evalscope 0.14.0__py3-none-any.whl → 0.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +1 -1
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +16 -9
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
- evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +16 -4
- evalscope/config.py +7 -3
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +2 -2
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/utils/benchmark_util.py +2 -2
- evalscope/perf/utils/db_util.py +8 -2
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +117 -67
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +3 -3
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +12 -4
- evalscope/version.py +2 -2
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/METADATA +18 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/RECORD +175 -63
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_run.py +11 -5
- tests/perf/test_perf.py +2 -1
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/LICENSE +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/WHEEL +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,503 @@
|
|
|
1
|
+
# Based on EVA, BEIT, timm and DeiT code bases
|
|
2
|
+
# https://github.com/baaivision/EVA
|
|
3
|
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
|
4
|
+
# https://github.com/microsoft/unilm/tree/master/beit
|
|
5
|
+
# https://github.com/facebookresearch/deit/
|
|
6
|
+
# https://github.com/facebookresearch/dino
|
|
7
|
+
# --------------------------------------------------------'
|
|
8
|
+
import math
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
import torch.utils.checkpoint as checkpoint
|
|
13
|
+
from functools import partial
|
|
14
|
+
|
|
15
|
+
try:
|
|
16
|
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
|
17
|
+
except ImportError:
|
|
18
|
+
pass
|
|
19
|
+
|
|
20
|
+
from ..common.dist_utils import download_cached_file
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def _cfg(url='', **kwargs):
|
|
24
|
+
return {
|
|
25
|
+
'url': url,
|
|
26
|
+
'num_classes': 1000,
|
|
27
|
+
'input_size': (3, 224, 224),
|
|
28
|
+
'pool_size': None,
|
|
29
|
+
'crop_pct': .9,
|
|
30
|
+
'interpolation': 'bicubic',
|
|
31
|
+
'mean': (0.5, 0.5, 0.5),
|
|
32
|
+
'std': (0.5, 0.5, 0.5),
|
|
33
|
+
**kwargs
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class DropPath(nn.Module):
|
|
38
|
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
def __init__(self, drop_prob=None):
|
|
42
|
+
super(DropPath, self).__init__()
|
|
43
|
+
self.drop_prob = drop_prob
|
|
44
|
+
|
|
45
|
+
def forward(self, x):
|
|
46
|
+
return drop_path(x, self.drop_prob, self.training)
|
|
47
|
+
|
|
48
|
+
def extra_repr(self) -> str:
|
|
49
|
+
return 'p={}'.format(self.drop_prob)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class Mlp(nn.Module):
|
|
53
|
+
|
|
54
|
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
|
55
|
+
super().__init__()
|
|
56
|
+
out_features = out_features or in_features
|
|
57
|
+
hidden_features = hidden_features or in_features
|
|
58
|
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
59
|
+
self.act = act_layer()
|
|
60
|
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
61
|
+
self.drop = nn.Dropout(drop)
|
|
62
|
+
|
|
63
|
+
def forward(self, x):
|
|
64
|
+
x = self.fc1(x)
|
|
65
|
+
x = self.act(x)
|
|
66
|
+
# x = self.drop(x)
|
|
67
|
+
# commit this for the orignal BERT implement
|
|
68
|
+
x = self.fc2(x)
|
|
69
|
+
x = self.drop(x)
|
|
70
|
+
return x
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class Attention(nn.Module):
|
|
74
|
+
|
|
75
|
+
def __init__(self,
|
|
76
|
+
dim,
|
|
77
|
+
num_heads=8,
|
|
78
|
+
qkv_bias=False,
|
|
79
|
+
qk_scale=None,
|
|
80
|
+
attn_drop=0.,
|
|
81
|
+
proj_drop=0.,
|
|
82
|
+
window_size=None,
|
|
83
|
+
attn_head_dim=None):
|
|
84
|
+
super().__init__()
|
|
85
|
+
self.num_heads = num_heads
|
|
86
|
+
head_dim = dim // num_heads
|
|
87
|
+
if attn_head_dim is not None:
|
|
88
|
+
head_dim = attn_head_dim
|
|
89
|
+
all_head_dim = head_dim * self.num_heads
|
|
90
|
+
self.scale = qk_scale or head_dim**-0.5
|
|
91
|
+
|
|
92
|
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
|
93
|
+
if qkv_bias:
|
|
94
|
