evalscope 0.14.0__py3-none-any.whl → 0.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +1 -1
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +16 -9
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +4 -1
- evalscope/benchmarks/live_code_bench/testing_util.py +6 -3
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +3 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +16 -4
- evalscope/config.py +7 -3
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +2 -2
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/utils/benchmark_util.py +2 -2
- evalscope/perf/utils/db_util.py +8 -2
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +117 -67
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +3 -3
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +12 -4
- evalscope/version.py +2 -2
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/METADATA +18 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/RECORD +175 -63
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_run.py +11 -5
- tests/perf/test_perf.py +2 -1
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/LICENSE +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/WHEEL +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.14.0.dist-info → evalscope-0.15.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,364 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2023, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
"""
|
|
7
|
+
import logging
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn as nn
|
|
10
|
+
from torch.cuda.amp import autocast as autocast
|
|
11
|
+
from transformers import T5TokenizerFast
|
|
12
|
+
|
|
13
|
+
from ...common.registry import registry
|
|
14
|
+
from .blip2 import Blip2Base, disabled_train
|
|
15
|
+
from .modeling_t5 import T5Config, T5ForConditionalGeneration
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@registry.register_model('blip2_t5')
|
|
19
|
+
class Blip2T5(Blip2Base):
|
|
20
|
+
"""
|
|
21
|
+
BLIP2 T5 model.
|
|
22
|
+
Supported model types:
|
|
23
|
+
- pretrain_flant5xl: pretrained model with FlanT5-XL
|
|
24
|
+
- pretrain_flant5xl_vitL: pretrained model with FlanT5-XL
|
|
25
|
+
- pretrain_flant5xxl: pretrained model with FlanT5-XXL
|
|
26
|
+
- caption_coco_flant5xl: fintuned image captioning model with FlanT5-XL
|
|
27
|
+
Usage:
|
|
28
|
+
>>> from lavis.models import load_model
|
|
29
|
+
>>> model = load_model("blip2_t5", "pretrain_flant5xl")
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
33
|
+
'pretrain_flant5xl':
|
|
34
|
+
'configs/models/blip2/blip2_pretrain_flant5xl.yaml',
|
|
35
|
+
'pretrain_flant5xl_vitL':
|
|
36
|
+
'configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml',
|
|
37
|
+
'pretrain_flant5xxl':
|
|
38
|
+
'configs/models/blip2/blip2_pretrain_flant5xxl.yaml',
|
|
39
|
+
'caption_coco_flant5xl':
|
|
40
|
+
'configs/models/blip2/blip2_caption_flant5xl.yaml',
|
|
41
|
+
# Added by ZQ
|
|
42
|
+
'pretrain_flant5xl_iter_80k_total_100k_prefix':
|
|
43
|
+
'configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml',
|
|
44
|
+
'pretrain_flant5xl_iter_80k_total_100k_no_prefix':
|
|
45
|
+
'configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml',
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
vit_model='eva_clip_g',
|
|
51
|
+
img_size=224,
|
|
52
|
+
drop_path_rate=0,
|
|
53
|
+
use_grad_checkpoint=False,
|
|
54
|
+
vit_precision='fp16',
|
|
55
|
+
freeze_vit=True,
|
|
56
|
+
num_query_token=32,
|
|
57
|
+
t5_model='google/flan-t5-xl',
|
|
58
|
+
prompt='',
|
|
59
|
+
max_txt_len=32,
|
|
60
|
+
apply_lemmatizer=False,
|
|
61
|
+
):
|
|
62
|
+
"""
|
|
63
|
+
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
|
|
64
|
+
"""
|
|
65
|
+
super().__init__()
|
|
66
|
+
|
|
67
|
+
self.tokenizer = self.init_tokenizer()
|
|
68
|
+
|
|
69
|
+
self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate,
|
|
70
|
+
use_grad_checkpoint, vit_precision)
|
|
71
|
+
if freeze_vit:
|
|
72
|
+
for name, param in self.visual_encoder.named_parameters():
|
|
73
|
