emx-onnx-cgen 0.3.0__py3-none-any.whl → 0.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of emx-onnx-cgen might be problematic. Click here for more details.
- emx_onnx_cgen/_build_info.py +1 -1
- emx_onnx_cgen/_version.py +2 -2
- emx_onnx_cgen/cli.py +50 -23
- emx_onnx_cgen/codegen/__init__.py +2 -0
- emx_onnx_cgen/codegen/c_emitter.py +1844 -1568
- emx_onnx_cgen/codegen/emitter.py +5 -0
- emx_onnx_cgen/compiler.py +30 -387
- emx_onnx_cgen/ir/context.py +87 -0
- emx_onnx_cgen/ir/op_base.py +193 -0
- emx_onnx_cgen/ir/op_context.py +65 -0
- emx_onnx_cgen/ir/ops/__init__.py +130 -0
- emx_onnx_cgen/ir/ops/elementwise.py +146 -0
- emx_onnx_cgen/ir/ops/misc.py +421 -0
- emx_onnx_cgen/ir/ops/nn.py +580 -0
- emx_onnx_cgen/ir/ops/reduce.py +95 -0
- emx_onnx_cgen/lowering/__init__.py +79 -1
- emx_onnx_cgen/lowering/adagrad.py +114 -0
- emx_onnx_cgen/lowering/arg_reduce.py +1 -1
- emx_onnx_cgen/lowering/attention.py +1 -1
- emx_onnx_cgen/lowering/average_pool.py +1 -1
- emx_onnx_cgen/lowering/batch_normalization.py +1 -1
- emx_onnx_cgen/lowering/cast.py +1 -1
- emx_onnx_cgen/lowering/common.py +36 -18
- emx_onnx_cgen/lowering/concat.py +1 -1
- emx_onnx_cgen/lowering/constant_of_shape.py +1 -1
- emx_onnx_cgen/lowering/conv.py +1 -1
- emx_onnx_cgen/lowering/conv_transpose.py +1 -1
- emx_onnx_cgen/lowering/cumsum.py +1 -1
- emx_onnx_cgen/lowering/depth_space.py +1 -1
- emx_onnx_cgen/lowering/dropout.py +1 -1
- emx_onnx_cgen/lowering/einsum.py +1 -1
- emx_onnx_cgen/lowering/elementwise.py +152 -4
- emx_onnx_cgen/lowering/expand.py +1 -1
- emx_onnx_cgen/lowering/eye_like.py +1 -1
- emx_onnx_cgen/lowering/flatten.py +1 -1
- emx_onnx_cgen/lowering/gather.py +1 -1
- emx_onnx_cgen/lowering/gather_elements.py +1 -1
- emx_onnx_cgen/lowering/gather_nd.py +1 -1
- emx_onnx_cgen/lowering/gemm.py +1 -1
- emx_onnx_cgen/lowering/global_max_pool.py +1 -1
- emx_onnx_cgen/lowering/grid_sample.py +1 -1
- emx_onnx_cgen/lowering/group_normalization.py +1 -1
- emx_onnx_cgen/lowering/hardmax.py +1 -1
- emx_onnx_cgen/lowering/identity.py +1 -1
- emx_onnx_cgen/lowering/instance_normalization.py +1 -1
- emx_onnx_cgen/lowering/layer_normalization.py +1 -1
- emx_onnx_cgen/lowering/logsoftmax.py +1 -1
- emx_onnx_cgen/lowering/lp_normalization.py +1 -1
- emx_onnx_cgen/lowering/lp_pool.py +1 -1
- emx_onnx_cgen/lowering/lrn.py +1 -1
- emx_onnx_cgen/lowering/lstm.py +1 -1
- emx_onnx_cgen/lowering/matmul.py +1 -1
- emx_onnx_cgen/lowering/maxpool.py +1 -1
- emx_onnx_cgen/lowering/mean_variance_normalization.py +1 -1
- emx_onnx_cgen/lowering/negative_log_likelihood_loss.py +1 -1
- emx_onnx_cgen/lowering/non_max_suppression.py +157 -0
- emx_onnx_cgen/lowering/nonzero.py +1 -1
- emx_onnx_cgen/lowering/one_hot.py +1 -1
- emx_onnx_cgen/lowering/pad.py +1 -1
- emx_onnx_cgen/lowering/qlinear_matmul.py +212 -0
