eqc-models 0.15.0__py3-none-any.whl → 0.15.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eqc_models-0.15.3.data/platlib/eqc_models/algorithms/alm.py +782 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.c +250 -227
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/rcshortestpath.py +3 -1
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/shortestpath.py +4 -2
- eqc_models-0.15.3.data/platlib/eqc_models/ml/utils.py +132 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/METADATA +1 -1
- eqc_models-0.15.3.dist-info/RECORD +72 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/WHEEL +1 -1
- eqc_models-0.15.0.data/platlib/eqc_models/algorithms/alm.py +0 -464
- eqc_models-0.15.0.dist-info/RECORD +0 -71
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/compile_extensions.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/allocation.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/portbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/qap.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/resource.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/binaries.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/constraints.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/operators.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/polynomial.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/quadratic.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/base/results.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/decoding.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/maxcut.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/graph/partition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierqboost.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/clustering.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/clusteringbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/decomposition.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/forecast.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/regressor.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/ml/reservoir.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/process/base.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/process/mpc.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/sequence/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/sequence/tsp.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/eqcdirect.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/mip.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/solvers/responselog.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/__init__.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/fileio.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/general.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
- {eqc_models-0.15.0.data → eqc_models-0.15.3.data}/platlib/eqc_models/utilities/qplib.py +0 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/licenses/LICENSE.txt +0 -0
- {eqc_models-0.15.0.dist-info → eqc_models-0.15.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,782 @@
|
|
|
1
|
+
# (C) Quantum Computing Inc., 2025.
|
|
2
|
+
from dataclasses import dataclass, field
|
|
3
|
+
from typing import Callable, Dict, List, Tuple, Optional, Sequence, Union
|
|
4
|
+
import numpy as np
|
|
5
|
+
from collections import defaultdict
|
|
6
|
+
from eqc_models.base.polynomial import PolynomialModel
|
|
7
|
+
|
|
8
|
+
Array = np.ndarray
|
|
9
|
+
PolyTerm = Tuple[Tuple[int, ...], float]
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@dataclass
|
|
13
|
+
class ALMConstraint:
|
|
14
|
+
"""One constraint family; fun returns a vector; jac returns its Jacobian."""
|
|
15
|
+
kind: str # "eq" or "ineq"
|
|
16
|
+
fun: Callable[[Array], Array] # h(x) or g(x)
|
|
17
|
+
jac: Optional[Callable[[Array], Array]] = None
|
|
18
|
+
name: str = ""
|
|
19
|
+
family: str = ""
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@dataclass
|
|
23
|
+
class ALMBlock:
|
|
24
|
+
"""Lifted discrete variable block (optional)."""
|
|
25
|
+
idx: Sequence[int] # indices of block in the full x
|
|
26
|
+
levels: Array # (k,) level values (b_i)
|
|
27
|
+
enforce_sum_to_one: bool = True # register as equality via helper
|
|
28
|
+
enforce_one_hot: bool = True # ALM linearization with M = 11^T - I
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@dataclass
|
|
32
|
+
class ALMConfig:
|
|
33
|
+
# penalties
|
|
34
|
+
rho_h: float = 50.0 # equalities
|
|
35
|
+
rho_g: float = 50.0 # inequalities / one-hot
|
|
36
|
+
rho_min: float = 1e-3
|
|
37
|
+
rho_max: float = 1e3
|
|
38
|
+
# per-family penalty overrides
|
|
39
|
+
rho_eq_family: Dict[str, float] = field(default_factory=dict)
|
|
40
|
+
rho_ineq_family: Dict[str, float] = field(default_factory=dict)
|
|
41
|
+
# allow per-family adaptation toggle (optional)
|
|
42
|
+
adapt_by_family: bool = True
|
|
43
|
+
# adaptation toggles
|
|
44
|
+
adapt: bool = True
|
|
45
|
+
tau_up_h: float = 0.90
|
|
46
|
+
tau_down_h: float = 0.50
|
|
47
|
+
tau_up_g: float = 0.90
|
|
48
|
+
tau_down_g: float = 0.50
|
|
49
|
+
gamma_up: float = 2.0
|
|
50
|
+
gamma_down: float = 1.0
|
|
51
|
+
# tolerances & loop
|
|
52
|
+
tol_h: float = 1e-6
|
|
53
|
+
tol_g: float = 1e-6
|
|
54
|
+
max_outer: int = 100
|
|
55
|
+
# stagnation safety net
|
|
56
|
+
use_stagnation_bump: bool = True
|
|
57
|
+
patience_h: int = 10
|
|
58
|
+
patience_g: int = 10
|
|
59
|
+
stagnation_factor: float = 1e-3
|
|
60
|
+
# smoothing (optional)
|
|
61
|
+
ema_alpha: float = 0.3
|
|
62
|
+
# finite diff (only used if jac=None)
|
|
63
|
+
fd_eps: float = 1e-6
|
|
64
|
+
# activation threshold for projected ALM
|
|
65
|
+
act_tol: float = 1e-10
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class ConstraintRegistry:
|
|
69
|
+
"""
|
|
70
|
+
Holds constraints and block metadata; keeps ALMAlgorithm stateless. Register constraints and
|
|
71
|
+
(optional) lifted-discrete blocks here.
|
|
72
|
+
"""
|
|
73
|
+
def __init__(self):
|
|
74
|
+
self.constraints: List[ALMConstraint] = []
|
|
75
|
+
self.blocks: List[ALMBlock] = []
|
|
76
|
+
|
|
77
|
+
def add_equality(self, fun, jac=None, name="", family=""):
|
|
78
|
+
self.constraints.append(ALMConstraint("eq", fun, jac, name, family))
|
|
79
|
+
|
|
80
|
+
def add_inequality(self, fun, jac=None, name="", family=""):
|
|
81
|
+
self.constraints.append(ALMConstraint("ineq", fun, jac, name, family))
|
|
82
|
+
|
|
83
|
+
def add_block(self, idx: Sequence[int], levels: Array, sum_to_one=True, one_hot=True):
|
|
84
|
+
self.blocks.append(ALMBlock(list(idx), np.asarray(levels, float), sum_to_one, one_hot))
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class ALMAlgorithm:
|
|
88
|
+
"""Stateless ALM outer loop. Call `run(model, registry, core, cfg, **core_kwargs)`."""