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
95
|
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
96
|
+
else:
|
|
97
|
+
self.q_bias = None
|
|
98
|
+
self.v_bias = None
|
|
99
|
+
|
|
100
|
+
if window_size:
|
|
101
|
+
self.window_size = window_size
|
|
102
|
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
103
|
+
self.relative_position_bias_table = nn.Parameter(torch.zeros(self.num_relative_distance,
|
|
104
|
+
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
|
105
|
+
# cls to token & token 2 cls & cls to cls
|
|
106
|
+
|
|
107
|
+
# get pair-wise relative position index for each token inside the window
|
|
108
|
+
coords_h = torch.arange(window_size[0])
|
|
109
|
+
coords_w = torch.arange(window_size[1])
|
|
110
|
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
|
111
|
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
112
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
|
113
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
114
|
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
|
115
|
+
relative_coords[:, :, 1] += window_size[1] - 1
|
|
116
|
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
|
117
|
+
relative_position_index = \
|
|
118
|
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
|
119
|
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
120
|
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
|
121
|
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
|
122
|
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
|
123
|
+
|
|
124
|
+
self.register_buffer('relative_position_index', relative_position_index)
|
|
125
|
+
else:
|
|
126
|
+
self.window_size = None
|
|
127
|
+
self.relative_position_bias_table = None
|
|
128
|
+
self.relative_position_index = None
|
|
129
|
+
|
|
130
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
|
131
|
+
self.proj = nn.Linear(all_head_dim, dim)
|
|
132
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
|
133
|
+
|
|
134
|
+
def forward(self, x, rel_pos_bias=None):
|
|
135
|
+
B, N, C = x.shape
|
|
136
|
+
qkv_bias = None
|
|
137
|
+
if self.q_bias is not None:
|
|
138
|
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
|
139
|
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
140
|
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
|
141
|
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
142
|
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
|
143
|
+
|
|
144
|
+
q = q * self.scale
|
|
145
|
+
attn = (q @ k.transpose(-2, -1))
|
|
146
|
+
|
|
147
|
+
if self.relative_position_bias_table is not None:
|
|
148
|
+
relative_position_bias = \
|
|
149
|
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
|
150
|
+
self.window_size[0] * self.window_size[1] + 1,
|
|
151
|
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
|
152
|
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
153
|
+
attn = attn + relative_position_bias.unsqueeze(0)
|
|
154
|
+
|
|
155
|
+
if rel_pos_bias is not None:
|
|
156
|
+
attn = attn + rel_pos_bias
|
|
157
|
+
|
|
158
|
+
attn = attn.softmax(dim=-1)
|
|
159
|
+
attn = self.attn_drop(attn)
|
|
160
|
+
|
|
161
|
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
|
162
|
+
x = self.proj(x)
|
|
163
|
+
x = self.proj_drop(x)
|
|
164
|
+
return x
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class Block(nn.Module):
|
|
168
|
+
|
|
169
|
+
def __init__(self,
|
|
170
|
+
dim,
|
|
171
|
+
num_heads,
|
|
172
|
+
mlp_ratio=4.,
|
|
173
|
+
qkv_bias=False,
|
|
174
|
+
qk_scale=None,
|
|
175
|
+
drop=0.,
|
|
176
|
+
attn_drop=0.,
|
|
177
|
+
drop_path=0.,
|
|
178
|
+
init_values=None,
|
|
179
|
+
act_layer=nn.GELU,
|
|
180
|
+
norm_layer=nn.LayerNorm,
|
|
181
|
+
window_size=None,
|
|
182
|
+
attn_head_dim=None):
|
|
183
|
+
super().__init__()
|
|
184
|
+
self.norm1 = norm_layer(dim)
|
|
185
|
+
self.attn = Attention(
|
|
186
|
+
dim,
|
|
187
|
+
num_heads=num_heads,
|
|
188
|
+
qkv_bias=qkv_bias,
|
|
189
|
+
qk_scale=qk_scale,
|
|
190
|
+
attn_drop=attn_drop,
|
|
191
|
+
proj_drop=drop,
|
|
192
|
+
window_size=window_size,
|
|
193
|
+
attn_head_dim=attn_head_dim)
|
|
194
|
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
195
|
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
196
|
