcp_agent/resources/examples/researcher/researcher-imp.py +0 -190
  118. mcp_agent/resources/examples/researcher/researcher.py +0 -38
  119. mcp_agent/resources/examples/workflows/chaining.py +0 -44
  120. mcp_agent/resources/examples/workflows/evaluator.py +0 -78
  121. mcp_agent/resources/examples/workflows/fastagent.config.yaml +0 -24
  122. mcp_agent/resources/examples/workflows/human_input.py +0 -25
  123. mcp_agent/resources/examples/workflows/orchestrator.py +0 -73
  124. mcp_agent/resources/examples/workflows/parallel.py +0 -78
  125. mcp_agent/resources/examples/workflows/router.py +0 -53
  126. mcp_agent/resources/examples/workflows/sse.py +0 -23
  127. mcp_agent/telemetry/__init__.py +0 -0
  128. mcp_agent/telemetry/usage_tracking.py +0 -18
  129. mcp_agent/workflows/__init__.py +0 -0
  130. mcp_agent/workflows/embedding/__init__.py +0 -0
  131. mcp_agent/workflows/embedding/embedding_base.py +0 -61
  132. mcp_agent/workflows/embedding/embedding_cohere.py +0 -49
  133. mcp_agent/workflows/embedding/embedding_openai.py +0 -46
  134. mcp_agent/workflows/evaluator_optimizer/__init__.py +0 -0
  135. mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py +0 -481
  136. mcp_agent/workflows/intent_classifier/__init__.py +0 -0
  137. mcp_agent/workflows/intent_classifier/intent_classifier_base.py +0 -120
  138. mcp_agent/workflows/intent_classifier/intent_classifier_embedding.py +0 -134
  139. mcp_agent/workflows/intent_classifier/intent_classifier_embedding_cohere.py +0 -45
  140. mcp_agent/workflows/intent_classifier/intent_classifier_embedding_openai.py +0 -45
  141. mcp_agent/workflows/intent_classifier/intent_classifier_llm.py +0 -161
  142. mcp_agent/workflows/intent_classifier/intent_classifier_llm_anthropic.py +0 -60
  143. mcp_agent/workflows/intent_classifier/intent_classifier_llm_openai.py +0 -60
  144. mcp_agent/workflows/llm/__init__.py +0 -0
  145. mcp_agent/workflows/llm/augmented_llm.py +0 -753
  146. mcp_agent/workflows/llm/augmented_llm_passthrough.py +0 -241
  147. mcp_agent/workflows/llm/augmented_llm_playback.py +0 -109
  148. mcp_agent/workflows/llm/providers/__init__.py +0 -8
  149. mcp_agent/workflows/llm/sampling_format_converter.py +0 -22
  150. mcp_agent/workflows/orchestrator/__init__.py +0 -0
  151. mcp_agent/workflows/orchestrator/orchestrator.py +0 -578
  152. mcp_agent/workflows/parallel/__init__.py +0 -0
  153. mcp_agent/workflows/parallel/fan_in.py +0 -350
  154. mcp_agent/workflows/parallel/fan_out.py +0 -187
  155. mcp_agent/workflows/parallel/parallel_llm.py +0 -166
  156. mcp_agent/workflows/router/__init__.py +0 -0
  157. mcp_agent/workflows/router/router_base.py +0 -368
  158. mcp_agent/workflows/router/router_embedding.py +0 -240
  159. mcp_agent/workflows/router/router_embedding_cohere.py +0 -59
  160. mcp_agent/workflows/router/router_embedding_openai.py +0 -59
  161. mcp_agent/workflows/router/router_llm.py +0 -320
  162. mcp_agent/workflows/swarm/__init__.py +0 -0
  163. mcp_agent/workflows/swarm/swarm.py +0 -320
  164. mcp_agent/workflows/swarm/swarm_anthropic.py +0 -42
  165. mcp_agent/workflows/swarm/swarm_openai.py +0 -41
  166. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/WHEEL +0 -0
  167. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/entry_points.txt +0 -0
  168. {fast_agent_mcp-0.1.12.dist-info → fast_agent_mcp-0.2.0.dist-info}/licenses/LICENSE +0 -0
  169. /mcp_agent/{workflows/orchestrator → agents/workflow}/orchestrator_prompts.py +0 -0
@@ -1,350 +0,0 @@
1
- import contextlib
2
- from typing import Callable, Dict, List, Optional, Type, TYPE_CHECKING
3
-
4
- from mcp_agent.agents.agent import Agent
5
- from mcp_agent.context_dependent import ContextDependent
6
- from mcp_agent.workflows.llm.augmented_llm import (
7
- AugmentedLLM,
8
- MessageParamT,
9
- MessageT,
10
- ModelT,
11
- RequestParams,
12
- )
13
-
14
- if TYPE_CHECKING:
15
- from mcp_agent.context import Context
16
-
17
- FanInInput = (
18
- # Dict of agent/source name to list of messages generated by that agent
19
- Dict[str, List[MessageT] | List[MessageParamT]]
20
- # Dict of agent/source name to string generated by that agent
21
- | Dict[str, str]
22
- # List of lists of messages generated by each agent
23
- | List[List[MessageT] | List[MessageParamT]]
24
- # List of strings generated by each agent
25
- | List[str]
26
- )
27
-
28
-
29
- class FanIn(ContextDependent):
30
- """
31
- Aggregate results from multiple parallel tasks into a single result.
