evalscope 0.13.2__py3-none-any.whl → 0.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +2 -1
- evalscope/backend/rag_eval/__init__.py +1 -1
- evalscope/backend/rag_eval/backend_manager.py +21 -5
- evalscope/backend/rag_eval/cmteb/arguments.py +10 -0
- evalscope/backend/rag_eval/ragas/arguments.py +0 -1
- evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +7 -2
- evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +0 -5
- evalscope/backend/rag_eval/utils/embedding.py +49 -3
- evalscope/backend/rag_eval/utils/llm.py +4 -4
- evalscope/backend/vlm_eval_kit/backend_manager.py +4 -2
- evalscope/benchmarks/__init__.py +2 -2
- evalscope/benchmarks/aigc/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/__init__.py +0 -0
- evalscope/benchmarks/aigc/t2i/base.py +56 -0
- evalscope/benchmarks/aigc/t2i/evalmuse_adapter.py +77 -0
- evalscope/benchmarks/aigc/t2i/genai_bench_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/general_t2i_adapter.py +58 -0
- evalscope/benchmarks/aigc/t2i/hpdv2_adapter.py +57 -0
- evalscope/benchmarks/aigc/t2i/tifa_adapter.py +37 -0
- evalscope/benchmarks/aime/aime24_adapter.py +1 -1
- evalscope/benchmarks/aime/aime25_adapter.py +4 -4
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +1 -2
- evalscope/benchmarks/arc/arc_adapter.py +2 -2
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -3
- evalscope/benchmarks/ceval/ceval_adapter.py +2 -2
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +1 -3
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +1 -1
- evalscope/benchmarks/competition_math/competition_math_adapter.py +1 -2
- evalscope/benchmarks/data_adapter.py +21 -10
- evalscope/benchmarks/data_collection/data_collection_adapter.py +6 -4
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +2 -2
- evalscope/benchmarks/general_qa/general_qa_adapter.py +1 -1
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +1 -1
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +16 -21
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +5 -4
- evalscope/benchmarks/live_code_bench/testing_util.py +369 -550
- evalscope/benchmarks/maritime_bench/__init__.py +0 -0
- evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +79 -0
- evalscope/benchmarks/math_500/math_500_adapter.py +1 -1
- evalscope/benchmarks/mmlu/mmlu_adapter.py +8 -8
- evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +1 -1
- evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +1 -1
- evalscope/benchmarks/musr/musr_adapter.py +1 -1
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -2
- evalscope/benchmarks/utils.py +7 -16
- evalscope/cli/start_app.py +1 -1
- evalscope/collections/evaluator.py +20 -6
- evalscope/config.py +8 -4
- evalscope/constants.py +11 -0
- evalscope/evaluator/evaluator.py +2 -2
- evalscope/evaluator/reviewer/auto_reviewer.py +1 -1
- evalscope/metrics/__init__.py +49 -4
- evalscope/metrics/llm_judge.py +1 -1
- evalscope/metrics/named_metrics.py +13 -0
- evalscope/metrics/t2v_metrics/__init__.py +66 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +132 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +286 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +114 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +84 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +97 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +171 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +80 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +73 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +300 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +82 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +218 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +150 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +188 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +106 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +307 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +191 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +318 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +208 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1093 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +452 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +364 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +755 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +880 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1844 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +81 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +56 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +185 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +178 