evalscope 0.13.2__py3-none-any.whl → 0.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/backend/rag_eval/__init__.py +1 -1
- evalscope/backend/rag_eval/backend_manager.py +21 -5
- evalscope/backend/rag_eval/cmteb/arguments.py +10 -0
- evalscope/backend/rag_eval/ragas/arguments.py +0 -1
- evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +7 -2
- evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +0 -5
- evalscope/backend/rag_eval/utils/embedding.py +49 -3
- evalscope/backend/rag_eval/utils/llm.py +4 -4
- evalscope/backend/vlm_eval_kit/backend_manager.py +4 -2
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +2 -2
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +21 -10
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/general_qa/general_qa_adapter.py +1 -1
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +1 -1
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +5 -4
- evalscope/benchmarks/live_code_bench/testing_util.py +369 -550
- evalscope/benchmarks/maritime_bench/__init__.py +0 -0
- evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +79 -0
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +8 -8
- evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +1 -1
- evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +1 -1
- evalscope/benchmarks/musr/musr_adapter.py +1 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +20 -6
- evalscope/config.py +8 -4
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +2 -2
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/arguments.py +24 -5
- evalscope/perf/benchmark.py +28 -42
- evalscope/perf/http_client.py +2 -3
- evalscope/perf/plugin/api/custom_api.py +1 -1
- evalscope/perf/plugin/api/openai_api.py +2 -2
- evalscope/perf/plugin/datasets/custom.py +4 -1
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/plugin/datasets/line_by_line.py +4 -1
- evalscope/perf/plugin/datasets/longalpaca.py +4 -1
- evalscope/perf/plugin/datasets/openqa.py +4 -1
- evalscope/perf/plugin/datasets/random_dataset.py +13 -6
- evalscope/perf/utils/benchmark_util.py +14 -8
- evalscope/perf/utils/db_util.py +9 -3
- evalscope/perf/utils/log_utils.py +41 -0
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +128 -78
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +10 -3
- evalscope/summarizer.py +2 -1
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +48 -29
- evalscope/version.py +2 -2
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/METADATA +37 -15
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/RECORD +209 -96
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_all.py +4 -4
- tests/cli/test_collection.py +2 -1
- tests/cli/test_run.py +19 -12
- tests/perf/test_perf.py +3 -3
- tests/rag/test_clip_benchmark.py +0 -1
- tests/rag/test_mteb.py +37 -8
- tests/rag/test_ragas.py +29 -26
- tests/vlm/test_vlmeval.py +37 -1
- evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
- evalscope/benchmarks/live_code_bench/execute_utils.py +0 -267
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/LICENSE +0 -0
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/WHEEL +0 -0
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,473 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2022, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
|
|
7
|
+
Based on timm code base
|
|
8
|
+
https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import math
|
|
12
|
+
import torch
|
|
13
|
+
import torch.nn as nn
|
|
14
|
+
import torch.nn.functional as F
|
|
15
|
+
from functools import partial
|
|
16
|
+
|
|
17
|
+
try:
|
|
18
|
+
from timm.layers import DropPath, PatchEmbed, trunc_normal_
|
|
19
|
+
from timm.models import adapt_input_conv
|
|
20
|
+
except ImportError:
|
|
21
|
+
pass
|
|
22
|
+
|
|
23
|
+
from ..models.base_model import BaseEncoder
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Mlp(nn.Module):
|
|
27
|
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
|
