eqc-models 0.15.0__py3-none-any.whl → 0.15.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. eqc_models-0.15.3.data/platlib/eqc_models/algorithms/alm.py +782 -0
  2. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.c +250 -227
  3. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  4. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/rcshortestpath.py +3 -1
  5. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/shortestpath.py +4 -2
  6. eqc_models-0.15.3.data/platlib/eqc_models/ml/utils.py +132 -0
  7. {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/METADATA +1 -1
  8. eqc_models-0.15.3.dist-info/RECORD +72 -0
  9. {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/WHEEL +1 -1
  10. eqc_models-0.15.0.data/platlib/eqc_models/algorithms/alm.py +0 -464
  11. eqc_models-0.15.0.dist-info/RECORD +0 -71
  12. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/compile_extensions.py +0 -0
  13. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/__init__.py +0 -0
  14. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  15. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/base.py +0 -0
  16. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  17. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  18. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  19. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  20. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  21. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/__init__.py +0 -0
  22. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/qap.py +0 -0
  23. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/resource.py +0 -0
  24. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  25. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/__init__.py +0 -0
  26. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/base.py +0 -0
  27. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/binaries.py +0 -0
  28. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/constraints.py +0 -0
  29. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/operators.py +0 -0
  30. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  31. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polynomial.py +0 -0
  32. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/quadratic.py +0 -0
  33. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/results.py +0 -0
  34. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
  35. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
  36. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
  37. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/decoding.py +0 -0
  38. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/__init__.py +0 -0
  39. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/base.py +0 -0
  40. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  41. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  42. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  43. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/partition.py +0 -0
  44. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/__init__.py +0 -0
  45. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierbase.py +0 -0
  46. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierqboost.py +0 -0
  47. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
  48. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/clustering.py +0 -0
  49. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/clusteringbase.py +0 -0
  50. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  51. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  52. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  53. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/decomposition.py +0 -0
  54. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/forecast.py +0 -0
  55. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
  56. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/regressor.py +0 -0
  57. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
  58. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/reservoir.py +0 -0
  59. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/process/base.py +0 -0
  60. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/process/mpc.py +0 -0
  61. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  62. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  63. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/__init__.py +0 -0
  64. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/eqcdirect.py +0 -0
  65. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/mip.py +0 -0
  66. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
  67. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/responselog.py +0 -0
  68. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  69. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  70. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/general.py +0 -0
  71. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
  72. {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  73. {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/licenses/LICENSE.txt +0 -0
  74. {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/top_level.txt +0 -0
@@ -68,8 +68,9 @@ class RCShortestPathModel(ShortestPathModel):
68
68
  path_len = 0
69
69
  path_cost = 0
70
70
  path_resources = 0
71
- while node != t:
71
+ while node != self.t:
72
72
  edge = (node, path[node])
73
+ log.debug("Processing edge %s for pathCost", edge)
73
74
  if edge not in G.edges:
74
75
  raise ValueError(f"Edge {edge} not found")
75
76
  path_len += 1
@@ -77,5 +78,6 @@ class RCShortestPathModel(ShortestPathModel):
77
78
  path_resources += G.edges[edge][self.resource_key]
78
79
  if path_len > max_len:
79
80
  raise ValueError("Invalid path. Describes a cycle.")
81
+ node = edge[1]
80
82
  return path_cost, path_resources
81
83
 
@@ -200,13 +200,15 @@ class ShortestPathModel(EdgeMixin, ConstrainedQuadraticModel):
200
200
  max_len = len(self.G.nodes) - 1
201
201
  path_len = 0
202
202
  path_cost = 0
203
- while node != t:
203
+ while node != self.t:
204
204
  edge = (node, path[node])
205
+ log.debug("Processing edge %s for pathCost", edge)
205
206
  if edge not in G.edges:
206
207
  raise ValueError(f"Edge {edge} not found")
207
208
  path_len += 1
208
209
  path_cost += G.edges[edge]["weight"]
209
210
  if path_len > max_len:
210
- raise ValueError("Invalid path. Describes a cycle.")