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +112 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +344 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +858 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +271 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +503 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1270 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +473 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +31 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +392 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +127 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +17 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +50 -14
- evalscope/models/adapters/__init__.py +17 -0
- evalscope/models/{base_adapter.py → adapters/base_adapter.py} +17 -17
- evalscope/models/{chat_adapter.py → adapters/chat_adapter.py} +10 -7
- evalscope/models/{choice_adapter.py → adapters/choice_adapter.py} +2 -6
- evalscope/models/{custom_adapter.py → adapters/custom_adapter.py} +2 -4
- evalscope/models/{server_adapter.py → adapters/server_adapter.py} +1 -3
- evalscope/models/adapters/t2i_adapter.py +76 -0
- evalscope/models/custom/__init__.py +2 -1
- evalscope/models/custom/dummy_model.py +11 -13
- evalscope/models/local_model.py +82 -33
- evalscope/models/model.py +2 -42
- evalscope/models/register.py +26 -0
- evalscope/perf/arguments.py +24 -5
- evalscope/perf/benchmark.py +28 -42
- evalscope/perf/http_client.py +2 -3
- evalscope/perf/plugin/api/custom_api.py +1 -1
- evalscope/perf/plugin/api/openai_api.py +2 -2
- evalscope/perf/plugin/datasets/custom.py +4 -1
- evalscope/perf/plugin/datasets/flickr8k.py +2 -1
- evalscope/perf/plugin/datasets/line_by_line.py +4 -1
- evalscope/perf/plugin/datasets/longalpaca.py +4 -1
- evalscope/perf/plugin/datasets/openqa.py +4 -1
- evalscope/perf/plugin/datasets/random_dataset.py +13 -6
- evalscope/perf/utils/benchmark_util.py +14 -8
- evalscope/perf/utils/db_util.py +9 -3
- evalscope/perf/utils/log_utils.py +41 -0
- evalscope/report/__init__.py +1 -0
- evalscope/report/app.py +128 -78
- evalscope/report/app_arguments.py +11 -0
- evalscope/report/generator.py +1 -1
- evalscope/run.py +10 -3
- evalscope/summarizer.py +2 -1
- evalscope/third_party/thinkbench/eval.py +19 -7
- evalscope/utils/chat_service.py +2 -2
- evalscope/utils/import_utils.py +66 -0
- evalscope/utils/utils.py +48 -29
- evalscope/version.py +2 -2
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/METADATA +37 -15
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/RECORD +209 -96
- tests/aigc/__init__.py +1 -0
- tests/aigc/test_t2i.py +87 -0
- tests/cli/test_all.py +4 -4
- tests/cli/test_collection.py +2 -1
- tests/cli/test_run.py +19 -12
- tests/perf/test_perf.py +3 -3
- tests/rag/test_clip_benchmark.py +0 -1
- tests/rag/test_mteb.py +37 -8
- tests/rag/test_ragas.py +29 -26
- tests/vlm/test_vlmeval.py +37 -1
- evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
- evalscope/benchmarks/live_code_bench/execute_utils.py +0 -267
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/LICENSE +0 -0
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/WHEEL +0 -0
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.13.2.dist-info → evalscope-0.15.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,271 @@
|
|
|
1
|
+
import collections.abc
|
|
2
|
+
import math
|
|
3
|
+
import torch
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
from collections import OrderedDict
|
|
6
|
+
from itertools import repeat
|
|
7
|
+
from torch import nn
|
|
8
|
+
|
|
9
|
+
from ..common.dist_utils import download_cached_file
|
|
10
|
+
from ..models.eva_vit import convert_weights_to_fp16
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class Bottleneck(nn.Module):
|
|
14
|
+
expansion = 4
|
|
15
|
+
|
|
16
|
+
def __init__(self, inplanes, planes, stride=1):
|
|
17
|
+
super().__init__()
|
|
18
|
+
|
|
19
|
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
|
20
|
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
|
21
|
+
self.bn1 = nn.BatchNorm2d(planes)
|
|
22
|
+
self.relu1 = nn.ReLU(inplace=True)
|
|
23
|
+
|
|
24
|
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
|
25
|
+
self.bn2 = nn.BatchNorm2d(planes)
|
|
26
|
+
self.relu2 = nn.ReLU(inplace=True)
|
|
27
|
+
|
|
28
|
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
|
29
|
+
|
|
30
|
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
|
31
|
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
32
|
+
self.relu3 = nn.ReLU(inplace=True)
|
|
33
|
+
|
|
34
|
+
self.downsample = None
|
|
35
|
+