|
|
89
|
+
|
|
90
|
+
# ---- helpers (static) ----
|
|
91
|
+
@staticmethod
|
|
92
|
+
def _finite_diff_jac(fun: Callable[[Array], Array], x: Array, eps: float) -> Array:
|
|
93
|
+
y0 = fun(x)
|
|
94
|
+
m = int(np.prod(y0.shape))
|
|
95
|
+
y0 = y0.reshape(-1)
|
|
96
|
+
n = x.size
|
|
97
|
+
J = np.zeros((m, n), dtype=float)
|
|
98
|
+
for j in range(n):
|
|
99
|
+
xp = x.copy()
|
|
100
|
+
xp[j] += eps
|
|
101
|
+
J[:, j] = (fun(xp).reshape(-1) - y0) / eps
|
|
102
|
+
return J
|
|
103
|
+
|
|
104
|
+
@staticmethod
|
|
105
|
+
def _pairwise_M(k: int) -> Array:
|
|
106
|
+
return np.ones((k, k), dtype=float) - np.eye(k, dtype=float)
|
|
107
|
+
|
|
108
|
+
@staticmethod
|
|
109
|
+
def _sum_to_one_selector(n: int, idx: Sequence[int]) -> Array:
|
|
110
|
+
S = np.zeros((1, n), dtype=float)
|
|
111
|
+
S[0, np.array(list(idx), int)] = 1.0
|
|
112
|
+
return S
|
|
113
|
+
|
|
114
|
+
@staticmethod
|
|
115
|
+
def _make_sum1_fun(S):
|
|
116
|
+
return lambda x: S @ x - np.array([1.0])
|
|
117
|
+
|
|
118
|
+
@staticmethod
|
|
119
|
+
def _make_sum1_jac(S):
|
|
120
|
+
return lambda x: S
|
|
121
|
+
|
|
122
|
+
@staticmethod
|
|
123
|
+
def _make_onehot_fun(sl, M):
|
|
124
|
+
sl = np.array(sl, int)
|
|
125
|
+
|
|
126
|
+
def _f(x):
|
|
127
|
+
s = x[sl]
|
|
128
|
+
return np.array([float(s @ (M @ s))]) # shape (1,)
|
|
129
|
+
|
|
130
|
+
return _f
|
|
131
|
+
|
|
132
|
+
@staticmethod
|
|
133
|
+
def _make_onehot_jac(sl, M, n):
|
|
134
|
+
sl = np.array(sl, int)
|
|
135
|
+
|
|
136
|
+
def _J(x):
|
|
137
|
+
s = x[sl]
|
|
138
|
+
grad_blk = 2.0 * (M @ s) # (k,)
|
|
139
|
+
J = np.zeros((1, n), dtype=float) # shape (1, n)
|
|
140
|
+
J[0, sl] = grad_blk
|
|
141
|
+
return J
|
|
142
|
+
|
|
143
|
+
return _J
|
|
144
|
+
|
|
145
|
+
@staticmethod
|
|
146
|
+
def _poly_value(poly_terms: List[PolyTerm], x: Array) -> float:
|
|
147
|
+
val = 0.0
|
|
148
|
+
for inds, coeff in poly_terms:
|
|
149
|
+
prod = 1.0
|
|
150
|
+
for j in inds:
|
|
151
|
+
if j == 0:
|
|
152
|
+
continue
|
|
153
|
+
else:
|
|
154
|
+
prod *= x[j - 1]
|
|
155
|
+
val += coeff * prod
|
|
156
|
+
return float(val)
|
|
157
|
+
|
|
158
|
+
@staticmethod
|
|
159
|
+
def _merge_poly(poly_terms: Optional[List[PolyTerm]], Q_aug: Optional[Array],
|
|
160
|
+
c_aug: Optional[Array]) -> List[PolyTerm]:
|
|
161
|
+
"""
|
|
162
|
+
Merge ALM's quadratic/linear increments (Q_aug, c_aug) into the base polynomial term list `poly_terms`.
|
|
163
|
+
If 'poly_terms' is None, then turn x^T Q_aug x + c_aug^T x into polynomial monomials.
|
|
164
|
+
Terms are of the form:
|
|
165
|
+
((0, i), w) for linear, ((i, j), w) for quadratic.
|
|
166
|
+
"""
|
|
167
|
+
merged = list(poly_terms) if poly_terms is not None else []
|
|
168
|
+
|
|
169
|
+
if Q_aug is not None:
|
|
170
|
+
Qs = 0.5 * (Q_aug + Q_aug.T)
|
|
171
|
+
n = Qs.shape[0]
|
|
172
|
+
for i in range(n):
|
|
173
|
+
# diagonal contributes Qii * x_i^2
|
|
174
|
+
if Qs[i, i] != 0.0:
|
|
175
|
+
merged.append(((i + 1, i + 1), float(Qs[i, i])))
|
|
176
|
+
for j in range(i + 1, n):
|
|
177
|
+
q = 2.0 * Qs[i, j] # x^T Q x -> sum_{i<j} 2*Q_ij x_i x_j
|
|
178
|
+
if q != 0.0:
|
|
179
|
+
merged.append(((i + 1, j + 1), float(q)))
|
|
180
|
+
if c_aug is not None:
|
|
181
|
+
for i, ci in enumerate(c_aug):
|
|
182
|
+
if ci != 0.0:
|
|
183
|
+
merged.append(((0, i + 1), float(ci)))
|
|
184
|
+
return merged
|
|
185
|
+
|
|
186
|
+
@staticmethod
|
|
187
|
+
def _block_offsets(blocks: List[ALMBlock]) -> List[int]:
|
|
188
|
+
"""
|
|
189
|
+
Return starting offsets (0-based) for each lifted block in the
|
|
190
|
+
concatenated s-vector.
|
|
191
|
+
"""
|
|
192
|
+
offs, pos = [], 0
|
|
193
|
+
for blk in blocks:
|
|
194
|
+
offs.append(pos)
|
|
195
|
+
pos += len(blk.levels) # each block contributes k lifted coordinates
|
|
196
|
+
return offs
|
|
197
|
+
|
|
198
|
+
@staticmethod
|
|
199
|
+
def lift_Qc_to_poly_terms(
|
|
200
|
+
Q_native: np.ndarray, # shape (m, m) over original discrete vars (one block per var)
|
|
201
|
+
c_native: np.ndarray, # shape (m,)
|
|
202
|
+
blocks: List[ALMBlock], # ALM blocks (in the same order as the rows/cols of Q_native, c_native)
|
|
203
|
+
) -> Tuple[List[Tuple[int, ...]], List[float]]:
|
|
204
|
+
"""
|
|
205
|
+
Expand a quadratic/linear objective over m native discrete variables into the lifted
|
|
206
|
+
(one-hot) s-space.