32
-
33
- This is a building block of the Parallel workflow, which can be used to fan out
34
- work to multiple agents or other parallel tasks, and then aggregate the results.
35
-
36
- For example, you can use FanIn to combine the results of multiple agents into a single response,
37
- such as a Summarization Fan-In agent that combines the outputs of multiple language models.
38
- """
39
-
40
- def __init__(
41
- self,
42
- aggregator_agent: Agent | AugmentedLLM[MessageParamT, MessageT],
43
- llm_factory: Callable[[Agent], AugmentedLLM[MessageParamT, MessageT]] = None,
44
- context: Optional["Context"] = None,
45
- **kwargs,
46
- ):
47
- """
48
- Initialize the FanIn with an Agent responsible for processing multiple responses into a single aggregated one.
49
- """
50
-
51
- super().__init__(context=context, **kwargs)
52
-
53
- self.executor = self.context.executor
54
- self.llm_factory = llm_factory
55
- self.aggregator_agent = aggregator_agent
56
-
57
- if not isinstance(self.aggregator_agent, AugmentedLLM):
58
- if not self.llm_factory:
59
- raise ValueError("llm_factory is required when using an Agent")
60
-
61
- async def generate(
62
- self,
63
- messages: FanInInput,
64
- request_params: RequestParams | None = None,
65
- ) -> List[MessageT]:
66
- """
67
- Request fan-in agent generation from a list of messages from multiple sources/agents.
68
- Internally aggregates the messages and then calls the aggregator agent to generate a response.
69
- """
70
- message: (
71
- str | MessageParamT | List[MessageParamT]
72
- ) = await self.aggregate_messages(messages)
73
-
74
- async with contextlib.AsyncExitStack() as stack:
75
- if isinstance(self.aggregator_agent, AugmentedLLM):
76
- llm = self.aggregator_agent
77
- else:
78
- # Enter agent context
79
- ctx_agent = await stack.enter_async_context(self.aggregator_agent)
80
- llm = await ctx_agent.attach_llm(self.llm_factory)
81
-
82
- return await llm.generate(
83
- message=message,
84
- request_params=request_params,
85
- )
86
-
87
- async def generate_str(
88
- self,
89
- messages: FanInInput,
90
- request_params: RequestParams | None = None,
91
- ) -> str:
92
- """
93
- Request fan-in agent generation from a list of messages from multiple sources/agents.
94
- Internally aggregates the messages and then calls the aggregator agent to generate a
95
- response, which is returned as a string.
96
- """
97
-
98
- message: (
99
- str | MessageParamT | List[MessageParamT]
100
- ) = await self.aggregate_messages(messages)
101
-
102
- async with contextlib.AsyncExitStack() as stack:
103
- if isinstance(self.aggregator_agent, AugmentedLLM):
104
- llm = self.aggregator_agent
105
- else:
106
- # Enter agent context
107
- ctx_agent = await stack.enter_async_context(self.aggregator_agent)
108
- llm = await ctx_agent.attach_llm(self.llm_factory)
109
-
110
- return await llm.generate_str(
111
- message=message, request_params=request_params
112
- )
113
-
114
- async def generate_structured(
115
- self,
116
- messages: FanInInput,
117
- response_model: Type[ModelT],
118
- request_params: RequestParams | None = None,
119
- ) -> ModelT:
120
- """
121
- Request a structured fan-in agent generation from a list of messages
122
- from multiple sources/agents. Internally aggregates the messages and then calls
123
- the aggregator agent to generate a response, which is returned as a Pydantic model.