28
|
+
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
in_features,
|
|
32
|
+
hidden_features=None,
|
|
33
|
+
out_features=None,
|
|
34
|
+
act_layer=nn.GELU,
|
|
35
|
+
drop=0.0,
|
|
36
|
+
):
|
|
37
|
+
super().__init__()
|
|
38
|
+
out_features = out_features or in_features
|
|
39
|
+
hidden_features = hidden_features or in_features
|
|
40
|
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
41
|
+
self.act = act_layer()
|
|
42
|
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
43
|
+
self.drop = nn.Dropout(drop)
|
|
44
|
+
|
|
45
|
+
def forward(self, x):
|
|
46
|
+
x = self.fc1(x)
|
|
47
|
+
x = self.act(x)
|
|
48
|
+
x = self.drop(x)
|
|
49
|
+
x = self.fc2(x)
|
|
50
|
+
x = self.drop(x)
|
|
51
|
+
return x
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class Attention(nn.Module):
|
|
55
|
+
|
|
56
|
+
def __init__(
|
|
57
|
+
self,
|
|
58
|
+
dim,
|
|
59
|
+
num_heads=8,
|
|
60
|
+
qkv_bias=False,
|
|
61
|
+
qk_scale=None,
|
|
62
|
+
attn_drop=0.0,
|
|
63
|
+
proj_drop=0.0,
|
|
64
|
+
):
|
|
65
|
+
super().__init__()
|
|
66
|
+
self.num_heads = num_heads
|
|
67
|
+
head_dim = dim // num_heads
|
|
68
|
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
|
69
|
+
self.scale = qk_scale or head_dim**-0.5
|
|
70
|
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
71
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
|
72
|
+
self.proj = nn.Linear(dim, dim)
|
|
73
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
|
74
|
+
self.attn_gradients = None
|
|
75
|
+
self.attention_map = None
|
|
76
|
+
|
|
77
|
+
def save_attn_gradients(self, attn_gradients):
|
|
78
|
+
self.attn_gradients = attn_gradients
|
|
79
|
+
|
|
80
|
+
def get_attn_gradients(self):
|
|
81
|
+
return self.attn_gradients
|
|
82
|
+
|
|
83
|
+
def save_attention_map(self, attention_map):
|
|
84
|
+
self.attention_map = attention_map
|
|
85
|
+
|
|
86
|
+
def get_attention_map(self):
|
|
87
|
+
return self.attention_map
|
|
88
|
+
|
|
89
|
+
def forward(self, x, register_hook=False):
|
|
90
|
+
B, N, C = x.shape
|
|
91
|
+
qkv = (self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4))
|
|
92
|
+
q, k, v = (
|
|
93
|
+
qkv[0],
|
|
94
|
+
qkv[1],
|
|
95
|
+
qkv[2],
|
|
96
|
+
) # make torchscript happy (cannot use tensor as tuple)
|
|
97
|
+
|
|
98
|
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
99
|
+
attn = attn.softmax(dim=-1)
|
|
100
|
+
attn = self.attn_drop(attn)
|
|
101
|
+
|
|
102
|
+
if register_hook:
|
|
103
|
+
self.save_attention_map(attn)
|
|
104
|
+
attn.register_hook(self.save_attn_gradients)
|
|
105
|
+
|
|
106
|
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
107
|
+
x = self.proj(x)
|
|
108
|
+
x = self.proj_drop(x)
|
|
109
|
+
return x
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
class Block(nn.Module):
|
|
113
|
+
|
|
114
|
+
def __init__(
|
|
115
|
+
self,
|
|
116
|
+
dim,
|
|
117
|
+
num_heads,
|
|
118
|
+
mlp_ratio=4.0,
|
|
119
|
+
qkv_bias=False,
|
|
120
|
+
qk_scale=None,
|
|
121
|
+
drop=0.0,
|
|
122
|
+
attn_drop=0.0,
|
|
123
|
+
drop_path=0.0,
|
|
124
|
+
act_layer=nn.GELU,
|
|
125
|
+
norm_layer=nn.LayerNorm,
|
|
126
|
+
use_grad_checkpointing=False,
|
|
127
|
+
):
|
|
128
|
+
super().__init__()
|
|
129
|
+
self.norm1 = norm_layer(dim)
|
|
130
|
+
self.attn = Attention(
|
|
131
|
+
dim,
|
|
132
|
+
num_heads=num_heads,
|
|
133
|
+
qkv_bias=qkv_bias,
|
|
134
|
+
qk_scale=qk_scale,
|
|
135
|
+
attn_drop=attn_drop,
|
|
136
|
+
proj_drop=drop,
|
|
137
|
+
)
|
|
138
|
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
139
|
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
140
|
+
self.norm2 = norm_layer(dim)
|
|
141
|
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
142
|
+
self.mlp = Mlp(
|
|
143
|
+
in_features=dim,
|
|
144
|
+
hidden_features=mlp_hidden_dim,
|
|
145
|
+
act_layer=act_layer,
|
|
146
|
+
drop=drop,
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
if use_grad_checkpointing:
|
|
150
|
+
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
|
151
|
+
self.attn = checkpoint_wrapper(self.attn)
|
|
152
|
+
self.mlp = checkpoint_wrapper(self.mlp)
|
|
153
|
+
|
|
154
|
+
def forward(self, x, register_hook=False):
|
|
155
|
+
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
|
156
|
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
157
|
+
return x
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class VisionTransformer(nn.Module):
|
|
161
|
+
"""Vision Transformer
|
|
162
|
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
|
163
|
+
https://arxiv.org/abs/2010.11929
|
|
164
|
+
"""
|
|
165
|
+
|
|
166
|
+
def __init__(
|
|
167
|
+
self,
|
|
168
|
+
img_size=224,
|
|
169
|
+
patch_size=16,
|
|
170
|
+
in_chans=3,
|
|
171
|
+
num_classes=1000,
|
|
172
|
+
embed_dim=768,
|
|
173
|
+
depth=12,
|
|
174
|
+
num_heads=12,
|
|
175
|
+
mlp_ratio=4.0,
|
|
176
|
+
qkv_bias=True,
|
|
177
|
+
qk_scale=None,
|
|
178
|
+
representation_size=None,
|
|
179
|
+
drop_rate=0.0,
|
|
180
|
+
attn_drop_rate=0.0,
|
|
181
|
+
drop_path_rate=0.0,
|
|
182
|
+
norm_layer=None,
|
|
183
|
+
use_grad_checkpointing=False,
|
|
184
|
+
ckpt_layer=0,
|
|
185
|
+
):
|
|
186
|
+
"""
|
|
187
|
+
Args:
|
|
188
|
+
img_size (int, tuple): input image size
|
|
189
|
+
patch_size (int, tuple): patch size
|
|
190
|
+
in_chans (int): number of input channels
|
|
191
|
+
num_classes (int): number of classes for classification head
|
|
192
|
+
embed_dim (int): embedding dimension
|
|
193
|
+
depth (int): depth of transformer
|
|
194
|
+
num_heads (int): number of attention heads
|
|
195
|
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
196
|
+
qkv_bias (bool): enable bias for qkv if True
|
|
197
|
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
198
|
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
|
199
|
+
drop_rate (float): dropout rate
|
|
200
|
+
attn_drop_rate (float): attention dropout rate
|
|
201
|
+
drop_path_rate (float): stochastic depth rate
|
|
202
|
+
norm_layer: (nn.Module): normalization layer
|
|
203
|
+
"""
|
|
204
|
+
super().__init__()
|
|
205
|
+
self.num_features = (self.embed_dim) = embed_dim # num_features for consistency with other models
|
|
206
|
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
207
|
+
|
|
208
|
+
self.patch_embed = PatchEmbed(
|
|
209
|
+
img_size=img_size,
|
|
210
|
+
patch_size=patch_size,
|
|
211
|
+
in_chans=in_chans,
|
|
212
|
+
embed_dim=embed_dim,
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
num_patches = self.patch_embed.num_patches
|
|
216
|
+
|
|
217
|
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
218
|
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
|
219
|
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
220
|
+
|
|
221
|
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
222
|
+
self.blocks = nn.ModuleList([
|
|
223
|
+
Block(
|
|
224
|
+
dim=embed_dim,
|
|
225
|
+
num_heads=num_heads,
|
|
226
|
+
mlp_ratio=mlp_ratio,
|
|
227
|
+
qkv_bias=qkv_bias,
|
|
228
|
+
qk_scale=qk_scale,
|
|
229
|
+
drop=drop_rate,
|
|
230
|
+
attn_drop=attn_drop_rate,
|
|
231
|
+
drop_path=dpr[i],
|
|
232
|
+
norm_layer=norm_layer,
|
|
233
|
+
use_grad_checkpointing=(use_grad_checkpointing and i >= depth - ckpt_layer),
|
|
234
|
+
) for i in range(depth)
|
|
235
|
+
])
|
|
236
|
+
self.norm = norm_layer(embed_dim)
|
|
237
|
+
|
|
238
|
+
trunc_normal_(self.pos_embed, std=0.02)
|
|
239
|
+
trunc_normal_(self.cls_token, std=0.02)
|
|
240
|
+
self.apply(self._init_weights)
|
|
241
|
+
|
|
242
|
+
def _init_weights(self, m):
|
|
243
|
+
if isinstance(m, nn.Linear):
|
|
244
|
+
trunc_normal_(m.weight, std=0.02)
|
|
245
|
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
246
|
+
nn.init.constant_(m.bias, 0)
|
|
247
|
+
elif isinstance(m, nn.LayerNorm):
|
|
248
|
+
nn.init.constant_(m.bias, 0)
|
|
249
|
+
nn.init.constant_(m.weight, 1.0)
|
|
250
|
+
|
|
251
|
+
@torch.jit.ignore