|
|
207
|
+
|
|
208
|
+
Given `Q_native` and `c_native` over original m discrete vars (one block per var), and
|
|
209
|
+
`blocks` (`list[ALMBlock]` in the same order as original vars), we enforce:
|
|
210
|
+
- For variable i with level values b_i (length k_i), we create k_i lifted coords s_{i,a}.
|
|
211
|
+
- Quadratic term: J_ij = Q_native[i,j] * (b_i b_j^T) contributes to pairs (s_{i,a}, s_{j,b})
|
|
212
|
+
- Linear term: C_i = c_native[i] * b_i contributes to s_{i,a}
|
|
213
|
+
|
|
214
|
+
Returns polynomial (indices, coeffs) over concatenated s variables.
|
|
215
|
+
"""
|
|
216
|
+
m = len(blocks)
|
|
217
|
+
assert Q_native.shape == (m, m), "Q_native must match number of blocks"
|
|
218
|
+
assert c_native.shape == (m,), "c_native must match number of blocks"
|
|
219
|
+
|
|
220
|
+
offs = ALMAlgorithm._block_offsets(blocks)
|
|
221
|
+
terms_acc = defaultdict(float)
|
|
222
|
+
|
|
223
|
+
# Quadratic lift: J = kron-expansion
|
|
224
|
+
for i in range(m):
|
|
225
|
+
bi = blocks[i].levels[:, None] # (k_i, 1)
|
|
226
|
+
oi = offs[i]
|
|
227
|
+
for j in range(m):
|
|
228
|
+
bj = blocks[j].levels[:, None] # (k_j, 1)
|
|
229
|
+
oj = offs[j]
|
|
230
|
+
J_ij = Q_native[i, j] * (bi @ bj.T) # (k_i, k_j)
|
|
231
|
+
if np.allclose(J_ij, 0.0):
|
|
232
|
+
continue
|
|
233
|
+
ki, kj = bi.shape[0], bj.shape[0]
|
|
234
|
+
for a in range(ki):
|
|
235
|
+
ia = oi + a + 1
|
|
236
|
+
for b in range(kj):
|
|
237
|
+
jb = oj + b + 1
|
|
238
|
+
w = float(J_ij[a, b])
|
|
239
|
+
if w == 0.0:
|
|
240
|
+
continue
|
|
241
|
+
if ia == jb:
|
|
242
|
+
terms_acc[(ia, ia)] += w
|
|
243
|
+
else:
|
|
244
|
+
# NOTE: we store each cross monomial once (i < j); for i==j block pairs,
|
|
245
|
+
# double to represent J_ab + J_ba
|
|
246
|
+
if i == j: # intra-block off-diagonal needs 2x
|
|
247
|
+
w *= 2.0
|
|
248
|
+
i1, i2 = (ia, jb) if ia < jb else (jb, ia)
|
|
249
|
+
terms_acc[(i1, i2)] += w
|
|
250
|
+
|
|
251
|
+
# Linear lift: C_i = L_i * b_i
|
|
252
|
+
for i in range(m):
|
|
253
|
+
b = blocks[i].levels
|
|
254
|
+
oi = offs[i]
|
|
255
|
+
for a, val in enumerate(b):
|
|
256
|
+
ia = oi + a + 1
|
|
257
|
+
w = float(c_native[i] * val)
|
|
258
|
+
if w != 0.0:
|
|
259
|
+
terms_acc[(0, ia)] += w
|
|
260
|
+
|
|
261
|
+
# Pack to PolynomialModel format
|
|
262
|
+
indices = [tuple(k) for k in terms_acc.keys()]
|
|
263
|
+
coeffs = [float(v) for v in terms_acc.values()]
|
|
264
|
+
return indices, coeffs
|
|
265
|
+
|
|
266
|
+
# ---- main entrypoint ----
|
|
267
|
+
@staticmethod
|
|
268
|
+
def run(
|
|
269
|
+
base_model: PolynomialModel,
|
|
270
|
+
registry: ConstraintRegistry,
|
|
271
|
+
solver,
|
|
272
|
+
cfg: ALMConfig = ALMConfig(),
|
|
273
|
+
x0: Optional[Array] = None,
|
|
274
|
+
*,
|
|
275
|
+
parse_output=None,
|
|
276
|
+
verbose: bool = True,
|
|
277
|
+
**solver_kwargs,
|
|
278
|
+
) -> Dict[str, Union[Array, Dict[int, float], Dict]]:
|
|
279
|
+
"""
|
|
280
|
+
Solve with ALM. Keep all ALM state local to this call (no global side-effects).
|
|
281
|
+
Handles three modes:
|
|
282
|
+
(A) No blocks -> continuous; use base_model as-is
|
|
283
|
+
(B) Blocks + native base_model -> lift to s-space
|
|
284
|
+
(C) Blocks + already-lifted base_model -> use as-is (compat)
|
|
285
|
+
|
|
286
|
+
Returns:
|
|
287
|
+
{
|
|
288
|
+
"x": final iterate,
|
|
289
|
+
"decoded": {start_idx_of_block: level_value, ...} for lifted blocks,
|
|
290
|
+
"decoded_debug": {start_idx_of_block: native_device_value, ...},
|
|
291
|
+
"hist": { "eq_inf": [...], "ineq_inf": [...], "obj": [...], "x": [...] }
|
|
292
|
+
}
|
|
293
|
+
"""
|
|
294
|
+
blocks = registry.blocks
|
|
295
|
+
has_blocks = len(blocks) > 0
|
|
296
|
+
|
|
297
|
+
# ---- choose working model + dimension n ----
|
|
298
|
+
if not has_blocks:
|
|
299
|
+
# (A) continuous case: use the provided model directly
|
|
300
|
+
model = base_model
|
|
301
|
+
# Prefer model.n, fall back to bounds; else infer from polynomial indices
|
|
302
|
+
n = getattr(model, "n", None)
|
|
303
|
+
if n is None:
|
|
304
|
+
ub = getattr(model, "upper_bound", None)
|
|
305
|
+