124
- """
125
-
126
- message: (
127
- str | MessageParamT | List[MessageParamT]
128
- ) = await self.aggregate_messages(messages)
129
-
130
- async with contextlib.AsyncExitStack() as stack:
131
- if isinstance(self.aggregator_agent, AugmentedLLM):
132
- llm = self.aggregator_agent
133
- else:
134
- # Enter agent context
135
- ctx_agent = await stack.enter_async_context(self.aggregator_agent)
136
- llm = await ctx_agent.attach_llm(self.llm_factory)
137
-
138
- return await llm.generate_structured(
139
- message=message,
140
- response_model=response_model,
141
- request_params=request_params,
142
- )
143
-
144
- async def aggregate_messages(
145
- self, messages: FanInInput
146
- ) -> str | MessageParamT | List[MessageParamT]:
147
- """
148
- Aggregate messages from multiple sources/agents into a single message to
149
- use with the aggregator agent generation.
150
-
151
- The input can be a dictionary of agent/source name to list of messages
152
- generated by that agent, or just the unattributed lists of messages to aggregate.
153
-
154
- Args:
155
- messages: Can be one of:
156
- - Dict[str, List[MessageT] | List[MessageParamT]]: Dict of agent names to messages
157
- - Dict[str, str]: Dict of agent names to message strings
158
- - List[List[MessageT] | List[MessageParamT]]: List of message lists from agents
159
- - List[str]: List of message strings from agents
160
-
161
- Returns:
162
- Aggregated message as string, MessageParamT or List[MessageParamT]
163
-
164
- Raises:
165
- ValueError: If input is empty or contains empty/invalid elements
166
- """
167
- # Handle dictionary inputs
168
- if isinstance(messages, dict):
169
- # Check for empty dict
170
- if not messages:
171
- raise ValueError("Input dictionary cannot be empty")
172
-
173
- first_value = next(iter(messages.values()))
174
-
175
- # Dict[str, List[MessageT] | List[MessageParamT]]
176
- if isinstance(first_value, list):
177
- if any(not isinstance(v, list) for v in messages.values()):
178
- raise ValueError("All dictionary values must be lists of messages")
179
- # Process list of messages for each agent
180
- return await self.aggregate_agent_messages(messages)
181
-
182
- # Dict[str, str]
183
- elif isinstance(first_value, str):
184
- if any(not isinstance(v, str) for v in messages.values()):
185
- raise ValueError("All dictionary values must be strings")
186
- # Process string outputs from each agent
187
- return await self.aggregate_agent_message_strings(messages)
188
-
189
- else:
190
- raise ValueError(
191
- "Dictionary values must be either lists of messages or strings"
192
- )
193
-
194
- # Handle list inputs
195
- elif isinstance(messages, list):
196
- # Check for empty list
197
- if not messages:
198
- raise ValueError("Input list cannot be empty")
199
-
200
- first_item = messages[0]
201
-
202
- # List[List[MessageT] | List[MessageParamT]]
203
- if isinstance(first_item, list):
204
- if any(not isinstance(item, list) for item in messages):
205
- raise ValueError("All list items must be lists of messages")
206
- # Process list of message lists
207
- return await self.aggregate_message_lists(messages)
208
-
209
- # List[str]
210
- elif isinstance(first_item, str):
211
- if any(not isinstance(item, str) for item in messages):
212
- raise ValueError("All list items must be strings")
213
- # Process list of strings
214
- return await self.aggregate_message_strings(messages)
215
-
216
- else:
217
- raise ValueError(
218
- "List items must be either lists of messages or strings"
219
- )
220
-
221
- else:
222
- raise ValueError(
223
- "Input must be either a dictionary of agent messages or a list of messages"
224
- )
225
-
226
- # Helper methods for processing different types of inputs
227
- async def aggregate_agent_messages(
228
- self, messages: Dict[str, List[MessageT] | List[MessageParamT]]
229
- ) -> str | MessageParamT | List[MessageParamT]:
230
- """
231
- Aggregate message lists with agent names.