211
+ raise ValueError(f"Invalid path. Describes a cycle.")
212
+ node = edge[1]
211
213
  return path_cost
212
214
 
@@ -0,0 +1,132 @@
1
+ import numpy as np
2
+ from sklearn.metrics import (
3
+ auc,
4
+ precision_recall_curve,
5
+ roc_auc_score,
6
+ precision_score,
7
+ recall_score,
8
+ accuracy_score,
9
+ f1_score,
10
+ confusion_matrix,
11
+ )
12
+
13
+
14
+ def get_binary_classification_metrics(
15
+ y_true, y_pred, positive_label=1, negative_label=-1, threshold=0
16
+ ):
17
+ """Compute classifier merits.
18
+
19
+ Parameters
20
+ ----------
21
+ y_true: Actual labels (array-like of shape (n_samples,)).
22
+
23
+ y_pred: Predicted scores between negative and positive labels
24
+ (array-like of shape (n_samples,)).
25
+
26
+ positive_label: The positive label (integer; default: 1).
27
+
28
+ negative_label: The negative label (integer; default: -1).
29
+
30
+ threshold: Threshold for converting y_pred scores to predicted
31
+ labels, float; default: 0.
32
+
33
+ Returns
34
+ -------
35
+ Dict.
36
+
37
+ """
38
+
39
+ # Convert to numpy arrays
40
+ y_true = np.asarray(y_true).ravel()
41
+ y_pred = np.asarray(y_pred).ravel()
42
+
43
+ # Some sanity checks
44
+ if y_true.ndim != 1 or y_pred.ndim != 1:
45
+ raise ValueError(
46
+ "y_true and y_pred must be 1D arrays (or array-like)."
47
+ )
48
+ if y_true.shape[0] != y_pred.shape[0]:
49
+ raise ValueError(
50
+ f"Size mismatch: y_true has {y_true.shape[0]} elements, "
51
+ f"y_pred has {y_pred.shape[0]} elements."
52
+ )
53
+ if y_true.shape[0] == 0:
54
+ raise ValueError(
55
+ "Empty inputs: y_true/y_pred must have at least 1 element."
56
+ )
57
+
58
+ try:
59
+ positive_label = int(positive_label)
60
+ except Exception as e:
61
+ raise TypeError("positive_label must be an integer.") from e
62
+
63
+ try:
64
+ negative_label = int(negative_label)
65
+ except Exception as e:
66
+ raise TypeError("negative_label must be an integer.") from e
67
+
68
+ try:
69
+ threshold = float(threshold)
70
+ except Exception as e:
71
+ raise TypeError("threshold must be a float.") from e
72
+
73
+ assert (
74
+ positive_label != negative_label
75
+ ), "Positive and negative labels should not be equal!"
76
+
77
+ y_true = y_true.astype(int)
78
+ assert set(y_true) == {
79
+ positive_label,
80
+ negative_label,
81
+ }, "Incorrect labels!"
82
+
83
+ # Convert predicted scores to labels
84
+ dist_pos = np.abs(y_pred - positive_label)
85
+ dist_neg = np.abs(y_pred - negative_label)
86
+ y_pred_label = np.where(
87
+ dist_pos <= dist_neg, positive_label, negative_label
88
+ )
89
+
90
+ assert set(y_pred_label) == {
91
+ positive_label,
92
+ negative_label,
93
+ }, "Incorrect labels!"
