eqc-models 0.15.0__py3-none-any.whl → 0.15.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eqc_models-0.15.3.data/platlib/eqc_models/algorithms/alm.py +782 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.c +250 -227
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/rcshortestpath.py +3 -1
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/shortestpath.py +4 -2
- eqc_models-0.15.3.data/platlib/eqc_models/ml/utils.py +132 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/METADATA +1 -1
- eqc_models-0.15.3.dist-info/RECORD +72 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/WHEEL +1 -1
- eqc_models-0.15.0.data/platlib/eqc_models/algorithms/alm.py +0 -464
- eqc_models-0.15.0.dist-info/RECORD +0 -71
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/compile_extensions.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/allocation.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/portbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/qap.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/resource.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/binaries.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/constraints.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/operators.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polynomial.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/quadratic.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/results.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/decoding.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/maxcut.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/partition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierqboost.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/clustering.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/clusteringbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/decomposition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/forecast.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/regressor.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/reservoir.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/process/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/process/mpc.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/sequence/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/sequence/tsp.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/eqcdirect.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/mip.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/responselog.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/fileio.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/general.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/qplib.py +0 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/licenses/LICENSE.txt +0 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/top_level.txt +0 -0
|
Binary file
|
{eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/rcshortestpath.py
RENAMED
|
@@ -68,8 +68,9 @@ class RCShortestPathModel(ShortestPathModel):
|
|
|
68
68
|
path_len = 0
|
|
69
69
|
path_cost = 0
|
|
70
70
|
path_resources = 0
|
|
71
|
-
while node != t:
|
|
71
|
+
while node != self.t:
|
|
72
72
|
edge = (node, path[node])
|
|
73
|
+
log.debug("Processing edge %s for pathCost", edge)
|
|
73
74
|
if edge not in G.edges:
|
|
74
75
|
raise ValueError(f"Edge {edge} not found")
|
|
75
76
|
path_len += 1
|
|
@@ -77,5 +78,6 @@ class RCShortestPathModel(ShortestPathModel):
|
|
|
77
78
|
path_resources += G.edges[edge][self.resource_key]
|
|
78
79
|
if path_len > max_len:
|
|
79
80
|
raise ValueError("Invalid path. Describes a cycle.")
|
|
81
|
+
node = edge[1]
|
|
80
82
|
return path_cost, path_resources
|
|
81
83
|
|
|
@@ -200,13 +200,15 @@ class ShortestPathModel(EdgeMixin, ConstrainedQuadraticModel):
|
|
|
200
200
|
max_len = len(self.G.nodes) - 1
|
|
201
201
|
path_len = 0
|
|
202
202
|
path_cost = 0
|
|
203
|
-
while node != t:
|
|
203
|
+
while node != self.t:
|
|
204
204
|
edge = (node, path[node])
|
|
205
|
+
log.debug("Processing edge %s for pathCost", edge)
|
|
205
206
|
if edge not in G.edges:
|
|
206
207
|
raise ValueError(f"Edge {edge} not found")
|
|
207
208
|
path_len += 1
|
|
208
209
|
path_cost += G.edges[edge]["weight"]
|
|
209
210
|
if path_len > max_len:
|
|
210
|
-
raise ValueError("Invalid path. Describes a cycle.")
|
|
211
|
+
raise ValueError(f"Invalid path. Describes a cycle.")
|
|
212
|
+
node = edge[1]
|
|
211
213
|
return path_cost
|
|
212
214
|
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from sklearn.metrics import (
|
|
3
|
+
auc,
|
|
4
|
+
precision_recall_curve,
|
|
5
|
+
roc_auc_score,
|
|
6
|
+
precision_score,
|
|
7
|
+
recall_score,
|
|
8
|
+
accuracy_score,
|
|
9
|
+
f1_score,
|
|
10
|
+
confusion_matrix,
|
|
11
|
+
)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def get_binary_classification_metrics(
|
|
15
|
+
y_true, y_pred, positive_label=1, negative_label=-1, threshold=0
|
|
16
|
+
):
|
|
17
|
+
"""Compute classifier merits.
|
|
18
|
+
|
|
19
|
+
Parameters
|
|
20
|
+
----------
|
|
21
|
+
y_true: Actual labels (array-like of shape (n_samples,)).