232
-
233
- Args:
234
- messages: Dictionary mapping agent names to their message lists
235
-
236
- Returns:
237
- str | List[MessageParamT]: Messages formatted with agent attribution
238
-
239
- """
240
-
241
- # In the default implementation, we'll just convert the messages to a
242
- # single string with agent attribution
243
- aggregated_messages = []
244
-
245
- if not messages:
246
- return ""
247
-
248
- # Format each agent's messages with attribution
249
- for agent_name, agent_messages in messages.items():
250
- agent_message_strings = []
251
- for msg in agent_messages or []:
252
- if isinstance(msg, str):
253
- agent_message_strings.append(f"Agent {agent_name}: {msg}")
254
- else:
255
- # Assume it's a Message/MessageParamT and add attribution
256
- # TODO -- this should really unpack the text from the message
257
- agent_message_strings.append(
258
- f"Agent {agent_name}: {str(msg.content[0])}"
259
- )
260
-
261
- aggregated_messages.append("\n".join(agent_message_strings))
262
-
263
- # Combine all messages with clear separation
264
- final_message = "\n\n".join(aggregated_messages)
265
- final_message = f"Aggregated responses from multiple Agents:\n\n{final_message}"
266
- return final_message
267
-
268
- async def aggregate_agent_message_strings(self, messages: Dict[str, str]) -> str:
269
- """
270
- Aggregate string outputs with agent names.
271
-
272
- Args:
273
- messages: Dictionary mapping agent names to their string outputs
274
-
275
- Returns:
276
- str: Combined string with agent attributions
277
- """
278
- if not messages:
279
- return ""
280
-
281
- # Format each agent's message with agent attribution
282
- aggregated_messages = [
283
- f"Agent {agent_name}: {message}" for agent_name, message in messages.items()
284
- ]
285
-
286
- # Combine all messages with clear separation
287
- final_message = "\n\n".join(aggregated_messages)
288
- final_message = f"Aggregated responses from multiple Agents:\n\n{final_message}"
289
- return final_message
290
-
291
- async def aggregate_message_lists(
292
- self, messages: List[List[MessageT] | List[MessageParamT]]
293
- ) -> str | MessageParamT | List[MessageParamT]:
294
- """
295
- Aggregate message lists without agent names.
296
-
297
- Args:
298
- messages: List of message lists from different agents
299
-
300
- Returns:
301
- List[MessageParamT]: List of formatted messages
302
- """
303
- aggregated_messages = []
304
-
305
- if not messages:
306
- return ""
307
-
308
- # Format each source's messages
309
- for i, source_messages in enumerate(messages, 1):
310
- source_message_strings = []
311
- for msg in source_messages or []:
312
- if isinstance(msg, str):
313
- source_message_strings.append(f"Source {i}: {msg}")
314
- else:
315
- # Assume it's a MessageParamT or MessageT and add source attribution
316
- source_message_strings.append(f"Source {i}: {str(msg)}")
317
-
318
- aggregated_messages.append("\n".join(source_messages))
319
-
320
- # Combine all messages with clear separation
321
- final_message = "\n\n".join(aggregated_messages)
322
- final_message = (
323
- f"Aggregated responses from multiple sources:\n\n{final_message}"
324
- )
325
- return final_message
326
-
327
- async def aggregate_message_strings(self, messages: List[str]) -> str:
328
- """
329
- Aggregate string outputs without agent names.
330
-
331
- Args:
332
- messages: List of string outputs from different agents
333
-
334
- Returns:
335
- str: Combined string with source attributions
336
- """
337
- if not messages:
338
- return ""
339
-
340
- # Format each source's message with attribution
341
- aggregated_messages = [
342
- f"Source {i}: {message}" for i, message in enumerate(messages, 1)
343
- ]
344
-
345
- # Combine all messages with clear separation
346
- final_message = "\n\n".join(aggregated_messages)
347
- final_message = (
348
- f"Aggregated responses from multiple sources:\n\n{final_message}"
349
- )
350
- return final_message
@@ -1,187 +0,0 @@
1
- import contextlib
2
- import functools
3
- from typing import Any, Callable, Coroutine, Dict, List, Optional, Type, TYPE_CHECKING
4
-
5
- from mcp_agent.agents.agent import Agent
6
- from mcp_agent.context_dependent import ContextDependent
7
- from mcp_agent.workflows.llm.augmented_llm import (
8
- AugmentedLLM,
9
- MessageParamT,
10
- MessageT,
11
- ModelT,
12
- RequestParams,
13
- )
14
- from mcp_agent.logging.logger import get_logger
15
-
16
- if TYPE_CHECKING:
17
- from mcp_agent.context import Context
18
-
19
- logger = get_logger(__name__)
20
-
21
-
22
- class FanOut(ContextDependent):
23
- """
24
- Distribute work to multiple parallel tasks.