lb = getattr(model, "lower_bound", None)
|
|
306
|
+
if ub is not None:
|
|
307
|
+
n = len(ub)
|
|
308
|
+
elif lb is not None:
|
|
309
|
+
n = len(lb)
|
|
310
|
+
else:
|
|
311
|
+
# infer from polynomial terms
|
|
312
|
+
n = 0
|
|
313
|
+
for inds in getattr(model, "indices", getattr(model.polynomial, "indices", [])):
|
|
314
|
+
for j in inds:
|
|
315
|
+
if j > 0:
|
|
316
|
+
n = max(n, j)
|
|
317
|
+
lifted_slices: List[List[int]] = []
|
|
318
|
+
|
|
319
|
+
else:
|
|
320
|
+
# (B/C) lifted (discrete) case
|
|
321
|
+
target_lifted_n = sum(len(blk.levels) for blk in blocks)
|
|
322
|
+
base_n = getattr(base_model, "n", None)
|
|
323
|
+
|
|
324
|
+
def _infer_n_from_terms(pm: PolynomialModel) -> int:
|
|
325
|
+
inds_list = getattr(pm, "indices", getattr(pm.polynomial, "indices", []))
|
|
326
|
+
mx = 0
|
|
327
|
+
for inds in inds_list:
|
|
328
|
+
for j in inds:
|
|
329
|
+
if j > mx:
|
|
330
|
+
mx = j
|
|
331
|
+
return int(mx)
|
|
332
|
+
|
|
333
|
+
if base_n is None:
|
|
334
|
+
base_n = _infer_n_from_terms(base_model)
|
|
335
|
+
|
|
336
|
+
# detect "already-lifted" native input (compat path)
|
|
337
|
+
already_lifted = (base_n == target_lifted_n)
|
|
338
|
+
|
|
339
|
+
if already_lifted:
|
|
340
|
+
# (C) use provided model directly; assume bounds already sensible
|
|
341
|
+
model = base_model
|
|
342
|
+
n = target_lifted_n
|
|
343
|
+
else:
|
|
344
|
+
# (B) lift from native space
|
|
345
|
+
# base_model must expose coefficients/indices compatible with this call
|
|
346
|
+
c_base, Q_base = base_model._quadratic_polynomial_to_qubo_coefficients(
|
|
347
|
+
getattr(base_model, "coefficients", getattr(base_model.polynomial, "coefficients", [])),
|
|
348
|
+
getattr(base_model, "indices", getattr(base_model.polynomial, "indices", [])),
|
|
349
|
+
getattr(base_model, "n")
|
|
350
|
+
)
|
|
351
|
+
assert Q_base.shape[0] == Q_base.shape[1]
|
|
352
|
+
assert c_base.shape[0] == Q_base.shape[0]
|
|
353
|
+
indices_lifted, coeffs_lifted = ALMAlgorithm.lift_Qc_to_poly_terms(Q_base, c_base, blocks)
|
|
354
|
+
model = PolynomialModel(coeffs_lifted, indices_lifted)
|
|
355
|
+
n = target_lifted_n
|
|
356
|
+
# set canonical [0,1] bounds for lifted s
|
|
357
|
+
setattr(model, "lower_bound", np.zeros(n, float))
|
|
358
|
+
setattr(model, "upper_bound", np.ones(n, float))
|
|
359
|
+
|
|
360
|
+
# ---- n and lifted_slices ----
|
|
361
|
+
lifted_slices = []
|
|
362
|
+
pos = 0
|
|
363
|
+
for blk in blocks:
|
|
364
|
+
k = len(blk.levels) # number of lifted coords for this block
|
|
365
|
+
lifted_slices.append(list(range(pos, pos + k))) # 0-based in lifted x
|
|
366
|
+
pos += k
|
|
367
|
+
|
|
368
|
+
# Algorithm initial solution and bounds
|
|
369
|
+
lb = getattr(model, "lower_bound", None)
|
|
370
|
+
ub = getattr(model, "upper_bound", None)
|
|
371
|
+
if x0 is not None:
|
|
372
|
+
x = np.asarray(x0, float).copy()
|
|
373
|
+
else:
|
|
374
|
+
# default init
|
|
375
|
+
if (lb is not None) and (ub is not None) and np.all(np.isfinite(lb)) and np.all(np.isfinite(ub)):
|
|
376
|
+
x = 0.5 * (np.asarray(lb, float) + np.asarray(ub, float))
|
|
377
|
+
else:
|
|
378
|
+
x = np.zeros(n, float)
|
|
379
|
+
|
|
380
|
+
# ---- collect constraints ----
|
|
381
|
+
problem_eqs = [c for c in registry.constraints if c.kind == "eq"]
|
|
382
|
+
problem_ineqs = [c for c in registry.constraints if c.kind == "ineq"]
|
|
383
|
+
|
|
384
|
+
# auto-install sum-to-one and one-hot as equalities
|
|
385
|
+
# (One-hot: s^T (11^T - I) s = 0))
|
|
386
|
+
def _install_block_equalities() -> List[ALMConstraint]:
|
|
387
|
+
if not has_blocks:
|
|
388
|
+
return []
|
|
389
|
+
eqs: List[ALMConstraint] = []
|
|
390
|
+
for blk, lift_idx in zip(registry.blocks, lifted_slices):
|
|
391
|
+
if blk.enforce_sum_to_one:
|
|
392
|
+
S = ALMAlgorithm._sum_to_one_selector(n, lift_idx)
|
|
393
|
+
eqs.append(ALMConstraint(
|
|
394
|
+
"eq",
|
|
395
|
+
fun=ALMAlgorithm._make_sum1_fun(S),
|
|
396
|
+
jac=ALMAlgorithm._make_sum1_jac(S),
|
|
397
|
+
name=f"sum_to_one_block_{lift_idx[0]}",
|
|
398
|
+
family="block_sum1",
|
|
399
|
+
))
|
|
400
|
+