+
param.requires_grad = False
|
|
74
|
+
self.visual_encoder = self.visual_encoder.eval()
|
|
75
|
+
self.visual_encoder.train = disabled_train
|
|
76
|
+
logging.info('freeze vision encoder')
|
|
77
|
+
|
|
78
|
+
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features)
|
|
79
|
+
self.Qformer.cls = None
|
|
80
|
+
self.Qformer.bert.embeddings.word_embeddings = None
|
|
81
|
+
self.Qformer.bert.embeddings.position_embeddings = None
|
|
82
|
+
for layer in self.Qformer.bert.encoder.layer:
|
|
83
|
+
layer.output = None
|
|
84
|
+
layer.intermediate = None
|
|
85
|
+
|
|
86
|
+
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model)
|
|
87
|
+
t5_config = T5Config.from_pretrained(t5_model)
|
|
88
|
+
t5_config.dense_act_fn = 'gelu'
|
|
89
|
+
self.t5_model = T5ForConditionalGeneration.from_pretrained(t5_model, config=t5_config)
|
|
90
|
+
|
|
91
|
+
for name, param in self.t5_model.named_parameters():
|
|
92
|
+
param.requires_grad = False
|
|
93
|
+
param.data = param.data.bfloat16()
|
|
94
|
+
|
|
95
|
+
self.t5_proj = nn.Linear(self.Qformer.config.hidden_size, self.t5_model.config.hidden_size)
|
|
96
|
+
|
|
97
|
+
self.max_txt_len = max_txt_len
|
|
98
|
+
self.prompt = prompt
|
|
99
|
+
|
|
100
|
+
self._apply_lemmatizer = apply_lemmatizer
|
|
101
|
+
self._lemmatizer = None
|
|
102
|
+
|
|
103
|
+
def forward(self, samples):
|
|
104
|
+
image = samples['image']
|
|
105
|
+
|
|
106
|
+
with self.maybe_autocast():
|
|
107
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
108
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
109
|
+
|
|
110
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
111
|
+
query_output = self.Qformer.bert(
|
|
112
|
+
query_embeds=query_tokens,
|
|
113
|
+
encoder_hidden_states=image_embeds,
|
|
114
|
+
encoder_attention_mask=image_atts,
|
|
115
|
+
return_dict=True,
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
|
|
119
|
+
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
120
|
+
|
|
121
|
+
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
122
|
+
input_tokens = self.t5_tokenizer(
|
|
123
|
+
samples['text_input'],
|
|
124
|
+
padding='longest',
|
|
125
|
+
truncation=True,
|
|
126
|
+
max_length=self.max_txt_len,
|
|
127
|
+
return_tensors='pt',
|
|
128
|
+
).to(image.device)
|
|
129
|
+
output_tokens = self.t5_tokenizer(
|
|
130
|
+
samples['text_output'],
|
|
131
|
+
padding='longest',
|
|
132
|
+
truncation=True,
|
|
133
|
+
max_length=self.max_txt_len,
|
|
134
|
+
return_tensors='pt',
|
|
135
|
+
).to(image.device)
|
|
136
|
+
|
|
137
|
+
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
138
|
+
|
|
139
|
+
targets = output_tokens.input_ids.masked_fill(output_tokens.input_ids == self.t5_tokenizer.pad_token_id,
|
|
140
|
+
-100)
|
|
141
|
+
|
|
142
|
+
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
143
|
+
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
144
|
+
|
|
145
|
+
outputs = self.t5_model(
|
|
146
|
+
inputs_embeds=inputs_embeds,
|
|
147
|
+
attention_mask=encoder_atts,
|
|
148
|
+
decoder_attention_mask=output_tokens.attention_mask,
|
|
149
|
+
return_dict=True,
|
|
150
|
+
labels=targets,
|
|
151
|
+
)
|
|
152
|
+
loss = outputs.loss
|
|
153
|
+
|
|
154
|
+
return {'loss': loss}
|
|
155
|
+
|
|
156
|
+
@torch.no_grad()
|
|
157
|
+
def generate(
|
|
158
|
+
self,
|
|
159
|
+
samples,
|
|
160
|
+
use_nucleus_sampling=False,
|
|
161
|
+
num_beams=5,
|
|
162
|
+
max_length=30,
|
|
163
|
+
min_length=1,
|
|
164
|
+
top_p=0.9,
|
|
165
|
+
repetition_penalty=1.0,
|
|
166
|
+
length_penalty=1.0,
|
|
167
|
+
num_captions=1,
|
|
168
|
+
temperature=1,
|
|
169
|
+
):
|
|
170
|
+
"""
|
|
171
|
+
Args:
|
|
172
|
+
samples (dict): A dictionary containing the following keys:
|
|
173
|
+
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
|
|
174
|
+
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
|
|
175
|
+
num_beams (int): Number of beams for beam search. 1 means no beam search.
|
|
176
|
+
max_length (int): The maximum length of the sequence to be generated.