25
-
26
- This is a building block of the Parallel workflow, which can be used to fan out
27
- work to multiple agents or other parallel tasks, and then aggregate the results.
28
- """
29
-
30
- def __init__(
31
- self,
32
- agents: List[Agent | AugmentedLLM[MessageParamT, MessageT]] | None = None,
33
- functions: List[Callable[[MessageParamT], List[MessageT]]] | None = None,
34
- llm_factory: Callable[[Agent], AugmentedLLM[MessageParamT, MessageT]] = None,
35
- context: Optional["Context"] = None,
36
- **kwargs,
37
- ):
38
- """
39
- Initialize the FanOut with a list of agents, functions, or LLMs.
40
- If agents are provided, they will be wrapped in an AugmentedLLM using llm_factory if not already done so.
41
- If functions are provided, they will be invoked in parallel directly.
42
- """
43
- super().__init__(context=context, **kwargs)
44
- self.executor = self.context.executor
45
- self.llm_factory = llm_factory
46
- self.agents = agents or []
47
- self.functions: List[Callable[[MessageParamT], MessageT]] = functions or []
48
-
49
- if not self.agents and not self.functions:
50
- raise ValueError(
51
- "At least one agent or function must be provided for fan-out to work"
52
- )
53
-
54
- if not self.llm_factory:
55
- for agent in self.agents:
56
- if not isinstance(agent, AugmentedLLM):
57
- raise ValueError("llm_factory is required when using an Agent")
58
-
59
- async def generate(
60
- self,
61
- message: str | MessageParamT | List[MessageParamT],
62
- request_params: RequestParams | None = None,
63
- ) -> Dict[str, List[MessageT]]:
64
- """
65
- Request fan-out agent/function generations, and return the results as a dictionary.
66
- The keys are the names of the agents or functions that generated the results.
67
- """
68
- tasks: List[
69
- Callable[..., List[MessageT]] | Coroutine[Any, Any, List[MessageT]]
70
- ] = []
71
- task_names: List[str] = []
72
- task_results = []
73
-
74
- async with contextlib.AsyncExitStack() as stack:
75
- for agent in self.agents:
76
- if isinstance(agent, AugmentedLLM):
77
- llm = agent
78
- else:
79
- # Enter agent context
80
- ctx_agent = await stack.enter_async_context(agent)
81
- llm = await ctx_agent.attach_llm(self.llm_factory)
82
-
83
- tasks.append(
84
- llm.generate(
85
- message=message,
86
- request_params=request_params,
87
- )
88
- )
89
- task_names.append(agent.name)
90
-
91
- # Create bound methods for regular functions
92
- for function in self.functions:
93
- tasks.append(functools.partial(function, message))
94
- task_names.append(function.__name__ or id(function))
95
-
96
- # Wait for all tasks to complete
97
- logger.debug("Running fan-out tasks:", data=task_names)
98
- task_results = await self.executor.execute(*tasks)
99
-
100
- logger.debug(
101
- "Fan-out tasks completed:", data=dict(zip(task_names, task_results))
102
- )
103
- return dict(zip(task_names, task_results))
104
-
105
- async def generate_str(
106
- self,
107
- message: str | MessageParamT | List[MessageParamT],
108
- request_params: RequestParams | None = None,
109
- ) -> Dict[str, str]:
110
- """
111
- Request fan-out agent/function generations and return the string results as a dictionary.
112
- The keys are the names of the agents or functions that generated the results.