- emx_onnx_cgen/lowering/quantize_linear.py +1 -1
- emx_onnx_cgen/lowering/range.py +1 -1
- emx_onnx_cgen/lowering/reduce.py +1 -1
- emx_onnx_cgen/lowering/registry.py +24 -5
- emx_onnx_cgen/lowering/reshape.py +1 -1
- emx_onnx_cgen/lowering/resize.py +1 -1
- emx_onnx_cgen/lowering/rms_normalization.py +1 -1
- emx_onnx_cgen/lowering/rotary_embedding.py +165 -0
- emx_onnx_cgen/lowering/scatter_nd.py +1 -1
- emx_onnx_cgen/lowering/shape.py +6 -25
- emx_onnx_cgen/lowering/size.py +1 -1
- emx_onnx_cgen/lowering/slice.py +1 -1
- emx_onnx_cgen/lowering/softmax.py +1 -1
- emx_onnx_cgen/lowering/softmax_cross_entropy_loss.py +1 -1
- emx_onnx_cgen/lowering/split.py +1 -1
- emx_onnx_cgen/lowering/squeeze.py +1 -1
- emx_onnx_cgen/lowering/tensor_scatter.py +110 -0
- emx_onnx_cgen/lowering/tile.py +1 -1
- emx_onnx_cgen/lowering/topk.py +25 -7
- emx_onnx_cgen/lowering/transpose.py +1 -1
- emx_onnx_cgen/lowering/trilu.py +1 -1
- emx_onnx_cgen/lowering/unsqueeze.py +1 -1
- emx_onnx_cgen/lowering/variadic.py +1 -1
- emx_onnx_cgen/lowering/where.py +1 -1
- emx_onnx_cgen/runtime/evaluator.py +325 -1
- emx_onnx_cgen/verification.py +9 -39
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/METADATA +8 -7
- emx_onnx_cgen-0.3.1.dist-info/RECORD +107 -0
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/WHEEL +1 -1
- shared/scalar_functions.py +11 -0
- shared/ulp.py +17 -0
- emx_onnx_cgen-0.3.0.dist-info/RECORD +0 -93
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/entry_points.txt +0 -0
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,580 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from enum import Enum
|
|
5
|
+
|
|
6
|
+
from shared.scalar_functions import ScalarFunction
|
|
7
|
+
from shared.scalar_types import ScalarType
|
|
8
|
+
|
|
9
|
+
from ...errors import ShapeInferenceError
|
|
10
|
+
from ..op_base import ConvLikeOpBase, GemmLikeOpBase, MatMulLikeOpBase, RenderableOpBase
|
|
11
|
+
from ..op_context import OpContext
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class EinsumKind(str, Enum):
|
|
15
|
+
REDUCE_ALL = "reduce_all"
|
|
16
|
+
SUM_J = "sum_j"
|
|
17
|
+
TRANSPOSE = "transpose"
|
|
18
|
+
DOT = "dot"
|
|
19
|
+
BATCH_MATMUL = "batch_matmul"
|
|
20
|
+
BATCH_DIAGONAL = "batch_diagonal"
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def _shape_product(shape: tuple[int, ...]) -> int:
|
|
24
|
+
product = 1
|
|
25
|
+
for dim in shape:
|
|
26
|
+
if dim < 0:
|
|
27
|
+
raise ShapeInferenceError("Dynamic dims are not supported")
|
|
28
|
+
product *= dim
|
|
29
|
+
return product
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@dataclass(frozen=True)
|
|
33
|
+
class MatMulOp(MatMulLikeOpBase):
|
|
34
|
+
input0: str
|
|
35
|
+
input1: str
|
|
36
|
+
output: str
|
|
37
|
+
input0_shape: tuple[int, ...]