self.stride = stride
|
|
36
|
+
|
|
37
|
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
|
38
|
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
|
39
|
+
self.downsample = nn.Sequential(
|
|
40
|
+
OrderedDict([('-1', nn.AvgPool2d(stride)),
|
|
41
|
+
('0', nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
|
42
|
+
('1', nn.BatchNorm2d(planes * self.expansion))]))
|
|
43
|
+
|
|
44
|
+
def forward(self, x: torch.Tensor):
|
|
45
|
+
identity = x
|
|
46
|
+
|
|
47
|
+
out = self.relu1(self.bn1(self.conv1(x)))
|
|
48
|
+
out = self.relu2(self.bn2(self.conv2(out)))
|
|
49
|
+
out = self.avgpool(out)
|
|
50
|
+
out = self.bn3(self.conv3(out))
|
|
51
|
+
|
|
52
|
+
if self.downsample is not None:
|
|
53
|
+
identity = self.downsample(x)
|
|
54
|
+
|
|
55
|
+
out += identity
|
|
56
|
+
out = self.relu3(out)
|
|
57
|
+
return out
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class AttentionPool2d(nn.Module):
|
|
61
|
+
|
|
62
|
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
|
63
|
+
super().__init__()
|
|
64
|
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
|
|
65
|
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
|
66
|
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
|
67
|
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
|
68
|
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
|
69
|
+
self.num_heads = num_heads
|
|
70
|
+
|
|
71
|
+
def forward(self, x):
|
|
72
|
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
|
73
|
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
|
74
|
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
|
75
|
+
x, _ = F.multi_head_attention_forward(
|
|
76
|
+
query=x,
|
|
77
|
+
key=x,
|
|
78
|
+
value=x,
|
|
79
|
+
embed_dim_to_check=x.shape[-1],
|
|
80
|
+
num_heads=self.num_heads,
|
|
81
|
+
q_proj_weight=self.q_proj.weight,
|
|
82
|
+
k_proj_weight=self.k_proj.weight,
|
|
83
|
+
v_proj_weight=self.v_proj.weight,
|
|
84
|
+
in_proj_weight=None,
|
|
85
|
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
|
86
|
+
bias_k=None,
|
|
87
|
+
bias_v=None,
|
|
88
|
+
add_zero_attn=False,
|
|
89
|
+
dropout_p=0,
|
|
90
|
+
out_proj_weight=self.c_proj.weight,
|
|
91
|
+
out_proj_bias=self.c_proj.bias,
|
|
92
|
+
use_separate_proj_weight=True,
|
|
93
|
+
training=self.training,
|
|
94
|
+
need_weights=False)
|
|
95
|
+
|
|
96
|
+
return x[0]
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
class LayerNorm(nn.LayerNorm):
|
|
100
|
+
"""Subclass torch's LayerNorm to handle fp16."""
|
|
101
|
+
|
|
102
|
+
def forward(self, x: torch.Tensor):
|
|
103
|
+
orig_type = x.dtype
|
|
104
|
+
ret = super().forward(x.type(torch.float32))
|
|
105
|
+
return ret.type(orig_type)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
class QuickGELU(nn.Module):
|
|
109
|
+
|
|
110
|
+
def forward(self, x: torch.Tensor):
|
|
111
|
+
return x * torch.sigmoid(1.702 * x)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
class ResidualAttentionBlock(nn.Module):
|
|
115
|
+
|
|
116
|
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False):
|
|
117
|
+
super().__init__()
|
|
118
|
+
|
|
119
|
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
|
120
|
+
self.ln_1 = LayerNorm(d_model)
|
|
121
|
+
self.mlp = nn.Sequential(
|
|
122
|
+
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()),
|
|
123
|
+
('c_proj', nn.Linear(d_model * 4, d_model))]))
|
|
124
|
+
self.ln_2 = LayerNorm(d_model)
|
|
125
|
+
self.attn_mask = attn_mask
|
|
126
|
+
|
|
127
|
+
if use_grad_checkpointing:
|
|
128
|
+
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
|
129
|
+
self.attn = checkpoint_wrapper(self.attn)
|
|
130
|
+
self.mlp = checkpoint_wrapper(self.mlp)
|
|
131
|
+
|
|
132
|
+
def attention(self, x: torch.Tensor):
|
|
133
|
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
|
134
|
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
|
135
|
+
|
|
136
|
+
def forward(self, x: torch.Tensor):
|
|
137
|
+
x = x + self.attention(self.ln_1(x))
|
|
138
|
+
x = x + self.mlp(self.ln_2(x))
|
|
139
|
+
return x
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class Transformer(nn.Module):
|
|
143
|
+
|
|
144
|
+
def __init__(self,
|
|
145
|
+
width: int,
|
|
146
|
+
layers: int,
|
|
147
|
+
heads: int,
|
|
148
|
+
attn_mask: torch.Tensor = None,
|
|
149
|
+
use_grad_checkpointing=False):
|
|
150
|
+
super().__init__()
|
|
151
|
+
self.width = width
|
|
152
|
+
self.layers = layers
|
|
153
|
+
self.resblocks = nn.Sequential(
|
|
154
|
+
*
|
|
155
|
+
[ResidualAttentionBlock(width, heads, attn_mask, use_grad_checkpointing and i > 12) for i in range(layers)])
|
|
156