|
|
22
|
+
|
|
23
|
+
y_pred: Predicted scores between negative and positive labels
|
|
24
|
+
(array-like of shape (n_samples,)).
|
|
25
|
+
|
|
26
|
+
positive_label: The positive label (integer; default: 1).
|
|
27
|
+
|
|
28
|
+
negative_label: The negative label (integer; default: -1).
|
|
29
|
+
|
|
30
|
+
threshold: Threshold for converting y_pred scores to predicted
|
|
31
|
+
labels, float; default: 0.
|
|
32
|
+
|
|
33
|
+
Returns
|
|
34
|
+
-------
|
|
35
|
+
Dict.
|
|
36
|
+
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
# Convert to numpy arrays
|
|
40
|
+
y_true = np.asarray(y_true).ravel()
|
|
41
|
+
y_pred = np.asarray(y_pred).ravel()
|
|
42
|
+
|
|
43
|
+
# Some sanity checks
|
|
44
|
+
if y_true.ndim != 1 or y_pred.ndim != 1:
|
|
45
|
+
raise ValueError(
|
|
46
|
+
"y_true and y_pred must be 1D arrays (or array-like)."
|
|
47
|
+
)
|
|
48
|
+
if y_true.shape[0] != y_pred.shape[0]:
|
|
49
|
+
raise ValueError(
|
|
50
|
+
f"Size mismatch: y_true has {y_true.shape[0]} elements, "
|
|
51
|
+
f"y_pred has {y_pred.shape[0]} elements."
|
|
52
|
+
)
|
|
53
|
+
if y_true.shape[0] == 0:
|
|
54
|
+
raise ValueError(
|
|
55
|
+
"Empty inputs: y_true/y_pred must have at least 1 element."
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
try:
|
|
59
|
+
positive_label = int(positive_label)
|
|
60
|
+
except Exception as e:
|
|
61
|
+
raise TypeError("positive_label must be an integer.") from e
|
|
62
|
+
|
|
63
|
+
try:
|
|
64
|
+
negative_label = int(negative_label)
|
|
65
|
+
except Exception as e:
|
|
66
|
+
raise TypeError("negative_label must be an integer.") from e
|
|
67
|
+
|
|
68
|
+
try:
|
|
69
|
+
threshold = float(threshold)
|
|
70
|
+
except Exception as e:
|
|
71
|
+
raise TypeError("threshold must be a float.") from e
|
|
72
|
+
|
|
73
|
+
assert (
|
|
74
|
+
positive_label != negative_label
|
|
75
|
+
), "Positive and negative labels should not be equal!"
|
|
76
|
+
|
|
77
|
+
y_true = y_true.astype(int)
|
|
78
|
+
assert set(y_true) == {
|
|
79
|
+
positive_label,
|
|
80
|
+
negative_label,
|
|
81
|
+
}, "Incorrect labels!"
|
|
82
|
+
|
|
83
|
+
# Convert predicted scores to labels
|
|
84
|
+
dist_pos = np.abs(y_pred - positive_label)
|
|
85
|
+
dist_neg = np.abs(y_pred - negative_label)
|
|
86
|
+
y_pred_label = np.where(
|
|
87
|
+
dist_pos <= dist_neg, positive_label, negative_label
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
assert set(y_pred_label) == {
|
|
91
|
+
positive_label,
|
|
92
|
+
negative_label,
|
|
93
|
+
}, "Incorrect labels!"