|
|
177
|
+
min_length (int): The minimum length of the sequence to be generated.
|
|
178
|
+
top_p (float): The cumulative probability for nucleus sampling.
|
|
179
|
+
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
|
|
180
|
+
num_captions (int): Number of captions to be generated for each image.
|
|
181
|
+
Returns:
|
|
182
|
+
captions (list): A list of strings of length batch_size * num_captions.
|
|
183
|
+
"""
|
|
184
|
+
image = samples['image']
|
|
185
|
+
|
|
186
|
+
with self.maybe_autocast():
|
|
187
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
188
|
+
image_embeds = image_embeds.float()
|
|
189
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
190
|
+
|
|
191
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
192
|
+
query_output = self.Qformer.bert(
|
|
193
|
+
query_embeds=query_tokens,
|
|
194
|
+
encoder_hidden_states=image_embeds,
|
|
195
|
+
encoder_attention_mask=image_atts,
|
|
196
|
+
return_dict=True,
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
|
|
200
|
+
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
201
|
+
|
|
202
|
+
if 'prompt' in samples.keys():
|
|
203
|
+
prompt = samples['prompt']
|
|
204
|
+
else:
|
|
205
|
+
prompt = self.prompt
|
|
206
|
+
|
|
207
|
+
if isinstance(prompt, str):
|
|
208
|
+
prompt = [prompt] * image.size(0)
|
|
209
|
+
else:
|
|
210
|
+
assert len(prompt) == image.size(0), 'The number of prompts must be equal to the batch size.'
|
|
211
|
+
|
|
212
|
+
input_tokens = self.t5_tokenizer(prompt, padding='longest', return_tensors='pt').to(image.device)
|
|
213
|
+
|
|
214
|
+
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
215
|
+
|
|
216
|
+
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
217
|
+
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
218
|
+
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
219
|
+
|
|
220
|
+
outputs = self.t5_model.generate(
|
|
221
|
+
inputs_embeds=inputs_embeds,
|
|
222
|
+
attention_mask=encoder_atts,
|
|
223
|
+
do_sample=use_nucleus_sampling,
|
|
224
|
+
top_p=top_p,
|
|
225
|
+
temperature=temperature,
|
|
226
|
+
num_beams=num_beams,
|
|
227
|
+
max_new_tokens=max_length,
|
|
228
|
+
min_length=min_length,
|
|
229
|
+
repetition_penalty=repetition_penalty,
|
|
230
|
+
length_penalty=length_penalty,
|
|
231
|
+
num_return_sequences=num_captions,
|
|
232
|
+
)
|
|
233
|
+
output_text = self.t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
234
|
+
|
|
235
|
+
return output_text
|
|
236
|
+
|
|
237
|
+
def predict_answers(self,
|
|
238
|
+
samples,
|
|
239
|
+
num_beams=5,
|
|
240
|
+
inference_method='generate',
|
|
241
|
+
max_len=10,
|
|
242
|
+
min_len=1,
|
|
243
|
+
num_ans_candidates=128,
|
|
244
|
+
answer_list=None,
|
|
245
|
+
prompt='',
|
|
246
|
+
length_penalty=-1,
|
|
247
|
+
**kwargs):
|
|
248
|
+
image = samples['image']
|
|
249
|
+
with self.maybe_autocast():
|
|
250
|
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
|
251
|
+
image_embeds = image_embeds.float()
|
|
252
|
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
|
|
253
|
+
|
|
254
|
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
255
|
+
query_output = self.Qformer.bert(
|
|
256
|
+
query_embeds=query_tokens,
|
|
257
|
+
encoder_hidden_states=image_embeds,
|
|
258
|
+
encoder_attention_mask=image_atts,
|
|
259
|
+
return_dict=True,
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
inputs_t5 = self.t5_proj(query_output.last_hidden_state)
|
|
263
|
+
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
|
264
|
+
|
|
265
|
+
if isinstance(samples['text_input'], str):