|
|
38
|
+
input1_shape: tuple[int, ...]
|
|
39
|
+
output_shape: tuple[int, ...]
|
|
40
|
+
batch_shape: tuple[int, ...]
|
|
41
|
+
input0_batch_shape: tuple[int, ...]
|
|
42
|
+
input1_batch_shape: tuple[int, ...]
|
|
43
|
+
m: int
|
|
44
|
+
n: int
|
|
45
|
+
k: int
|
|
46
|
+
left_vector: bool
|
|
47
|
+
right_vector: bool
|
|
48
|
+
dtype: ScalarType
|
|
49
|
+
|
|
50
|
+
@dataclass(frozen=True)
|
|
51
|
+
class QLinearMatMulOp(MatMulLikeOpBase):
|
|
52
|
+
input0: str
|
|
53
|
+
input0_scale: str
|
|
54
|
+
input0_zero_point: str
|
|
55
|
+
input1: str
|
|
56
|
+
input1_scale: str
|
|
57
|
+
input1_zero_point: str
|
|
58
|
+
output_scale: str
|
|
59
|
+
output_zero_point: str
|
|
60
|
+
output: str
|
|
61
|
+
input0_shape: tuple[int, ...]
|
|
62
|
+
input1_shape: tuple[int, ...]
|
|
63
|
+
output_shape: tuple[int, ...]
|
|
64
|
+
batch_shape: tuple[int, ...]
|
|
65
|
+
input0_batch_shape: tuple[int, ...]
|
|
66
|
+
input1_batch_shape: tuple[int, ...]
|
|
67
|
+
m: int
|
|
68
|
+
n: int
|
|
69
|
+
k: int
|
|
70
|
+
left_vector: bool
|
|
71
|
+
right_vector: bool
|
|
72
|
+
input0_dtype: ScalarType
|
|
73
|
+
input1_dtype: ScalarType
|
|
74
|
+
dtype: ScalarType
|
|
75
|
+
input0_scale_dtype: ScalarType
|
|
76
|
+
input1_scale_dtype: ScalarType
|
|
77
|
+
output_scale_dtype: ScalarType
|
|
78
|
+
input0_scale_shape: tuple[int, ...]
|
|
79
|
+
input1_scale_shape: tuple[int, ...]
|
|
80
|
+
output_scale_shape: tuple[int, ...]
|
|
81
|
+
input0_zero_shape: tuple[int, ...]
|
|
82
|
+
input1_zero_shape: tuple[int, ...]
|
|
83
|
+
output_zero_shape: tuple[int, ...]
|
|
84
|
+
|
|
85
|
+
@dataclass(frozen=True)
|
|
86
|
+
class EinsumOp(MatMulLikeOpBase):
|
|
87
|
+
inputs: tuple[str, ...]
|
|
88
|
+
output: str
|
|
89
|
+
kind: EinsumKind
|
|
90
|
+
input_shapes: tuple[tuple[int, ...], ...]
|
|
91
|
+
output_shape: tuple[int, ...]