|
+
|
|
157
|
+
def forward(self, x: torch.Tensor):
|
|
158
|
+
return self.resblocks(x)
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class VisionTransformer(nn.Module):
|
|
162
|
+
|
|
163
|
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int,
|
|
164
|
+
use_grad_checkpointing: bool):
|
|
165
|
+
super().__init__()
|
|
166
|
+
self.input_resolution = input_resolution
|
|
167
|
+
self.num_features = width
|
|
168
|
+
self.num_heads = heads
|
|
169
|
+
self.num_patches = (input_resolution // patch_size)**2
|
|
170
|
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
|
171
|
+
|
|
172
|
+
scale = width**-0.5
|
|
173
|
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
|
174
|
+
self.positional_embedding = nn.Parameter(scale * torch.randn(self.num_patches + 1, width))
|
|
175
|
+
self.ln_pre = LayerNorm(width)
|
|
176
|
+
|
|
177
|
+
self.transformer = Transformer(width, layers - 1, heads, use_grad_checkpointing=use_grad_checkpointing)
|
|
178
|
+
|
|
179
|
+
# self.ln_final = LayerNorm(width)
|
|
180
|
+
|
|
181
|
+
def forward(self, x: torch.Tensor):
|
|
182
|
+
|
|
183
|
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
|
184
|
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
|
185
|
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
186
|
+
x = torch.cat([
|
|
187
|
+
self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
|
188
|
+
x
|
|
189
|
+
],
|
|
190
|
+
dim=1) # shape = [*, grid ** 2 + 1, width]
|
|
191
|
+
x = x + self.positional_embedding.to(x.dtype)
|
|
192
|
+
x = self.ln_pre(x)
|
|
193
|
+
|
|
194
|
+
x = x.permute(1, 0, 2) # NLD -> LND
|
|
195
|
+
x = self.transformer(x)
|
|
196
|
+
x = x.permute(1, 0, 2) # LND -> NLD
|
|
197
|
+
|
|
198
|
+
# x = self.ln_final(x)
|
|
199
|
+
return x
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
# From PyTorch internals
|
|
203
|
+
def _ntuple(n):
|
|
204
|
+
|
|
205
|
+
def parse(x):
|
|
206
|
+
if isinstance(x, collections.abc.Iterable):
|
|
207
|
+
return x
|
|
208
|
+
return tuple(repeat(x, n))
|
|
209
|
+
|
|
210
|
+
return parse
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
to_2tuple = _ntuple(2)
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def interpolate_pos_embed(model, state_dict, interpolation: str = 'bicubic', seq_dim=1):
|
|
217
|
+
# Rescale the grid of position embeddings when loading from state_dict
|
|
218
|
+
old_pos_embed = state_dict.get('positional_embedding', None)
|
|
219
|
+
|
|
220
|
+
grid_size = round((model.positional_embedding.shape[0] - 1)**0.5)
|
|
221
|
+
if old_pos_embed is None:
|
|
222
|
+
return
|
|
223
|
+
grid_size = to_2tuple(grid_size)
|
|
224
|
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
|
225
|
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
|
226
|
+
if new_seq_len == old_pos_embed.shape[0]:
|
|
227
|
+
return
|
|
228
|
+
|
|
229
|
+
if extra_tokens:
|
|
230
|
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
|
231
|
+
else:
|
|
232
|
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
|
233
|
+
|
|
234
|
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
|
235
|
+
|
|
236
|
+
print('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
|
237
|
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
|
238
|
+
pos_emb_img = F.interpolate(
|
|
239
|
+
pos_emb_img,
|
|
240
|
+
size=grid_size,
|
|
241
|
+
mode=interpolation,
|
|
242
|
+
align_corners=True,
|
|
243
|
+
)
|
|
244
|
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
|
245
|
+
if pos_emb_tok is not None:
|
|
246
|
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
|
247
|
+
else:
|
|
248
|
+
new_pos_embed = pos_emb_img
|
|
249
|
+
state_dict['positional_embedding'] = new_pos_embed
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
def create_clip_vit_L(img_size=224, use_checkpoint=False, precision='fp16'):
|
|
253
|
+
model = VisionTransformer(
|
|
254
|
+
input_resolution=img_size,
|
|
255
|
+
patch_size=14,
|
|
256
|
+
width=1024,
|
|
257
|
+
layers=22,
|
|
258
|
+
heads=16,
|
|
259
|
+
use_grad_checkpointing=use_checkpoint,
|
|
260
|
+
)
|
|
261
|
+
url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/clip_vit_L.pth'
|
|
262
|
+
cached_file = download_cached_file(url, check_hash=False, progress=True)
|
|
263
|
+
state_dict = torch.load(cached_file, map_location='cpu')
|
|
264
|
+
interpolate_pos_embed(model, state_dict)
|
|
265
|
+
|
|
266
|
+
incompatible_keys = model.load_state_dict(state_dict, strict=False)
|
|
267
|
+
# print(incompatible_keys)
|
|
268
|
+
|
|
269
|
+
if precision == 'fp16':
|
|
270
|
+
convert_weights_to_fp16(model)
|
|
271
|
+
return model
|