|
|
266
|
+
samples['text_input'] = [samples['text_input']]
|
|
267
|
+
if prompt:
|
|
268
|
+
text_input = [prompt.format(question) for question in samples['text_input']]
|
|
269
|
+
else:
|
|
270
|
+
text_input = samples['text_input']
|
|
271
|
+
|
|
272
|
+
input_tokens = self.t5_tokenizer(text_input, padding='longest', return_tensors='pt').to(image.device)
|
|
273
|
+
|
|
274
|
+
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
|
275
|
+
|
|
276
|
+
with self.maybe_autocast(dtype=torch.bfloat16):
|
|
277
|
+
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
|
278
|
+
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
|
279
|
+
|
|
280
|
+
outputs = self.t5_model.generate(
|
|
281
|
+
inputs_embeds=inputs_embeds,
|
|
282
|
+
attention_mask=encoder_atts,
|
|
283
|
+
do_sample=False,
|
|
284
|
+
num_beams=num_beams,
|
|
285
|
+
max_new_tokens=max_len,
|
|
286
|
+
min_length=min_len,
|
|
287
|
+
length_penalty=length_penalty,
|
|
288
|
+
)
|
|
289
|
+
output_text = self.t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
290
|
+
|
|
291
|
+
if self._apply_lemmatizer:
|
|
292
|
+
output_text = self._lemmatize(output_text)
|
|
293
|
+
|
|
294
|
+
return output_text
|
|
295
|
+
|
|
296
|
+
def _lemmatize(self, answers):
|
|
297
|
+
|
|
298
|
+
def apply(answer):
|
|
299
|
+
doc = self.lemmatizer(answer)
|
|
300
|
+
|
|
301
|
+
words = []
|
|
302
|
+
for token in doc:
|
|
303
|
+
if token.pos_ in ['NOUN', 'VERB']:
|
|
304
|
+
words.append(token.lemma_)
|
|
305
|
+
else:
|
|
306
|
+
words.append(token.text)
|
|
307
|
+
answer = ' '.join(words)
|
|
308
|
+
|
|
309
|
+
return answer
|
|
310
|
+
|
|
311
|
+
return [apply(answer) for answer in answers]
|
|
312
|
+
|
|
313
|
+
@property
|
|
314
|
+
def lemmatizer(self):
|
|
315
|
+
if self._lemmatizer is None:
|
|
316
|
+
try:
|
|
317
|
+
import spacy
|
|
318
|
+
|
|
319
|
+
self._lemmatizer = spacy.load('en_core_web_sm')
|
|
320
|
+
except ImportError:
|
|
321
|
+
logging.error("""
|
|
322
|
+
Please install spacy and en_core_web_sm model to apply lemmatization.
|
|
323
|
+
python -m spacy download en_core_web_sm
|
|
324
|
+
OR
|
|
325
|
+
import spacy.cli
|
|
326
|
+
spacy.cli.download("en_core_web_sm")
|
|
327
|
+
""")
|
|
328
|
+
exit(1)
|
|
329
|
+
|
|
330
|
+
return self._lemmatizer
|
|
331
|
+
|
|
332
|
+
@classmethod
|
|
333
|
+
def from_config(cls, cfg):
|
|
334
|
+
vit_model = cfg.get('vit_model', 'eva_clip_g')
|
|
335
|
+
img_size = cfg.get('image_size')
|
|
336
|
+
num_query_token = cfg.get('num_query_token')
|
|
337
|
+
t5_model = cfg.get('t5_model')
|
|
338
|
+
|
|
339
|
+
drop_path_rate = cfg.get('drop_path_rate', 0)
|
|
340
|
+
use_grad_checkpoint = cfg.get('use_grad_checkpoint', False)
|
|
341
|
+
vit_precision = cfg.get('vit_precision', 'fp16')
|
|
342
|
+
freeze_vit = cfg.get('freeze_vit', True)
|
|
343
|
+
|
|
344
|
+
prompt = cfg.get('prompt', '')
|
|
345
|
+
max_txt_len = cfg.get('max_txt_len', 32)
|
|
346
|
+
|
|
347
|
+
apply_lemmatizer = cfg.get('apply_lemmatizer', False)
|
|
348
|
+
|
|
349
|
+
model = cls(
|
|
350
|
+
vit_model=vit_model,
|
|
351
|
+
img_size=img_size,
|
|
352
|
+
drop_path_rate=drop_path_rate,
|
|
353
|
+
use_grad_checkpoint=use_grad_checkpoint,
|
|
354
|
+
vit_precision=vit_precision,
|
|
355
|
+
freeze_vit=freeze_vit,
|
|
356
|
+
num_query_token=num_query_token,
|
|
357
|
+
t5_model=t5_model,
|
|
358
|
+
prompt=prompt,
|
|
359
|
+
max_txt_len=max_txt_len,
|
|
360
|
+
apply_lemmatizer=apply_lemmatizer,
|
|
361
|
+
)
|
|
362
|
+
model.load_checkpoint_from_config(cfg)
|
|
363
|
+
|
|
364
|
+
return model
|