|
|
92
|
+
dtype: ScalarType
|
|
93
|
+
input_dtype: ScalarType
|
|
94
|
+
|
|
95
|
+
@dataclass(frozen=True)
|
|
96
|
+
class GemmOp(GemmLikeOpBase):
|
|
97
|
+
input_a: str
|
|
98
|
+
input_b: str
|
|
99
|
+
input_c: str | None
|
|
100
|
+
output: str
|
|
101
|
+
m: int
|
|
102
|
+
n: int
|
|
103
|
+
k: int
|
|
104
|
+
trans_a: bool
|
|
105
|
+
trans_b: bool
|
|
106
|
+
alpha: float | int
|
|
107
|
+
beta: float | int
|
|
108
|
+
c_shape: tuple[int, ...] | None
|
|
109
|
+
dtype: ScalarType
|
|
110
|
+
|
|
111
|
+
@dataclass(frozen=True)
|
|
112
|
+
class AttentionOp(RenderableOpBase):
|
|
113
|
+
input_q: str
|
|
114
|
+
input_k: str
|
|
115
|
+
input_v: str
|
|
116
|
+
input_attn_mask: str | None
|
|
117
|
+
input_past_key: str | None
|
|
118
|
+
input_past_value: str | None
|
|
119
|
+
input_nonpad_kv_seqlen: str | None
|
|
120
|
+
output: str
|
|
121
|
+
output_present_key: str | None
|
|
122
|
+
output_present_value: str | None
|
|
123
|
+
output_qk_matmul: str | None
|
|
124
|
+
batch: int
|
|
125
|
+
q_heads: int
|
|
126
|
+
kv_heads: int
|
|
127
|
+
q_seq: int
|
|
128
|
+
kv_seq: int
|
|
129
|
+
total_seq: int
|
|
130
|
+
past_seq: int
|
|
131
|
+
qk_head_size: int
|
|
132
|
+
v_head_size: int
|
|
133
|
+
q_hidden_size: int | None
|
|
134
|
+
k_hidden_size: int | None
|
|
135
|
+
v_hidden_size: int | None
|
|
136
|
+
scale: float
|
|
137
|
+
is_causal: bool
|
|
138
|
+
softcap: float
|
|
139
|
+
qk_matmul_output_mode: int
|
|
140
|
+
q_rank: int
|
|
141
|
+
k_rank: int
|
|
142
|
+
v_rank: int
|
|
143
|
+
output_rank: int
|
|
144
|
+
mask_shape: tuple[int, ...] | None
|
|
145
|
+
mask_is_bool: bool
|
|
146
|
+
mask_rank: int | None
|
|
147
|
+
mask_broadcast_batch: bool
|
|
148
|
+
mask_broadcast_heads: bool
|
|
149
|
+
mask_broadcast_q_seq: bool
|
|
150
|
+
mask_q_seq: int | None
|
|
151
|
+
mask_kv_seq: int | None
|
|
152
|
+
head_group_size: int
|
|
153
|
+
dtype: ScalarType
|
|
154
|
+
|
|
155
|
+
@dataclass(frozen=True)
|
|
156
|
+
class RotaryEmbeddingOp(RenderableOpBase):
|
|
157
|
+
input0: str
|
|
158
|
+
cos_cache: str
|
|
159
|
+
sin_cache: str
|
|
160
|
+
position_ids: str | None
|
|
161
|
+
output: str
|
|
162
|
+
input_shape: tuple[int, ...]
|
|
163
|
+
cos_shape: tuple[int, ...]
|
|
164
|
+
sin_shape: tuple[int, ...]
|
|
165
|
+
position_ids_shape: tuple[int, ...] | None
|
|
166
|
+
dtype: ScalarType
|
|
167
|
+
position_ids_dtype: ScalarType | None
|
|
168
|
+
rotary_dim: int
|
|
169
|
+
rotary_dim_half: int
|
|
170
|
+
head_size: int
|
|
171
|
+
num_heads: int
|
|
172
|
+
seq_len: int
|
|
173
|
+
batch: int
|
|
174
|
+
input_rank: int
|
|
175
|
+
interleaved: bool
|
|
176
|
+
|
|
177
|
+
@dataclass(frozen=True)
|
|
178
|
+
class ConvOp(ConvLikeOpBase):
|
|
179
|
+
input0: str
|
|
180
|
+
weights: str
|
|
181
|
+
bias: str | None
|
|
182
|
+
output: str
|
|
183
|
+
batch: int
|
|
184
|
+
in_channels: int
|
|
185
|
+
out_channels: int
|
|
186
|
+
spatial_rank: int
|
|
187
|
+
in_spatial: tuple[int, ...]
|
|
188
|
+
out_spatial: tuple[int, ...]
|
|
189
|
+
kernel_shape: tuple[int, ...]
|
|
190
|
+
strides: tuple[int, ...]
|
|
191
|
+
pads: tuple[int, ...]