if blk.enforce_one_hot:
|
|
401
|
+
k = len(lift_idx)
|
|
402
|
+
M = ALMAlgorithm._pairwise_M(k)
|
|
403
|
+
eqs.append(ALMConstraint(
|
|
404
|
+
"eq",
|
|
405
|
+
fun=ALMAlgorithm._make_onehot_fun(lift_idx, M),
|
|
406
|
+
jac=ALMAlgorithm._make_onehot_jac(lift_idx, M, n),
|
|
407
|
+
name=f"onehot_block_{lift_idx[0]}",
|
|
408
|
+
family="block_onehot",
|
|
409
|
+
))
|
|
410
|
+
return eqs
|
|
411
|
+
|
|
412
|
+
block_eqs = _install_block_equalities()
|
|
413
|
+
|
|
414
|
+
# Unified equality list (order is fixed for whole run)
|
|
415
|
+
full_eqs = problem_eqs + block_eqs
|
|
416
|
+
|
|
417
|
+
# Allocate multipliers for every equality in full_eqs
|
|
418
|
+
lam_eq = []
|
|
419
|
+
for csp in full_eqs:
|
|
420
|
+
r0 = csp.fun(x).reshape(-1)
|
|
421
|
+
lam_eq.append(np.zeros_like(r0, dtype=float))
|
|
422
|
+
|
|
423
|
+
# Inequality multipliers per user inequality
|
|
424
|
+
mu_ineq = []
|
|
425
|
+
for csp in problem_ineqs:
|
|
426
|
+
r0 = csp.fun(x).reshape(-1)
|
|
427
|
+
mu_ineq.append(np.zeros_like(r0, dtype=float))
|
|
428
|
+
|
|
429
|
+
rho_eq_family = dict(getattr(cfg, "rho_eq_family", {}) or {})
|
|
430
|
+
rho_ineq_family = dict(getattr(cfg, "rho_ineq_family", {}) or {})
|
|
431
|
+
|
|
432
|
+
def _rho_for(csp_k: ALMConstraint) -> float:
|
|
433
|
+
fam = getattr(csp_k, "family", "") or ""
|
|
434
|
+
if csp_k.kind == "eq":
|
|
435
|
+
return float(rho_eq_family.get(fam, rho_h))
|
|
436
|
+
else:
|
|
437
|
+
return float(rho_ineq_family.get(fam, rho_g))
|
|
438
|
+
|
|
439
|
+
# -------- running stats for adaptive penalties --------
|
|
440
|
+
rho_h, rho_g = cfg.rho_h, cfg.rho_g
|
|
441
|
+
best_eq, best_ineq = np.inf, np.inf
|
|
442
|
+
no_imp_eq = no_imp_ineq = 0
|
|
443
|
+
prev_eq_inf, prev_ineq_inf = np.inf, np.inf
|
|
444
|
+
eps = 1e-12
|
|
445
|
+
prev_eq_inf_by_family, prev_ineq_inf_by_family = {}, {}
|
|
446
|
+
# ---- per-family stagnation tracking (only used when cfg.adapt_by_family=True)
|
|
447
|
+
best_eq_by_family: Dict[str, float] = {}
|
|
448
|
+
best_ineq_by_family: Dict[str, float] = {}
|
|
449
|
+
no_imp_eq_by_family: Dict[str, int] = {}
|
|
450
|
+
no_imp_ineq_by_family: Dict[str, int] = {}
|
|
451
|
+
|
|
452
|
+
hist = {"eq_inf": [], "ineq_inf": [], "obj": [], "x": [],
|
|
453
|
+
# per-iteration logs for parameters/multipliers
|
|
454
|
+
"rho_h": [], "rho_g": [],
|
|
455
|
+
"rho_eq_family": [], "rho_ineq_family": [],
|
|
456
|
+
"eq_inf_by_family": [], "ineq_inf_by_family": [],
|
|
457
|
+
}
|
|
458
|
+
for k_idx, csp in enumerate(full_eqs):
|
|
459
|
+
if csp.kind != "eq":
|
|
460
|
+
continue
|
|
461
|
+
hist[f"lam_eq_max_idx{k_idx}"] = []
|
|
462
|
+
hist[f"lam_eq_min_idx{k_idx}"] = []
|
|
463
|
+
for k_idx, csp in enumerate(problem_ineqs):
|
|
464
|
+
if csp.kind != "ineq":
|
|
465
|
+
continue
|
|
466
|
+
hist[f"mu_ineq_max_idx{k_idx}"] = []
|
|
467
|
+
hist[f"mu_ineq_min_idx{k_idx}"] = []
|
|
468
|
+
|
|
469
|
+
for it in range(cfg.max_outer):
|
|
470
|
+
# -------- base polynomial (does not include fixed penalties here) --------
|
|
471
|
+
base_terms: List[PolyTerm] = list(zip(model.polynomial.indices, model.polynomial.coefficients))
|
|
472
|
+
|
|
473
|
+
# -------- ALM quadratic/linear pieces (assembled here, kept separate) --------
|
|
474
|
+
Q_aug = np.zeros((n, n), dtype=float)
|
|
475
|
+
c_aug = np.zeros(n, dtype=float)
|
|
476
|
+
have_aug = False
|
|
477
|
+
|
|
478
|
+
# (A) Equalities: linearize h near x^t => (rho/2)||A x - b||^2 + lam^T(Ax - b)
|
|
479
|
+
for k_idx, csp in enumerate(full_eqs):
|
|
480
|
+
if csp.kind != "eq":
|
|
481
|
+
continue
|
|
482
|
+
h = csp.fun(x).reshape(-1)
|
|
483
|
+
A = csp.jac(x) if csp.jac is not None else ALMAlgorithm._finite_diff_jac(csp.fun, x, cfg.fd_eps)
|
|
484
|
+
A = np.atleast_2d(A)
|
|
485
|
+
assert A.shape[1] == n, f"A has {A.shape[1]} cols, expected {n}"
|
|
486
|
+
# linearization about current x: residual model r(x) = A x - b, with b = A x - h
|
|
487
|
+
b = A @ x - h
|
|
488
|
+
rho_k = _rho_for(csp)
|
|
489
|
+
Qk = 0.5 * rho_k * (A.T @ A)
|
|
490
|
+
ck = (A.T @ lam_eq[k_idx]) - rho_k * (A.T @ b)