113
- """
114
-
115
- def fn_result_to_string(fn, message):
116
- return str(fn(message))
117
-
118
- tasks: List[Callable[..., str] | Coroutine[Any, Any, str]] = []
119
- task_names: List[str] = []
120
- task_results = []
121
-
122
- async with contextlib.AsyncExitStack() as stack:
123
- for agent in self.agents:
124
- if isinstance(agent, AugmentedLLM):
125
- llm = agent
126
- else:
127
- # Enter agent context
128
- ctx_agent = await stack.enter_async_context(agent)
129
- llm = await ctx_agent.attach_llm(self.llm_factory)
130
-
131
- tasks.append(
132
- llm.generate_str(
133
- message=message,
134
- request_params=request_params,
135
- )
136
- )
137
- task_names.append(agent.name)
138
-
139
- # Create bound methods for regular functions
140
- for function in self.functions:
141
- tasks.append(functools.partial(fn_result_to_string, function, message))
142
- task_names.append(function.__name__ or id(function))
143
-
144
- task_results = await self.executor.execute(*tasks)
145
-
146
- return dict(zip(task_names, task_results))
147
-
148
- async def generate_structured(
149
- self,
150
- message: str | MessageParamT | List[MessageParamT],
151
- response_model: Type[ModelT],
152
- request_params: RequestParams | None = None,
153
- ) -> Dict[str, ModelT]:
154
- """
155
- Request a structured fan-out agent/function generation and return the result as a Pydantic model.
156
- The keys are the names of the agents or functions that generated the results.
157
- """
158
- tasks = []
159
- task_names = []
160
- task_results = []
161
-
162
- async with contextlib.AsyncExitStack() as stack:
163
- for agent in self.agents:
164
- if isinstance(agent, AugmentedLLM):
165
- llm = agent
166
- else:
167
- # Enter agent context
168
- ctx_agent = await stack.enter_async_context(agent)
169
- llm = await ctx_agent.attach_llm(self.llm_factory)
170
-
171
- tasks.append(
172
- llm.generate_structured(
173
- message=message,
174
- response_model=response_model,
175
- request_params=request_params,
176
- )
177
- )
178
- task_names.append(agent.name)
179
-
180
- # Create bound methods for regular functions
181
- for function in self.functions:
182
- tasks.append(functools.partial(function, message))
183
- task_names.append(function.__name__ or id(function))
184
-
185
- task_results = await self.executor.execute(*tasks)
186
-
187
- return dict(zip(task_names, task_results))
@@ -1,166 +0,0 @@
1
- from typing import Any, Callable, List, Optional, Type, TYPE_CHECKING, Union
2
- import asyncio
3
-
4
- from mcp_agent.agents.agent import Agent
5
- from mcp_agent.workflows.llm.augmented_llm import (
6
- AugmentedLLM,
7
- MessageParamT,
8
- MessageT,
9
- ModelT,
10
- RequestParams,
11
- )
12
-
13
- if TYPE_CHECKING:
14
- from mcp_agent.context import Context
15
-
16
-
17
- class ParallelLLM(AugmentedLLM[MessageParamT, MessageT]):
18
- """
19
- LLMs can sometimes work simultaneously on a task (fan-out)
20
- and have their outputs aggregated programmatically (fan-in).
21
- This workflow performs both the fan-out and fan-in operations using LLMs.
22
- From the user's perspective, an input is specified and the output is returned.
23
- """
24
-
25
- def __init__(
26
- self,
27
- fan_in_agent: Agent | AugmentedLLM,
28
- fan_out_agents: List[Agent | AugmentedLLM],
29
- llm_factory: Callable[[Agent], AugmentedLLM] = None,
30
- context: Optional["Context"] = None,
31
- include_request: bool = True,
32
- **kwargs,
33
- ):
34
- super().__init__(context=context, **kwargs)
35
- self.fan_in_agent = fan_in_agent
36
- self.fan_out_agents = fan_out_agents
37
- self.llm_factory = llm_factory
38
- self.include_request = include_request
39
- self.history = None # History tracking is complex in this workflow
40
-
41
- async def ensure_llm(self, agent: Union[Agent, AugmentedLLM]) -> AugmentedLLM:
42
- """Ensure an agent has an LLM attached, using existing or creating new."""