|
|
94
|
+
|
|
95
|
+
# Calculate the metrics
|
|
96
|
+
precision, recall, _ = precision_recall_curve(y_true, y_pred)
|
|
97
|
+
pr_auc = auc(recall, precision)
|
|
98
|
+
|
|
99
|
+
out_hash = {
|
|
100
|
+
"positive_label": positive_label,
|
|
101
|
+
"negative_label": negative_label,
|
|
102
|
+
"threshold": threshold,
|
|
103
|
+
"pr_auc": pr_auc,
|
|
104
|
+
"roc_auc": roc_auc_score(y_true, y_pred),
|
|
105
|
+
"precision": precision_score(
|
|
106
|
+
y_true,
|
|
107
|
+
y_pred_label,
|
|
108
|
+
zero_division=0,
|
|
109
|
+
labels=[negative_label, positive_label],
|
|
110
|
+
pos_label=positive_label,
|
|
111
|
+
),
|
|
112
|
+
"recall": recall_score(
|
|
113
|
+
y_true,
|
|
114
|
+
y_pred_label,
|
|
115
|
+
zero_division=0,
|
|
116
|
+
labels=[negative_label, positive_label],
|
|
117
|
+
pos_label=positive_label,
|
|
118
|
+
),
|
|
119
|
+
"accuracy": accuracy_score(y_true, y_pred_label),
|
|
120
|
+
"f1_score": f1_score(
|
|
121
|
+
y_true,
|
|
122
|
+
y_pred_label,
|
|
123
|
+
zero_division=0,
|
|
124
|
+
labels=[negative_label, positive_label],
|
|
125
|
+
pos_label=positive_label,
|
|
126
|
+
),
|
|
127
|
+
"confusion_matrix": confusion_matrix(
|
|
128
|
+
y_true, y_pred_label, labels=[negative_label, positive_label]
|
|
129
|
+
),
|
|
130
|
+
}
|
|
131
|
+
|
|
132
|
+
return out_hash
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eqc-models
|
|
3
|
-
Version: 0.15.
|
|
3
|
+
Version: 0.15.3
|
|
4
4
|
Summary: Optimization and ML modeling package targeting EQC devices
|
|
5
5
|
Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
|
|
6
6
|
Project-URL: Homepage, https://quantumcomputinginc.com
|
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
eqc_models-0.15.3.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
|
|
2
|
+
eqc_models-0.15.3.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
|
|
3
|
+
eqc_models-0.15.3.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
|
|
4
|
+
eqc_models-0.15.3.data/platlib/eqc_models/algorithms/__init__.py,sha256=RQyUZJ-zKlaAYPp9m--1335Cie0jEfGalJ6tpAXOGz0,337
|
|
5
|
+
eqc_models-0.15.3.data/platlib/eqc_models/algorithms/alm.py,sha256=xKk7J85Uh8XphH_Dp2b8WEK663w5YY2GP5saaZt6Src,34724
|
|
6
|
+
eqc_models-0.15.3.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
|
|
7
|
+
eqc_models-0.15.3.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=8mXF-Gbz9CfLEmZ_jSGVLE8dd0c8ce8fWXfajUllU7I,7844
|
|
8
|
+
eqc_models-0.15.3.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
|
|
9
|
+
eqc_models-0.15.3.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
|
|
10
|
+
eqc_models-0.15.3.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
|
|
11
|
+
eqc_models-0.15.3.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
|
|
12
|
+
eqc_models-0.15.3.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
|
|
13
|
+
eqc_models-0.15.3.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
|
|
14
|
+
eqc_models-0.15.3.data/platlib/eqc_models/assignment/resource.py,sha256=I0yAKjap2yQNpqDE9k7YoKbzVtsv_PVVpZzkUQuhbAE,6887
|
|
15
|
+
eqc_models-0.15.3.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
|
|
16
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
|
|
17
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
|
|
18
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
|
|
19
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
|
|
20
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
|
|
21
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/polyeval.c,sha256=vtHmxv1jY_L0m-bRvtnrbFeuGm7voRH02c8RegOAFBw,499052
|
|
22
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=aZljZZPJl1xz0D7a3WMPYTZM0FQtiROCu7ZoQCXYr5A,106768
|
|
23
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
|
|
24
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
|
|
25
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
|
|
26
|
+
eqc_models-0.15.3.data/platlib/eqc_models/base/results.py,sha256=pOX9AuVDRWuinzyw6YMqETmvKlA0-LdYbiEKwX9dYSA,8970
|
|
27
|
+
eqc_models-0.15.3.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
|
|
28
|
+
eqc_models-0.15.3.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
|
|
29
|
+
eqc_models-0.15.3.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
|
|
30