|
|
192
|
+
dilations: tuple[int, ...]
|
|
193
|
+
group: int
|
|
194
|
+
dtype: ScalarType
|
|
195
|
+
|
|
196
|
+
@property
|
|
197
|
+
def out_h(self) -> int:
|
|
198
|
+
if self.spatial_rank < 1:
|
|
199
|
+
raise ValueError("Conv output height is undefined for spatial_rank < 1")
|
|
200
|
+
return self.out_spatial[0]
|
|
201
|
+
|
|
202
|
+
@property
|
|
203
|
+
def out_w(self) -> int:
|
|
204
|
+
if self.spatial_rank < 2:
|
|
205
|
+
raise ValueError("Conv output width is undefined for spatial_rank < 2")
|
|
206
|
+
return self.out_spatial[1]
|
|
207
|
+
|
|
208
|
+
@dataclass(frozen=True)
|
|
209
|
+
class ConvTransposeOp(ConvLikeOpBase):
|
|
210
|
+
input0: str
|
|
211
|
+
weights: str
|
|
212
|
+
bias: str | None
|
|
213
|
+
output: str
|
|
214
|
+
batch: int
|
|
215
|
+
in_channels: int
|
|
216
|
+
out_channels: int
|
|
217
|
+
spatial_rank: int
|
|
218
|
+
in_spatial: tuple[int, ...]
|
|
219
|
+
out_spatial: tuple[int, ...]
|
|
220
|
+
kernel_shape: tuple[int, ...]
|
|
221
|
+
strides: tuple[int, ...]
|
|
222
|
+
pads: tuple[int, ...]
|
|
223
|
+
dilations: tuple[int, ...]
|
|
224
|
+
output_padding: tuple[int, ...]
|
|
225
|
+
group: int
|
|
226
|
+
dtype: ScalarType
|
|
227
|
+
|
|
228
|
+
@dataclass(frozen=True)
|
|
229
|
+
class AveragePoolOp(RenderableOpBase):
|
|
230
|
+
input0: str
|
|
231
|
+
output: str
|
|
232
|
+
batch: int
|
|
233
|
+
channels: int
|
|
234
|
+
in_h: int
|
|
235
|
+
in_w: int
|
|
236
|
+
out_h: int
|
|
237
|
+
out_w: int
|
|
238
|
+
kernel_h: int
|
|
239
|
+
kernel_w: int
|
|
240
|
+
stride_h: int
|
|
241
|
+
stride_w: int
|
|
242
|
+
pad_top: int
|
|
243
|
+
pad_left: int
|
|
244
|
+
pad_bottom: int
|
|
245
|
+
pad_right: int
|
|
246
|
+
count_include_pad: bool
|
|
247
|
+
dtype: ScalarType
|
|
248
|
+
|
|
249
|
+
@dataclass(frozen=True)
|
|
250
|
+
class LpPoolOp(RenderableOpBase):
|
|
251
|
+
input0: str
|
|
252
|
+
output: str
|
|
253
|
+
batch: int
|
|
254
|
+
channels: int
|
|
255
|
+
in_h: int
|
|
256
|
+
in_w: int
|
|
257
|
+
out_h: int
|
|
258
|
+
out_w: int
|
|
259
|
+
kernel_h: int
|
|
260
|
+
kernel_w: int
|
|
261
|
+
stride_h: int
|
|
262
|
+
stride_w: int
|
|
263
|
+
pad_top: int
|
|
264
|
+
pad_left: int
|
|
265
|
+
pad_bottom: int
|
|
266
|
+
pad_right: int
|
|
267
|
+
p: int
|
|
268
|
+
dtype: ScalarType
|
|
269
|
+
|
|
270
|
+
@dataclass(frozen=True)
|
|
271
|
+
class SoftmaxOp(RenderableOpBase):
|
|
272
|
+
input0: str
|
|
273
|
+
output: str
|
|
274
|
+
outer: int
|
|
275
|
+
axis_size: int
|
|
276
|
+
inner: int
|
|
277
|
+
axis: int
|
|
278
|
+
shape: tuple[int, ...]