|
|
491
|
+
Q_aug += Qk
|
|
492
|
+
c_aug += ck
|
|
493
|
+
have_aug = True
|
|
494
|
+
|
|
495
|
+
# (B) Inequalities: projected ALM. Linearize g near x^t.
|
|
496
|
+
for k_idx, csp in enumerate(problem_ineqs):
|
|
497
|
+
if csp.kind != "ineq":
|
|
498
|
+
continue
|
|
499
|
+
g = csp.fun(x).reshape(-1)
|
|
500
|
+
G = csp.jac(x) if csp.jac is not None else ALMAlgorithm._finite_diff_jac(csp.fun, x, cfg.fd_eps)
|
|
501
|
+
G = np.atleast_2d(G)
|
|
502
|
+
assert G.shape[1] == n, f"G has {G.shape[1]} cols, expected {n}"
|
|
503
|
+
d = G @ x - g
|
|
504
|
+
rho_k = _rho_for(csp)
|
|
505
|
+
# Activation measure at current iterate; meaning, the current violating inequality components:
|
|
506
|
+
# g(x) + mu/rho; Powell-Hestenes-Rockafellar shifted residual
|
|
507
|
+
y = G @ x - d + mu_ineq[k_idx] / rho_k
|
|
508
|
+
active = (y > cfg.act_tol)
|
|
509
|
+
if np.any(active):
|
|
510
|
+
GA = G[active, :]
|
|
511
|
+
muA = mu_ineq[k_idx][active]
|
|
512
|
+
gA = g[active]
|
|
513
|
+
# Q += (rho/2) * GA^T GA
|
|
514
|
+
Qk = 0.5 * rho_k * (GA.T @ GA)
|
|
515
|
+
# c += GA^T mu - rho * GA^T (GA x - gA); where GA x - gA is active measures of d = G @ x - g
|
|
516
|
+
ck = (GA.T @ muA) - rho_k * (GA.T @ (GA @ x - gA))
|
|
517
|
+
Q_aug += Qk
|
|
518
|
+
c_aug += ck
|
|
519
|
+
have_aug = True
|
|
520
|
+
|
|
521
|
+
# -------- build merged polynomial for the core solver --------
|
|
522
|
+
all_terms = ALMAlgorithm._merge_poly(base_terms, Q_aug if have_aug else None,
|
|
523
|
+
c_aug if have_aug else None)
|
|
524
|
+
idxs, coeffs = zip(*[(inds, w) for (inds, w) in all_terms]) if all_terms else ([], [])
|
|
525
|
+
poly_model = PolynomialModel(list(coeffs), list(idxs))
|
|
526
|
+
if lb is not None and hasattr(poly_model, "lower_bound"):
|
|
527
|
+
poly_model.lower_bound = np.asarray(lb, float)
|
|
528
|
+
if ub is not None and hasattr(poly_model, "upper_bound"):
|
|
529
|
+
poly_model.upper_bound = np.asarray(ub, float)
|
|
530
|
+
|
|
531
|
+
x_ws = x.copy()
|
|
532
|
+
|
|
533
|
+
# Convention: many cores look for one of these fields if present.
|
|
534
|
+
# Use one or more to be future-proof; harmless if ignored.
|
|
535
|
+
setattr(poly_model, "initial_guess", x_ws)
|
|
536
|
+
setattr(poly_model, "warm_start", x_ws)
|
|
537
|
+
setattr(poly_model, "x0", x_ws)
|
|
538
|
+
|
|
539
|
+
# -------- inner solve --------
|
|
540
|
+
out = solver.solve(poly_model, **solver_kwargs)
|
|
541
|
+
|
|
542
|
+
# -------- parse --------
|
|
543
|
+
if parse_output:
|
|
544
|
+
x = parse_output(out)
|
|
545
|
+
else:
|
|
546
|
+
# default: support (value, x) or `.x` or raw x
|
|
547
|
+
if isinstance(out, tuple) and len(out) == 2:
|
|
548
|
+
_, x = out
|
|
549
|
+
elif isinstance(out, dict) and "results" in out and "solutions" in out["results"]:
|
|
550
|
+
x = out["results"]["solutions"][0]
|
|
551
|
+
elif isinstance(out, dict) and "x" in out:
|
|
552
|
+
x = out["x"]
|
|
553
|
+
else:
|
|
554
|
+
x = getattr(out, "x", out)
|
|
555
|
+
x = np.asarray(x, float)
|
|
556
|
+
|
|
557
|
+
# ---- multiplier tracking ----
|
|
558
|
+
for k_idx, csp in enumerate(full_eqs):
|
|
559
|
+
if csp.kind != "eq": continue
|
|
560
|
+
hist[f"lam_eq_max_idx{k_idx}"].append(float(np.max(lam_eq[k_idx])))
|
|
561
|
+
hist[f"lam_eq_min_idx{k_idx}"].append(float(np.min(lam_eq[k_idx])))
|
|
562
|
+
for k_idx, csp in enumerate(problem_ineqs):
|
|
563
|
+
if csp.kind != "ineq": continue
|
|
564
|
+
hist[f"mu_ineq_max_idx{k_idx}"].append(float(np.max(mu_ineq[k_idx])))
|
|
565
|
+
hist[f"mu_ineq_min_idx{k_idx}"].append(float(np.min(mu_ineq[k_idx])))
|
|
566
|
+
|
|
567
|
+
# -------- residuals + multiplier updates --------
|
|
568
|
+
eq_infs = []
|
|
569
|
+
for k_idx, csp in enumerate(full_eqs):
|
|
570
|
+
if csp.kind != "eq": continue
|
|
571
|
+
r = csp.fun(x).reshape(-1)
|
|
572
|
+
rho_k = _rho_for(csp)
|
|
573
|
+
lam_eq[k_idx] = lam_eq[k_idx] + rho_k * r
|
|
574
|
+
if r.size:
|
|
575
|
+
eq_infs.append(np.max(np.abs(r)))
|
|
576
|
+
eq_inf = float(np.max(eq_infs)) if eq_infs else 0.0
|
|
577
|
+
|
|
578
|
+
ineq_infs = []
|
|
579
|
+
for k_idx, csp in enumerate(problem_ineqs):
|
|
580
|
+
if csp.kind != "ineq": continue
|
|
581
|
+
r = csp.fun(x).reshape(-1)
|
|
582
|
+
rho_k = _rho_for(csp)
|
|
583
|
+
mu_ineq[k_idx] = np.maximum(0.0, mu_ineq[k_idx] + rho_k * r)
|
|
584
|
+
if r.size:
|
|
585
|
+
ineq_infs.append(np.max(np.maximum(0.0, r)))
|
|
586
|
+
ineq_inf = float(np.max(ineq_infs)) if ineq_infs else 0.0
|
|
587
|
+
|
|
588
|
+
assert len(lam_eq) == len(full_eqs)
|
|
589
|
+
assert len(mu_ineq) == len(problem_ineqs)