|
|
252
|
+
def no_weight_decay(self):
|
|
253
|
+
return {'pos_embed', 'cls_token'}
|
|
254
|
+
|
|
255
|
+
def forward(self, x, register_blk=-1):
|
|
256
|
+
B = x.shape[0]
|
|
257
|
+
x = self.patch_embed(x)
|
|
258
|
+
|
|
259
|
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
260
|
+
x = torch.cat((cls_tokens, x), dim=1)
|
|
261
|
+
|
|
262
|
+
x = x + self.pos_embed[:, :x.size(1), :]
|
|
263
|
+
x = self.pos_drop(x)
|
|
264
|
+
|
|
265
|
+
for i, blk in enumerate(self.blocks):
|
|
266
|
+
x = blk(x, register_blk == i)
|
|
267
|
+
x = self.norm(x)
|
|
268
|
+
|
|
269
|
+
return x
|
|
270
|
+
|
|
271
|
+
@torch.jit.ignore()
|
|
272
|
+
def load_pretrained(self, checkpoint_path, prefix=''):
|
|
273
|
+
_load_weights(self, checkpoint_path, prefix)
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
@torch.no_grad()
|
|
277
|
+
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
|
278
|
+
"""Load weights from .npz checkpoints for official Google Brain Flax implementation"""
|
|
279
|
+
import numpy as np
|
|
280
|
+
|
|
281
|
+
def _n2p(w, t=True):
|
|
282
|
+
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
|
283
|
+
w = w.flatten()
|
|
284
|
+
if t:
|
|
285
|
+
if w.ndim == 4:
|
|
286
|
+
w = w.transpose([3, 2, 0, 1])
|
|
287
|
+
elif w.ndim == 3:
|
|
288
|
+
w = w.transpose([2, 0, 1])
|
|
289
|
+
elif w.ndim == 2:
|
|
290
|
+
w = w.transpose([1, 0])
|
|
291
|
+
return torch.from_numpy(w)
|
|
292
|
+
|
|
293
|
+
w = np.load(checkpoint_path)
|
|
294
|
+
if not prefix and 'opt/target/embedding/kernel' in w:
|
|
295
|
+
prefix = 'opt/target/'
|
|
296
|
+
|
|
297
|
+
if hasattr(model.patch_embed, 'backbone'):
|
|
298
|
+
# hybrid
|
|
299
|
+
backbone = model.patch_embed.backbone
|
|
300
|
+
stem_only = not hasattr(backbone, 'stem')
|
|
301
|
+
stem = backbone if stem_only else backbone.stem
|
|
302
|
+
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
|
303
|
+
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
|
304
|
+
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
|
305
|
+
if not stem_only:
|
|
306
|
+
for i, stage in enumerate(backbone.stages):
|
|
307
|
+
for j, block in enumerate(stage.blocks):
|
|
308
|
+
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
|
309
|
+
for r in range(3):
|
|
310
|
+
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
|
311
|
+
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
|
312
|
+
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
|
313
|
+
if block.downsample is not None:
|
|
314
|
+
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
|
315
|
+
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
|
316
|
+
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
|
317
|
+
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
|
318
|
+
else:
|
|
319
|
+
embed_conv_w = adapt_input_conv(model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
|
320
|
+
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
|
321
|
+
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
|
322
|
+
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
|
323
|
+
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
|
324
|
+
if pos_embed_w.shape != model.pos_embed.shape:
|
|
325
|
+
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
|
326
|
+
pos_embed_w,
|
|
327
|
+
model.pos_embed,
|
|
328
|
+
getattr(model, 'num_tokens', 1),
|
|
329
|
+
model.patch_embed.grid_size,
|
|
330
|
+
)
|
|
331
|
+
model.pos_embed.copy_(pos_embed_w)
|
|
332
|
+
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
|
333
|
+
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
|
334
|
+
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
|
335
|
+
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
|
336
|
+
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
|
337
|
+
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
|
338
|
+
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
|
339
|
+