43
- if isinstance(agent, AugmentedLLM):
44
- return agent
45
-
46
- if not hasattr(agent, "_llm") or agent._llm is None:
47
- return await agent.attach_llm(self.llm_factory)
48
-
49
- return agent._llm
50
-
51
- async def generate(
52
- self,
53
- message: str | MessageParamT | List[MessageParamT],
54
- request_params: RequestParams | None = None,
55
- ) -> List[MessageT] | Any:
56
- """Generate responses using parallel fan-out and fan-in."""
57
- # Ensure all agents have LLMs
58
- fan_out_llms = []
59
- for agent in self.fan_out_agents:
60
- llm = await self.ensure_llm(agent)
61
- fan_out_llms.append(llm)
62
-
63
- fan_in_llm = await self.ensure_llm(self.fan_in_agent)
64
-
65
- # Run fan-out operations in parallel
66
- responses = await asyncio.gather(
67
- *[llm.generate(message, request_params) for llm in fan_out_llms]
68
- )
69
-
70
- # Get message string for inclusion in formatted output
71
- message_str = (
72
- str(message) if isinstance(message, (str, MessageParamT)) else None
73
- )
74
-
75
- # Run fan-in to aggregate results
76
- result = await fan_in_llm.generate(
77
- self._format_responses(responses, message_str),
78
- request_params=request_params,
79
- )
80
-
81
- return result
82
-
83
- async def generate_str(
84
- self,
85
- message: str | MessageParamT | List[MessageParamT],
86
- request_params: RequestParams | None = None,
87
- ) -> str:
88
- """Generate string responses using parallel fan-out and fan-in."""
89
- # Ensure all agents have LLMs
90
- fan_out_llms = []
91
- for agent in self.fan_out_agents:
92
- llm = await self.ensure_llm(agent)
93
- fan_out_llms.append(llm)
94
-
95
- fan_in_llm = await self.ensure_llm(self.fan_in_agent)
96
-
97
- # Run fan-out operations in parallel
98
- responses = await asyncio.gather(
99
- *[llm.generate_str(message, request_params) for llm in fan_out_llms]
100
- )
101
-
102
- # Get message string for inclusion in formatted output
103
- message_str = (
104
- str(message) if isinstance(message, (str, MessageParamT)) else None
105
- )
106
-
107
- # Run fan-in to aggregate results
108
- result = await fan_in_llm.generate_str(
109
- self._format_responses(responses, message_str),
110
- request_params=request_params,
111
- )
112
-
113
- return result
114
-
115
- async def generate_structured(
116
- self,
117
- message: str | MessageParamT | List[MessageParamT],
118
- response_model: Type[ModelT],
119
- request_params: RequestParams | None = None,
120
- ) -> ModelT:
121
- """Generate structured responses using parallel fan-out and fan-in."""
122
- # Ensure all agents have LLMs
123
- fan_out_llms = []
124
- for agent in self.fan_out_agents:
125
- llm = await self.ensure_llm(agent)
126
- fan_out_llms.append(llm)
127
-
128
- fan_in_llm = await self.ensure_llm(self.fan_in_agent)
129
-
130
- # Run fan-out operations in parallel
131
- responses = await asyncio.gather(
132
- *[
133
- llm.generate_structured(message, response_model, request_params)
134
- for llm in fan_out_llms
135
- ]
136
- )
137
-
138
- # Get message string for inclusion in formatted output
139
- message_str = (
140
- str(message) if isinstance(message, (str, MessageParamT)) else None
141
- )
142
-
143
- # Run fan-in to aggregate results
144
- result = await fan_in_llm.generate_structured(
145
- self._format_responses(responses, message_str),
146
- response_model=response_model,
147
- request_params=request_params,
148
- )
149
-
150
- return result
151
-
152
- def _format_responses(self, responses: List[Any], message: str = None) -> str:
153
- """Format a list of responses for the fan-in agent."""
154
- formatted = []
155
-
156
- # Include the original message if specified
157
- if self.include_request and message:
158
- formatted.append("The following request was sent to the agents:")
159
- formatted.append(f"<fastagent:request>\n{message}\n</fastagent:request>")
160
-
161
- for i, response in enumerate(responses):
162
- agent_name = self.fan_out_agents[i].name
163
- formatted.append(
164
- f'<fastagent:response agent="{agent_name}">\n{response}\n</fastagent:response>'
165
- )
166
- return "\n\n".join(formatted)
File without changes