+
self.norm2 = norm_layer(dim)
|
|
197
|
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
198
|
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
199
|
+
|
|
200
|
+
if init_values is not None and init_values > 0:
|
|
201
|
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
|
202
|
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
|
|
203
|
+
else:
|
|
204
|
+
self.gamma_1, self.gamma_2 = None, None
|
|
205
|
+
|
|
206
|
+
def forward(self, x, rel_pos_bias=None):
|
|
207
|
+
if self.gamma_1 is None:
|
|
208
|
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
|
209
|
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
210
|
+
else:
|
|
211
|
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
|
212
|
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
|
213
|
+
return x
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
class PatchEmbed(nn.Module):
|
|
217
|
+
""" Image to Patch Embedding
|
|
218
|
+
"""
|
|
219
|
+
|
|
220
|
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
|
221
|
+
super().__init__()
|
|
222
|
+
img_size = to_2tuple(img_size)
|
|
223
|
+
patch_size = to_2tuple(patch_size)
|
|
224
|
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
|
225
|
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
|
226
|
+
self.img_size = img_size
|
|
227
|
+
self.patch_size = patch_size
|
|
228
|
+
self.num_patches = num_patches
|
|
229
|
+
|
|
230
|
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
231
|
+
|
|
232
|
+
def forward(self, x, **kwargs):
|
|
233
|
+
B, C, H, W = x.shape
|
|
234
|
+
# FIXME look at relaxing size constraints
|
|
235
|
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
|
236
|
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
237
|
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
|
238
|
+
return x
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
class RelativePositionBias(nn.Module):
|
|
242
|
+
|
|
243
|
+
def __init__(self, window_size, num_heads):
|
|
244
|
+
super().__init__()
|
|
245
|
+
self.window_size = window_size
|
|
246
|
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
247
|
+
self.relative_position_bias_table = nn.Parameter(torch.zeros(self.num_relative_distance,
|
|
248
|
+
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
|
249
|
+
# cls to token & token 2 cls & cls to cls
|
|
250
|
+
|
|
251
|
+
# get pair-wise relative position index for each token inside the window
|
|
252
|
+
coords_h = torch.arange(window_size[0])
|
|
253
|
+
coords_w = torch.arange(window_size[1])
|
|
254
|
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
|
255
|
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
256
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
|
257
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
258
|
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
|
259
|
+
relative_coords[:, :, 1] += window_size[1] - 1
|
|
260
|
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
|
261
|
+
relative_position_index = \
|
|
262
|
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
|
263
|
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
264
|
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
|
265
|
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
|
266
|
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
|
267
|
+
|
|
268
|
+
self.register_buffer('relative_position_index', relative_position_index)
|
|
269
|
+
|
|
270
|
+
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
|
271
|
+
|
|
272
|
+
def forward(self):
|
|
273
|
+
relative_position_bias = \
|
|
274
|
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
|
275
|
+
self.window_size[0] * self.window_size[1] + 1,
|
|
276
|
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
|
277
|
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
class VisionTransformer(nn.Module):
|
|
281
|
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
282
|
+
"""
|
|
283
|
+
|
|
284
|
+
def __init__(self,
|
|
285
|
+
img_size=224,
|
|
286
|
+
patch_size=16,
|
|
287
|
+
in_chans=3,
|
|
288
|
+
num_classes=1000,
|
|
289
|
+
embed_dim=768,
|
|
290
|
+
depth=12,
|
|
291
|
+
num_heads=12,
|
|
292
|
+
mlp_ratio=4.,
|
|
293
|
+
qkv_bias=False,
|
|
294
|
+
qk_scale=None,
|
|
295