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
|
|
31
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
|
|
32
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
|
|
33
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
|
|
34
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
|
|
35
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
|
|
36
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=puvcc2FnYcKiDOerNkcAsc0j4IlBR2ioujMFHz-BP80,3203
|
|
37
|
+
eqc_models-0.15.3.data/platlib/eqc_models/graph/shortestpath.py,sha256=XakgOPsST6WHAhwvDxr6Sxu2rmDWRCO7Ghe0KXD5OLw,7545
|
|
38
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
|
|
39
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/classifierbase.py,sha256=-AWHbSG6taL-qntU1zgOxHaafSoLOJQiMtyLiAyMecw,2962
|
|
40
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/classifierqboost.py,sha256=TXkM34zChHc2YFUnacbizFwIGmuDNjBTVrXjDMxb4Jo,20973
|
|
41
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=f-3uR1F9LrWO2eJclFBFpkLExqK5HtlFoqmU_2LlkTg,12532
|
|
42
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/clustering.py,sha256=L9P-j754Zii45REYlWoPr49Ao4jI3pAxtkumsy4pXVM,10883
|
|
43
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/clusteringbase.py,sha256=9tp7rxOeQQLwT_TDXt4AJEIg7P_9QaNBhCE_6ywo06A,3628
|
|
44
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
|
|
45
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
|
|
46
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
|
|
47
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/decomposition.py,sha256=k2KMVK66fYzf1K06QJj7fb1lEKEph-8s_y3dSTq_jKY,11420
|
|
48
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/forecast.py,sha256=PR5oIRXpz-Xfo5rCfPftkMXPiDOXlBJ4XQC8P56soQo,7235
|
|
49
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/forecastbase.py,sha256=zaDAFvTJhViOTG6w01-gImlRadjRmdGGHYTbKWt9xGk,3655
|
|
50
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/regressor.py,sha256=5KhI-V5hqG5zt-jyBN_XyaI5y3GkIB0_JQ-yhcxcq20,6387
|
|
51
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/regressorbase.py,sha256=j803xMwvoBMaq1wUkY8z8r9zGYp-Xmhs5_7PZlHJS5o,2886
|
|
52
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/reservoir.py,sha256=vs_YMD_cN52QpCVWXMrLB4sOhHurWBs-F4GsKryAKCc,3319
|
|
53
|
+
eqc_models-0.15.3.data/platlib/eqc_models/ml/utils.py,sha256=pkJjED99Pje1HDhM_0sMpzg3kHHkeMXLavxgKXUuSvg,3661
|
|
54
|
+
eqc_models-0.15.3.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
|
|
55
|
+
eqc_models-0.15.3.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
|
|
56
|
+
eqc_models-0.15.3.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
|
|
57
|
+
eqc_models-0.15.3.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
|
|
58
|
+
eqc_models-0.15.3.data/platlib/eqc_models/solvers/__init__.py,sha256=iMxshg5jNzxzadMp3G2uLdN8Gvmtlnnt5OOMD9fknag,658
|
|
59
|
+
eqc_models-0.15.3.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=dq0QjJhQcljCZr8FKTfPpheOfsb7ly3E28fXT-KYLE8,2875
|
|
60
|
+
eqc_models-0.15.3.data/platlib/eqc_models/solvers/mip.py,sha256=SvET_HzspqY3JoH_fnZSoU-wtBS0YXE9C9kpvE9TJHs,5358
|
|
61
|
+
eqc_models-0.15.3.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
|
|
62
|
+
eqc_models-0.15.3.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
|
|
63
|
+
eqc_models-0.15.3.data/platlib/eqc_models/utilities/__init__.py,sha256=6CpihFOS9_TVoR-9DBARUCb7aCwBTgA7hs3aW38rFkg,404
|
|
64
|
+
eqc_models-0.15.3.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
|
|
65
|
+
eqc_models-0.15.3.data/platlib/eqc_models/utilities/general.py,sha256=mHOG0rSxk8icd4ij5DWKxlZuki4mBggZyEA94P-bSlo,2564
|
|
66
|
+
eqc_models-0.15.3.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
|
|
67
|
+
eqc_models-0.15.3.data/platlib/eqc_models/utilities/qplib.py,sha256=jZ9Yvw1XBThZKCD-rocrVrDtAafiYMuDv7LAv8Omjyo,15803
|
|
68
|
+
eqc_models-0.15.3.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
|
|
69
|
+
eqc_models-0.15.3.dist-info/METADATA,sha256=h97G8D31a5vVz5mpY480GYEP-UDBdX7pso02lL1L3uA,7199
|
|
70
|
+
eqc_models-0.15.3.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
71
|
+
eqc_models-0.15.3.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
|
|
72
|
+
eqc_models-0.15.3.dist-info/RECORD,,
|