|
|
590
|
+
|
|
591
|
+
# ---- per-family residual telemetry ----
|
|
592
|
+
eq_inf_by_family = {}
|
|
593
|
+
for k_idx, csp in enumerate(full_eqs):
|
|
594
|
+
if csp.kind != "eq": continue
|
|
595
|
+
fam = getattr(csp, "family", "") or ""
|
|
596
|
+
r = csp.fun(x).reshape(-1)
|
|
597
|
+
v = float(np.max(np.abs(r))) if r.size else 0.0
|
|
598
|
+
eq_inf_by_family[fam] = max(eq_inf_by_family.get(fam, 0.0), v)
|
|
599
|
+
|
|
600
|
+
ineq_inf_by_family = {}
|
|
601
|
+
for k_idx, csp in enumerate(problem_ineqs):
|
|
602
|
+
if csp.kind != "ineq": continue
|
|
603
|
+
fam = getattr(csp, "family", "") or ""
|
|
604
|
+
r = csp.fun(x).reshape(-1)
|
|
605
|
+
v = float(np.max(np.maximum(0.0, r))) if r.size else 0.0
|
|
606
|
+
ineq_inf_by_family[fam] = max(ineq_inf_by_family.get(fam, 0.0), v)
|
|
607
|
+
|
|
608
|
+
# evaluate base polynomial only (ca add aug value if want to track full L_A)
|
|
609
|
+
f_val = ALMAlgorithm._poly_value(base_terms, x)
|
|
610
|
+
|
|
611
|
+
hist["eq_inf"].append(eq_inf); hist["ineq_inf"].append(ineq_inf)
|
|
612
|
+
hist["obj"].append(float(f_val)); hist["x"].append(x.copy())
|
|
613
|
+
# parameter tracking
|
|
614
|
+
hist["rho_h"].append(float(rho_h)); hist["rho_g"].append(float(rho_g))
|
|
615
|
+
hist["rho_eq_family"].append(dict(rho_eq_family))
|
|
616
|
+
hist["rho_ineq_family"].append(dict(rho_ineq_family))
|
|
617
|
+
hist["eq_inf_by_family"].append(dict(eq_inf_by_family))
|
|
618
|
+
hist["ineq_inf_by_family"].append(dict(ineq_inf_by_family))
|
|
619
|
+
|
|
620
|
+
if verbose:
|
|
621
|
+
# show worst 3 equality families by residual, with their rhos
|
|
622
|
+
eq_items = sorted(eq_inf_by_family.items(), key=lambda kv: kv[1], reverse=True)
|
|
623
|
+
eq_top = eq_items[:3]
|
|
624
|
+
eq_str = ",".join([
|
|
625
|
+
f"{fam or 'eq'}:{val:.2e}@"
|
|
626
|
+
f"{_rho_for(next(c for c in full_eqs if (getattr(c,'family','') or '')==fam and c.kind=='eq')):.1g}"
|
|
627
|
+
for fam, val in eq_top
|
|
628
|
+
])
|
|
629
|
+
# show worst 3 inequality families by residual, with their rhos
|
|
630
|
+
ineq_items = sorted(ineq_inf_by_family.items(), key=lambda kv: kv[1], reverse=True)
|
|
631
|
+
ineq_top = ineq_items[:3]
|
|
632
|
+
ineq_str = ",".join([
|
|
633
|
+
f"{fam or 'ineq'}:{val:.2e}@"
|
|
634
|
+
f"{_rho_for(next(c for c in problem_ineqs if (getattr(c, 'family', '') or '') == fam and c.kind == 'ineq')):.1g}"
|
|
635
|
+
for fam, val in ineq_top
|
|
636
|
+
])
|
|
637
|
+
|
|
638
|
+
print(f"[ALM {it:02d}] f={f_val:.6g} | eq_inf={eq_inf:.2e} | ineq_inf={ineq_inf:.2e} "
|
|
639
|
+
f"| rho_h={rho_h:.2e} | rho_g={rho_g:.2e} | eq_fam[{eq_str}] | ineq_fam[{ineq_str}]")
|
|
640
|
+
|
|
641
|
+
# stopping
|
|
642
|
+
if eq_inf <= cfg.tol_h and ineq_inf <= cfg.tol_g:
|
|
643
|
+
if verbose:
|
|
644
|
+
print(f"[ALM] converged at iter {it}")
|
|
645
|
+
break
|
|
646
|
+
|
|
647
|
+
# EMA smoothing to reduce jitter
|
|
648
|
+
if it == 0:
|
|
649
|
+
eq_inf_smooth = eq_inf
|
|
650
|
+
ineq_inf_smooth = ineq_inf
|
|
651
|
+
else:
|
|
652
|
+
eq_inf_smooth = cfg.ema_alpha * eq_inf + (1 - cfg.ema_alpha) * eq_inf_smooth
|
|
653
|
+
ineq_inf_smooth = cfg.ema_alpha * ineq_inf + (1 - cfg.ema_alpha) * ineq_inf_smooth
|
|
654
|
+
|
|
655
|
+
# -------- Residual-ratio controller --------
|
|
656
|
+
if cfg.adapt and it > 0:
|
|
657
|
+
# per-family rho adaptation for equalities
|
|
658
|
+
if getattr(cfg, "adapt_by_family", False):
|
|
659
|
+
# Equality family
|
|
660
|
+
for fam, cur in eq_inf_by_family.items():
|
|
661
|
+
prev = max(prev_eq_inf_by_family.get(fam, cur), eps)
|
|
662
|
+
# rho value for family: if absent, start at rho_h
|
|
663
|
+
rho_f = float(rho_eq_family.get(fam, rho_h))
|
|
664
|
+
if cur > cfg.tau_up_h * prev:
|
|
665
|
+
rho_f = min(cfg.gamma_up * rho_f, cfg.rho_max)
|
|
666
|
+
elif cur < cfg.tau_down_h * prev:
|
|
667
|
+
rho_f = max(cfg.gamma_down * rho_f, cfg.rho_min)
|
|
668
|
+
rho_eq_family[fam] = rho_f
|
|
669
|
+
# update prev map
|
|
670
|
+
prev_eq_inf_by_family = dict(eq_inf_by_family)
|
|
671
|
+
|
|
672
|
+
# Inequality family
|
|
673
|
+
for fam, cur in ineq_inf_by_family.items():
|
|
674
|
+
prev = max(prev_ineq_inf_by_family.get(fam, cur), eps)
|
|
675
|
+
# rho value for family: if absent, start at rho_g
|
|
676
|
+
rho_f = float(rho_ineq_family.get(fam, rho_g))
|
|
677
|
+
if cur > cfg.tau_up_g * prev:
|
|
678
|
+
rho_f = min(cfg.gamma_up * rho_f, cfg.rho_max)
|
|
679
|
+
elif cur < cfg.tau_down_g * prev:
|
|
680
|
+
rho_f = max(cfg.gamma_down * rho_f, cfg.rho_min)
|
|
681
|
+
rho_ineq_family[fam] = rho_f
|
|
682
|