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
|
340
|
+
for i, block in enumerate(model.blocks.children()):
|
|
341
|
+
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
|
342
|
+
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
|
343
|
+
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
|
344
|
+
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
|
345
|
+
block.attn.qkv.weight.copy_(
|
|
346
|
+
torch.cat([_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
|
347
|
+
block.attn.qkv.bias.copy_(
|
|
348
|
+
torch.cat([_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
|
349
|
+
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
|
350
|
+
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
|
351
|
+
for r in range(2):
|
|
352
|
+
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
|
353
|
+
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
|
354
|
+
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
|
355
|
+
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
|
356
|
+
|
|
357
|
+
|
|
358
|
+
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
|
|
359
|
+
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
|
|
360
|
+
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
|
|
361
|
+
print('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
|
|
362
|
+
ntok_new = posemb_new.shape[1]
|
|
363
|
+
if num_tokens:
|
|
364
|
+
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
|
|
365
|
+
ntok_new -= num_tokens
|
|
366
|
+
else:
|
|
367
|
+
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
|
|
368
|
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
|
369
|
+
if not len(gs_new): # backwards compatibility
|
|
370
|
+
gs_new = [int(math.sqrt(ntok_new))] * 2
|
|
371
|
+
assert len(gs_new) >= 2
|
|
372
|
+
print('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
|
|
373
|
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
|
374
|
+
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
|
|
375
|
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
|
|
376
|
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
|
377
|
+
return
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
|
381
|
+
# interpolate position embedding
|
|
382
|
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
|
383
|
+
num_patches = visual_encoder.patch_embed.num_patches
|
|
384
|
+
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
|
385
|
+
# height (== width) for the checkpoint position embedding
|
|
386
|
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
|
|
387
|
+
# height (== width) for the new position embedding
|
|
388
|
+
new_size = int(num_patches**0.5)
|
|
389
|
+
|
|
390
|
+
if orig_size != new_size:
|
|
391
|
+
# class_token and dist_token are kept unchanged
|
|
392
|
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
|
393
|
+
# only the position tokens are interpolated
|
|
394
|
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
|
395
|
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
|
396
|
+
pos_tokens = torch.nn.functional.interpolate(
|
|
397
|
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
|
398
|
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
|
399
|
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
|
400
|
+
print('reshape position embedding from %d to %d' % (orig_size**2, new_size**2))
|
|
401
|
+
|
|
402
|
+
return new_pos_embed
|
|
403
|
+
else:
|
|
404
|
+
return pos_embed_checkpoint
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
class VisionTransformerEncoder(VisionTransformer, BaseEncoder):
|
|
408
|
+
|
|
409
|
+
@classmethod
|
|
410
|
+
def from_config(cls, cfg, from_pretrained=False):
|
|
411
|
+
|
|
412
|
+
vit_type = cfg.get('vit_type', 'base')
|
|
413
|
+
image_size = cfg.get('image_size', 384)
|
|
414
|
+
ckpt_layer = cfg.get('vit_ckpt_layer', 0)
|
|
415
|
+
drop_path_rate = cfg.get('vit_drop_path_rate', 0)
|
|
416
|
+
norm_layer_eps = cfg.get('vit_layer_norm_epsilon', -1)