94
+
95
+ # Calculate the metrics
96
+ precision, recall, _ = precision_recall_curve(y_true, y_pred)
97
+ pr_auc = auc(recall, precision)
98
+
99
+ out_hash = {
100
+ "positive_label": positive_label,
101
+ "negative_label": negative_label,
102
+ "threshold": threshold,
103
+ "pr_auc": pr_auc,
104
+ "roc_auc": roc_auc_score(y_true, y_pred),
105
+ "precision": precision_score(
106
+ y_true,
107
+ y_pred_label,
108
+ zero_division=0,
109
+ labels=[negative_label, positive_label],
110
+ pos_label=positive_label,
111
+ ),
112
+ "recall": recall_score(
113
+ y_true,
114
+ y_pred_label,
115
+ zero_division=0,
116
+ labels=[negative_label, positive_label],
117
+ pos_label=positive_label,
118
+ ),
119
+ "accuracy": accuracy_score(y_true, y_pred_label),
120
+ "f1_score": f1_score(
121
+ y_true,
122
+ y_pred_label,
123
+ zero_division=0,
124
+ labels=[negative_label, positive_label],
125
+ pos_label=positive_label,
126
+ ),
127
+ "confusion_matrix": confusion_matrix(
128
+ y_true, y_pred_label, labels=[negative_label, positive_label]
129
+ ),
130
+ }
131
+
132
+ return out_hash
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.15.0
3
+ Version: 0.15.3
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
6
6
  Project-URL: Homepage, https://quantumcomputinginc.com
@@ -0,0 +1,72 @@
1
+ eqc_models-0.15.3.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.15.3.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
+ eqc_models-0.15.3.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
+ eqc_models-0.15.3.data/platlib/eqc_models/algorithms/__init__.py,sha256=RQyUZJ-zKlaAYPp9m--1335Cie0jEfGalJ6tpAXOGz0,337
5
+ eqc_models-0.15.3.data/platlib/eqc_models/algorithms/alm.py,sha256=xKk7J85Uh8XphH_Dp2b8WEK663w5YY2GP5saaZt6Src,34724
6
+ eqc_models-0.15.3.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
7
+ eqc_models-0.15.3.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=8mXF-Gbz9CfLEmZ_jSGVLE8dd0c8ce8fWXfajUllU7I,7844
8
+ eqc_models-0.15.3.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
9
+ eqc_models-0.15.3.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
10
+ eqc_models-0.15.3.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
11
+ eqc_models-0.15.3.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
12
+ eqc_models-0.15.3.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
13
+ eqc_models-0.15.3.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
14
+ eqc_models-0.15.3.data/platlib/eqc_models/assignment/resource.py,sha256=I0yAKjap2yQNpqDE9k7YoKbzVtsv_PVVpZzkUQuhbAE,6887
15
+ eqc_models-0.15.3.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
16
+ eqc_models-0.15.3.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
17
+ eqc_models-0.15.3.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
18
+ eqc_models-0.15.3.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
19
+ eqc_models-0.15.3.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
20
+ eqc_models-0.15.3.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
21
+ eqc_models-0.15.3.data/platlib/eqc_models/base/polyeval.c,sha256=vtHmxv1jY_L0m-bRvtnrbFeuGm7voRH02c8RegOAFBw,499052
22
+ eqc_models-0.15.3.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=aZljZZPJl1xz0D7a3WMPYTZM0FQtiROCu7ZoQCXYr5A,106768
23
+ eqc_models-0.15.3.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
24
+ eqc_models-0.15.3.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
25
+ eqc_models-0.15.3.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
26
+ eqc_models-0.15.3.data/platlib/eqc_models/base/results.py,sha256=pOX9AuVDRWuinzyw6YMqETmvKlA0-LdYbiEKwX9dYSA,8970
27
+ eqc_models-0.15.3.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
28
+ eqc_models-0.15.3.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
29
+ eqc_models-0.15.3.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
30
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
31
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
32