|
+
drop_rate=0.,
|
|
296
|
+
attn_drop_rate=0.,
|
|
297
|
+
drop_path_rate=0.,
|
|
298
|
+
norm_layer=nn.LayerNorm,
|
|
299
|
+
init_values=None,
|
|
300
|
+
use_abs_pos_emb=True,
|
|
301
|
+
use_rel_pos_bias=False,
|
|
302
|
+
use_shared_rel_pos_bias=False,
|
|
303
|
+
use_mean_pooling=True,
|
|
304
|
+
init_scale=0.001,
|
|
305
|
+
use_checkpoint=False):
|
|
306
|
+
super().__init__()
|
|
307
|
+
self.image_size = img_size
|
|
308
|
+
self.num_classes = num_classes
|
|
309
|
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
310
|
+
|
|
311
|
+
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
312
|
+
num_patches = self.patch_embed.num_patches
|
|
313
|
+
|
|
314
|
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
315
|
+
if use_abs_pos_emb:
|
|
316
|
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
|
317
|
+
else:
|
|
318
|
+
self.pos_embed = None
|
|
319
|
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
320
|
+
|
|
321
|
+
if use_shared_rel_pos_bias:
|
|
322
|
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
|
323
|
+
else:
|
|
324
|
+
self.rel_pos_bias = None
|
|
325
|
+
self.use_checkpoint = use_checkpoint
|
|
326
|
+
|
|
327
|
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
328
|
+
self.use_rel_pos_bias = use_rel_pos_bias
|
|
329
|
+
self.blocks = nn.ModuleList([
|
|
330
|
+
Block(
|
|
331
|
+
dim=embed_dim,
|
|
332
|
+
num_heads=num_heads,
|
|
333
|
+
mlp_ratio=mlp_ratio,
|
|
334
|
+
qkv_bias=qkv_bias,
|
|
335
|
+
qk_scale=qk_scale,
|
|
336
|
+
drop=drop_rate,
|
|
337
|
+
attn_drop=attn_drop_rate,
|
|
338
|
+
drop_path=dpr[i],
|
|
339
|
+
norm_layer=norm_layer,
|
|
340
|
+
init_values=init_values,
|
|
341
|
+
window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)
|
|
342
|
+
])
|
|
343
|
+
# self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
|
344
|
+
# self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
|
345
|
+
# self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
346
|
+
|
|
347
|
+
if self.pos_embed is not None:
|
|
348
|
+
trunc_normal_(self.pos_embed, std=.02)
|
|
349
|
+
trunc_normal_(self.cls_token, std=.02)
|
|
350
|
+
# trunc_normal_(self.mask_token, std=.02)
|
|
351
|
+
# if isinstance(self.head, nn.Linear):
|
|
352
|
+
# trunc_normal_(self.head.weight, std=.02)
|
|
353
|
+
self.apply(self._init_weights)
|
|
354
|
+
self.fix_init_weight()
|
|
355
|
+
# if isinstance(self.head, nn.Linear):
|
|
356
|
+
# self.head.weight.data.mul_(init_scale)
|
|
357
|
+
# self.head.bias.data.mul_(init_scale)
|
|
358
|
+
|
|
359
|
+
def fix_init_weight(self):
|
|
360
|
+
|
|
361
|
+
def rescale(param, layer_id):
|
|
362
|
+
param.div_(math.sqrt(2.0 * layer_id))
|
|
363
|
+
|
|
364
|
+
for layer_id, layer in enumerate(self.blocks):
|
|
365
|
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
|
366
|
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
|
367
|
+
|
|
368
|
+
def _init_weights(self, m):
|
|
369
|
+
if isinstance(m, nn.Linear):
|
|
370
|
+
trunc_normal_(m.weight, std=.02)
|
|
371
|
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
372
|
+
nn.init.constant_(m.bias, 0)
|
|
373
|
+
elif isinstance(m, nn.LayerNorm):
|
|
374
|
+
nn.init.constant_(m.bias, 0)
|
|
375
|
+
nn.init.constant_(m.weight, 1.0)
|
|
376
|
+
|
|
377
|
+
def get_classifier(self):
|
|
378
|
+
return self.head
|
|
379
|
+
|
|
380
|
+
def reset_classifier(self, num_classes, global_pool=''):
|
|
381
|
+
self.num_classes = num_classes
|
|
382
|
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
383
|
+
|
|
384
|
+
def forward_features(self, x):
|
|
385
|
+
x = self.patch_embed(x)
|
|
386
|
+
batch_size, seq_len, _ = x.size()
|
|
387
|
+
|
|
388
|
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
389
|
+
x = torch.cat((cls_tokens, x), dim=1)
|
|
390
|
+
if self.pos_embed is not None:
|
|
391
|
+
x = x + self.pos_embed
|
|
392
|
+
x = self.pos_drop(x)
|
|
393
|
+
|
|
394
|
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
|
395
|
+
for blk in self.blocks:
|
|
396
|
+
if self.use_checkpoint:
|
|
397
|
+
x = checkpoint.checkpoint(blk, x, rel_pos_bias, use_reentrant=False)
|
|
398
|
+
else:
|
|
399
|
+
x = blk(x, rel_pos_bias)
|
|
400
|
+
return x
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