+
# update prev map
|
|
683
|
+
prev_ineq_inf_by_family = dict(ineq_inf_by_family)
|
|
684
|
+
else:
|
|
685
|
+
# Equality group
|
|
686
|
+
if eq_inf_smooth > cfg.tau_up_h * max(prev_eq_inf, eps): # stalled or not shrinking
|
|
687
|
+
rho_h = min(cfg.gamma_up * rho_h, cfg.rho_max)
|
|
688
|
+
elif eq_inf_smooth < cfg.tau_down_h * max(prev_eq_inf, eps): # fast progress, allow relaxation
|
|
689
|
+
rho_h = max(cfg.gamma_down * rho_h, cfg.rho_min)
|
|
690
|
+
|
|
691
|
+
# Inequality group
|
|
692
|
+
if ineq_inf_smooth > cfg.tau_up_g * max(prev_ineq_inf, eps):
|
|
693
|
+
rho_g = min(cfg.gamma_up * rho_g, cfg.rho_max)
|
|
694
|
+
elif ineq_inf_smooth < cfg.tau_down_g * max(prev_ineq_inf, eps):
|
|
695
|
+
rho_g = max(cfg.gamma_down * rho_g, cfg.rho_min)
|
|
696
|
+
else:
|
|
697
|
+
# per-family rho adaptation for equalities
|
|
698
|
+
if getattr(cfg, "adapt_by_family", False):
|
|
699
|
+
# update prev map
|
|
700
|
+
prev_eq_inf_by_family = dict(eq_inf_by_family)
|
|
701
|
+
prev_ineq_inf_by_family = dict(ineq_inf_by_family)
|
|
702
|
+
|
|
703
|
+
# -------- Stagnation bump (safety net) --------
|
|
704
|
+
if cfg.use_stagnation_bump:
|
|
705
|
+
if getattr(cfg, "adapt_by_family", False):
|
|
706
|
+
# ---- Equality families ----
|
|
707
|
+
for fam, cur in eq_inf_by_family.items():
|
|
708
|
+
# initialize
|
|
709
|
+
if fam not in best_eq_by_family:
|
|
710
|
+
best_eq_by_family[fam] = float(cur)
|
|
711
|
+
no_imp_eq_by_family[fam] = 0
|
|
712
|
+
|
|
713
|
+
if cur <= best_eq_by_family[fam] * (1 - cfg.stagnation_factor):
|
|
714
|
+
best_eq_by_family[fam] = float(cur)
|
|
715
|
+
no_imp_eq_by_family[fam] = 0
|
|
716
|
+
else:
|
|
717
|
+
no_imp_eq_by_family[fam] += 1
|
|
718
|
+
if no_imp_eq_by_family[fam] >= cfg.patience_h:
|
|
719
|
+
rho_f = float(rho_eq_family.get(fam, rho_h))
|
|
720
|
+
rho_eq_family[fam] = min(2.0 * rho_f, cfg.rho_max)
|
|
721
|
+
no_imp_eq_by_family[fam] = 0
|
|
722
|
+
|
|
723
|
+
# ---- Inequality families ----
|
|
724
|
+
for fam, cur in ineq_inf_by_family.items():
|
|
725
|
+
# initialize
|
|
726
|
+
if fam not in best_ineq_by_family:
|
|
727
|
+
best_ineq_by_family[fam] = float(cur)
|
|
728
|
+
no_imp_ineq_by_family[fam] = 0
|
|
729
|
+
|
|
730
|
+
if cur <= best_ineq_by_family[fam] * (1 - cfg.stagnation_factor):
|
|
731
|
+
best_ineq_by_family[fam] = float(cur)
|
|
732
|
+
no_imp_ineq_by_family[fam] = 0
|
|
733
|
+
else:
|
|
734
|
+
no_imp_ineq_by_family[fam] += 1
|
|
735
|
+
if no_imp_ineq_by_family[fam] >= cfg.patience_g:
|
|
736
|
+
rho_f = float(rho_ineq_family.get(fam, rho_g))
|
|
737
|
+
rho_ineq_family[fam] = min(2.0 * rho_f, cfg.rho_max)
|
|
738
|
+
no_imp_ineq_by_family[fam] = 0
|
|
739
|
+
|
|
740
|
+
else:
|
|
741
|
+
# Equality stagnation
|
|
742
|
+
if eq_inf <= best_eq * (1 - cfg.stagnation_factor):
|
|
743
|
+
best_eq = eq_inf; no_imp_eq = 0
|
|
744
|
+
else:
|
|
745
|
+
no_imp_eq += 1
|
|
746
|
+
if no_imp_eq >= cfg.patience_h:
|
|
747
|
+
rho_h = min(2.0 * rho_h, cfg.rho_max); no_imp_eq = 0
|
|
748
|
+
|
|
749
|
+
# Inequality stagnation
|
|
750
|
+
if ineq_inf <= best_ineq * (1 - cfg.stagnation_factor):
|
|
751
|
+
best_ineq = ineq_inf; no_imp_ineq = 0
|
|
752
|
+
else:
|
|
753
|
+
no_imp_ineq += 1
|
|
754
|
+
if no_imp_ineq >= cfg.patience_g:
|
|
755
|
+
rho_g = min(2.0 * rho_g, cfg.rho_max); no_imp_ineq = 0
|
|
756
|
+
|
|
757
|
+
# -------- finalize for next iteration --------
|
|
758
|
+
prev_eq_inf = max(eq_inf_smooth, eps)
|
|
759
|
+
prev_ineq_inf = max(ineq_inf_smooth, eps)
|
|
760
|
+
|
|
761
|
+
# ---- decoding back to native levels (only if blocks) ----
|
|
762
|
+
decoded_native: Dict[int, float] = {} # maps original var anchor -> chosen level value
|
|
763
|
+
decoded_lifted: Dict[int, int] = {} # maps lifted start index -> argmax position (optional)
|
|
764
|
+
if has_blocks:
|
|
765
|
+
for blk, lift_idx in zip(registry.blocks, lifted_slices):
|
|
766
|
+
if not lift_idx:
|
|
767
|
+
continue
|
|
768
|
+
sl = np.array(lift_idx, int)
|
|
769
|
+
if len(sl) == 0:
|
|
770
|
+
continue
|
|
771
|
+
sblk = x[sl]
|
|
772
|
+
j = int(np.argmax(sblk)) # which level got selected in the block
|
|
773
|
+
orig_anchor = int(blk.idx[0]) # anchor original var id for this block
|
|
774
|
+
decoded_native[orig_anchor] = float(blk.levels[j])
|
|
775
|
+
decoded_lifted[sl[0]] = j # optional: lifted index -> chosen slot
|
|
776
|
+
|
|
777
|
+
return {
|
|
778
|
+
"x": x,
|
|
779
|
+
"decoded": decoded_native if has_blocks else {},
|
|
780
|
+
"decoded_debug": decoded_lifted if has_blocks else {},
|
|
781
|
+
"hist": hist,
|
|
782
|
+
}
|