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
33
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
34
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
35
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
36
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=puvcc2FnYcKiDOerNkcAsc0j4IlBR2ioujMFHz-BP80,3203
37
+ eqc_models-0.15.3.data/platlib/eqc_models/graph/shortestpath.py,sha256=XakgOPsST6WHAhwvDxr6Sxu2rmDWRCO7Ghe0KXD5OLw,7545
38
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
39
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/classifierbase.py,sha256=-AWHbSG6taL-qntU1zgOxHaafSoLOJQiMtyLiAyMecw,2962
40
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/classifierqboost.py,sha256=TXkM34zChHc2YFUnacbizFwIGmuDNjBTVrXjDMxb4Jo,20973
41
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=f-3uR1F9LrWO2eJclFBFpkLExqK5HtlFoqmU_2LlkTg,12532
42
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/clustering.py,sha256=L9P-j754Zii45REYlWoPr49Ao4jI3pAxtkumsy4pXVM,10883
43
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/clusteringbase.py,sha256=9tp7rxOeQQLwT_TDXt4AJEIg7P_9QaNBhCE_6ywo06A,3628
44
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
45
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
46
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
47
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/decomposition.py,sha256=k2KMVK66fYzf1K06QJj7fb1lEKEph-8s_y3dSTq_jKY,11420
48
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/forecast.py,sha256=PR5oIRXpz-Xfo5rCfPftkMXPiDOXlBJ4XQC8P56soQo,7235
49
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/forecastbase.py,sha256=zaDAFvTJhViOTG6w01-gImlRadjRmdGGHYTbKWt9xGk,3655
50
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/regressor.py,sha256=5KhI-V5hqG5zt-jyBN_XyaI5y3GkIB0_JQ-yhcxcq20,6387
51
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/regressorbase.py,sha256=j803xMwvoBMaq1wUkY8z8r9zGYp-Xmhs5_7PZlHJS5o,2886
52
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/reservoir.py,sha256=vs_YMD_cN52QpCVWXMrLB4sOhHurWBs-F4GsKryAKCc,3319
53
+ eqc_models-0.15.3.data/platlib/eqc_models/ml/utils.py,sha256=pkJjED99Pje1HDhM_0sMpzg3kHHkeMXLavxgKXUuSvg,3661
54
+ eqc_models-0.15.3.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
55
+ eqc_models-0.15.3.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
56
+ eqc_models-0.15.3.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
57
+ eqc_models-0.15.3.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
58
+ eqc_models-0.15.3.data/platlib/eqc_models/solvers/__init__.py,sha256=iMxshg5jNzxzadMp3G2uLdN8Gvmtlnnt5OOMD9fknag,658
59
+ eqc_models-0.15.3.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=dq0QjJhQcljCZr8FKTfPpheOfsb7ly3E28fXT-KYLE8,2875
60
+ eqc_models-0.15.3.data/platlib/eqc_models/solvers/mip.py,sha256=SvET_HzspqY3JoH_fnZSoU-wtBS0YXE9C9kpvE9TJHs,5358
61
+ eqc_models-0.15.3.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
62
+ eqc_models-0.15.3.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
63
+ eqc_models-0.15.3.data/platlib/eqc_models/utilities/__init__.py,sha256=6CpihFOS9_TVoR-9DBARUCb7aCwBTgA7hs3aW38rFkg,404
64
+ eqc_models-0.15.3.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
65
+ eqc_models-0.15.3.data/platlib/eqc_models/utilities/general.py,sha256=mHOG0rSxk8icd4ij5DWKxlZuki4mBggZyEA94P-bSlo,2564
66
+ eqc_models-0.15.3.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
67
+ eqc_models-0.15.3.data/platlib/eqc_models/utilities/qplib.py,sha256=jZ9Yvw1XBThZKCD-rocrVrDtAafiYMuDv7LAv8Omjyo,15803
68
+ eqc_models-0.15.3.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
69
+ eqc_models-0.15.3.dist-info/METADATA,sha256=h97G8D31a5vVz5mpY480GYEP-UDBdX7pso02lL1L3uA,7199
70
+ eqc_models-0.15.3.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
71
+ eqc_models-0.15.3.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
72
+ eqc_models-0.15.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5