|
|
417
|
+
use_grad_checkpointing = cfg.get('vit_grad_ckpt', False)
|
|
418
|
+
|
|
419
|
+
if norm_layer_eps == -1:
|
|
420
|
+
norm_layer = None
|
|
421
|
+
else:
|
|
422
|
+
norm_layer = partial(nn.LayerNorm, eps=norm_layer_eps)
|
|
423
|
+
|
|
424
|
+
# norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
425
|
+
assert vit_type in ['base', 'large'], 'vit parameter must be base or large'
|
|
426
|
+
if vit_type == 'base':
|
|
427
|
+
vision_width = 768
|
|
428
|
+
visual_encoder = cls(
|
|
429
|
+
img_size=image_size,
|
|
430
|
+
patch_size=16,
|
|
431
|
+
embed_dim=vision_width,
|
|
432
|
+
depth=12,
|
|
433
|
+
num_heads=12,
|
|
434
|
+
use_grad_checkpointing=use_grad_checkpointing,
|
|
435
|
+
ckpt_layer=ckpt_layer,
|
|
436
|
+
drop_path_rate=0 or drop_path_rate,
|
|
437
|
+
norm_layer=norm_layer,
|
|
438
|
+
)
|
|
439
|
+
|
|
440
|
+
if from_pretrained:
|
|
441
|
+
checkpoint = torch.hub.load_state_dict_from_url(
|
|
442
|
+
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',
|
|
443
|
+
map_location='cpu',
|
|
444
|
+
check_hash=True,
|
|
445
|
+
)
|
|
446
|
+
state_dict = checkpoint['model']
|
|
447
|
+
state_dict['pos_embed'] = interpolate_pos_embed(state_dict['pos_embed'], visual_encoder)
|
|
448
|
+
msg = visual_encoder.load_state_dict(state_dict, strict=False)
|
|
449
|
+
|
|
450
|
+
elif vit_type == 'large':
|
|
451
|
+
vision_width = 1024
|
|
452
|
+
visual_encoder = cls(
|
|
453
|
+
img_size=image_size,
|
|
454
|
+
patch_size=16,
|
|
455
|
+
embed_dim=vision_width,
|
|
456
|
+
depth=24,
|
|
457
|
+
num_heads=16,
|
|
458
|
+
use_grad_checkpointing=use_grad_checkpointing,
|
|
459
|
+
ckpt_layer=ckpt_layer,
|
|
460
|
+
drop_path_rate=0.1 or drop_path_rate,
|
|
461
|
+
norm_layer=norm_layer,
|
|
462
|
+
)
|
|
463
|
+
if from_pretrained:
|
|
464
|
+
from timm.models.helpers import load_custom_pretrained
|
|
465
|
+
from timm.models.vision_transformer import default_cfgs
|
|
466
|
+
|
|
467
|
+
load_custom_pretrained(visual_encoder, default_cfgs['vit_large_patch16_224_in21k'])
|
|
468
|
+
|
|
469
|
+
visual_encoder.vision_width = vision_width
|
|
470
|
+
return visual_encoder
|
|
471
|
+
|
|
472
|
+
def forward_features(self, x, register_blk=-1):
|
|
473
|
+
return super().forward(x, register_blk)
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2022, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from ..common.registry import registry
|
|
9
|
+
from .base_processor import BaseProcessor
|
|
10
|
+
from .blip_processors import (Blip2ImageTrainProcessor, BlipCaptionProcessor, BlipImageEvalProcessor,
|
|
11
|
+
BlipImageTrainProcessor)
|
|
12
|
+
|
|
13
|
+
__all__ = [
|
|
14
|
+
'BaseProcessor',
|
|
15
|
+
# BLIP
|
|
16
|
+
'BlipImageTrainProcessor',
|
|
17
|
+
'Blip2ImageTrainProcessor',
|
|
18
|
+
'BlipImageEvalProcessor',
|
|
19
|
+
'BlipCaptionProcessor',
|
|
20
|
+
]
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def load_processor(name, cfg=None):
|
|
24
|
+
"""
|
|
25
|
+
Example
|
|
26
|
+
|
|
27
|
+
>>> processor = load_processor("alpro_video_train", cfg=None)
|
|
28
|
+
"""
|
|
29
|
+
processor = registry.get_processor_class(name).from_config(cfg)
|
|
30
|
+
|
|
31
|
+
return processor
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2022, salesforce.com, inc.
|
|
3
|
+
All rights reserved.
|
|
4
|
+
SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from omegaconf import OmegaConf
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class BaseProcessor:
|
|
12
|
+
|
|
13
|
+
def __init__(self):
|
|
14
|
+
self.transform = lambda x: x
|
|
15
|
+
return
|
|
16
|
+
|
|
17
|
+
def __call__(self, item):
|
|
18
|
+
return self.transform(item)
|
|
19
|
+
|
|
20
|
+
@classmethod
|
|
21
|
+
def from_config(cls, cfg=None):
|
|
22
|
+
return cls()
|
|
23
|
+
|
|
24
|
+
def build(self, **kwargs):
|
|
25
|
+
cfg = OmegaConf.create(kwargs)
|
|
26
|
+
|
|
27
|
+
return self.from_config(cfg)
|