# x = self.norm(x)
|
|
404
|
+
|
|
405
|
+
# if self.fc_norm is not None:
|
|
406
|
+
# t = x[:, 1:, :]
|
|
407
|
+
# return self.fc_norm(t.mean(1))
|
|
408
|
+
# else:
|
|
409
|
+
# return x[:, 0]
|
|
410
|
+
|
|
411
|
+
def forward(self, x):
|
|
412
|
+
x = self.forward_features(x)
|
|
413
|
+
# x = self.head(x)
|
|
414
|
+
return x
|
|
415
|
+
|
|
416
|
+
def get_intermediate_layers(self, x):
|
|
417
|
+
x = self.patch_embed(x)
|
|
418
|
+
batch_size, seq_len, _ = x.size()
|
|
419
|
+
|
|
420
|
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
421
|
+
x = torch.cat((cls_tokens, x), dim=1)
|
|
422
|
+
if self.pos_embed is not None:
|
|
423
|
+
x = x + self.pos_embed
|
|
424
|
+
x = self.pos_drop(x)
|
|
425
|
+
|
|
426
|
+
features = []
|
|
427
|
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
|
428
|
+
for blk in self.blocks:
|
|
429
|
+
x = blk(x, rel_pos_bias)
|
|
430
|
+
features.append(x)
|
|
431
|
+
|
|
432
|
+
return features
|
|
433
|
+
|
|
434
|
+
|
|
435
|
+
def interpolate_pos_embed(model, checkpoint_model):
|
|
436
|
+
if 'pos_embed' in checkpoint_model:
|
|
437
|
+
pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
|
|
438
|
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
|
439
|
+
num_patches = model.patch_embed.num_patches
|
|
440
|
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
|
441
|
+
# height (== width) for the checkpoint position embedding
|
|
442
|
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
|
|
443
|
+
# height (== width) for the new position embedding
|
|
444
|
+
new_size = int(num_patches**0.5)
|
|
445
|
+
# class_token and dist_token are kept unchanged
|
|
446
|
+
if orig_size != new_size:
|
|
447
|
+
print('Position interpolate from %dx%d to %dx%d' % (orig_size, orig_size, new_size, new_size))
|
|
448
|
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
|
449
|
+
# only the position tokens are interpolated
|
|
450
|
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
|
451
|
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
|
452
|
+
pos_tokens = torch.nn.functional.interpolate(
|
|
453
|
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
|
454
|
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
|
455
|
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
|
456
|
+
checkpoint_model['pos_embed'] = new_pos_embed
|
|
457
|
+
|
|
458
|
+
|
|
459
|
+
def convert_weights_to_fp16(model: nn.Module):
|
|
460
|
+
"""Convert applicable model parameters to fp16"""
|
|
461
|
+
|
|
462
|
+
def _convert_weights_to_fp16(l):
|
|
463
|
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
|
464
|
+
l.weight.data = l.weight.data.half()
|
|
465
|
+
if l.bias is not None:
|
|
466
|
+
l.bias.data = l.bias.data.half()
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+
# if isinstance(l, (nn.MultiheadAttention, Attention)):
|
|
470
|
+
# for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
|
471
|
+
# tensor = getattr(l, attr)
|
|
472
|
+
# if tensor is not None:
|
|
473
|
+
# tensor.data = tensor.data.half()
|
|
474
|
+
|
|
475
|
+
model.apply(_convert_weights_to_fp16)
|
|
476
|
+
|
|
477
|
+
|
|
478
|
+
def create_eva_vit_g(img_size=224, drop_path_rate=0.4, use_checkpoint=False, precision='fp16'):
|
|
479
|
+
model = VisionTransformer(
|
|
480
|
+
img_size=img_size,
|
|
481
|
+
patch_size=14,
|
|
482
|
+
use_mean_pooling=False,
|
|
483
|
+
embed_dim=1408,
|
|
484
|
+
depth=39,
|
|
485
|
+
num_heads=1408 // 88,
|
|
486
|
+
mlp_ratio=4.3637,
|
|
487
|
+
qkv_bias=True,
|
|
488
|
+
drop_path_rate=drop_path_rate,
|
|
489
|
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
490
|
+
use_checkpoint=use_checkpoint,
|
|
491
|
+
)
|
|
492
|
+
url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth'
|
|
493
|
+
cached_file = download_cached_file(url, check_hash=False, progress=True)
|
|
494
|
+
state_dict = torch.load(cached_file, map_location='cpu')
|
|
495
|
+
interpolate_pos_embed(model, state_dict)
|
|
496
|
+
|
|
497
|
+
incompatible_keys = model.load_state_dict(state_dict, strict=False)
|
|
498
|
+
# print(incompatible_keys)
|
|
499
|
+
|
|
500
|
+
if precision == 'fp16':
|
|
501
|
+
# model.to("cuda")
|
|
502
|
+
convert_weights_to_fp16(model)
|
|
503
|
+
return model
|