|
|
279
|
+
dtype: ScalarType
|
|
280
|
+
|
|
281
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
282
|
+
input_shape = ctx.shape(self.input0)
|
|
283
|
+
axis = self.axis
|
|
284
|
+
if axis < 0:
|
|
285
|
+
axis += len(input_shape)
|
|
286
|
+
if axis < 0 or axis >= len(input_shape):
|
|
287
|
+
raise ShapeInferenceError(
|
|
288
|
+
f"Softmax axis {self.axis} is out of bounds for shape {input_shape}"
|
|
289
|
+
)
|
|
290
|
+
outer = _shape_product(input_shape[:axis]) if axis > 0 else 1
|
|
291
|
+
axis_size = input_shape[axis]
|
|
292
|
+
inner = (
|
|
293
|
+
_shape_product(input_shape[axis + 1 :])
|
|
294
|
+
if axis + 1 < len(input_shape)
|
|
295
|
+
else 1
|
|
296
|
+
)
|
|
297
|
+
ctx.set_shape(self.output, input_shape)
|
|
298
|
+
ctx.set_derived(self, "outer", outer)
|
|
299
|
+
ctx.set_derived(self, "axis_size", axis_size)
|
|
300
|
+
ctx.set_derived(self, "inner", inner)
|
|
301
|
+
|
|
302
|
+
@dataclass(frozen=True)
|
|
303
|
+
class LogSoftmaxOp(RenderableOpBase):
|
|
304
|
+
input0: str
|
|
305
|
+
output: str
|
|
306
|
+
outer: int
|
|
307
|
+
axis_size: int
|
|
308
|
+
inner: int
|
|
309
|
+
axis: int
|
|
310
|
+
shape: tuple[int, ...]
|
|
311
|
+
dtype: ScalarType
|
|
312
|
+
|
|
313
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
314
|
+
input_shape = ctx.shape(self.input0)
|
|
315
|
+
axis = self.axis
|
|
316
|
+
if axis < 0:
|
|
317
|
+
axis += len(input_shape)
|
|
318
|
+
if axis < 0 or axis >= len(input_shape):
|
|
319
|
+
raise ShapeInferenceError(
|
|
320
|
+
f"LogSoftmax axis {self.axis} is out of bounds for shape {input_shape}"
|
|
321
|
+
)
|
|
322
|
+
outer = _shape_product(input_shape[:axis]) if axis > 0 else 1
|
|
323
|
+
axis_size = input_shape[axis]
|
|
324
|
+
inner = (
|
|
325
|
+
_shape_product(input_shape[axis + 1 :])
|
|
326
|
+
if axis + 1 < len(input_shape)
|
|
327
|
+
else 1
|
|
328
|
+
)
|
|
329
|
+
ctx.set_shape(self.output, input_shape)
|
|
330
|
+
ctx.set_derived(self, "outer", outer)
|
|
331
|
+
ctx.set_derived(self, "axis_size", axis_size)
|
|
332
|
+
ctx.set_derived(self, "inner", inner)
|
|
333
|
+
|
|
334
|
+
@dataclass(frozen=True)
|
|
335
|
+
class HardmaxOp(RenderableOpBase):
|
|
336
|
+
input0: str
|
|
337
|
+
output: str
|
|
338
|
+
outer: int
|
|
339
|
+
axis_size: int
|
|
340
|
+
inner: int
|
|
341
|
+
axis: int
|
|
342
|
+
shape: tuple[int, ...]
|
|
343
|
+
dtype: ScalarType
|
|
344
|
+
|
|
345
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
346
|
+
input_shape = ctx.shape(self.input0)
|
|
347
|
+
axis = self.axis
|
|
348
|
+
if axis < 0:
|
|
349
|
+
axis += len(input_shape)
|
|
350
|
+
if axis < 0 or axis >= len(input_shape):
|
|
351
|
+
raise ShapeInferenceError(
|
|
352
|
+
f"Hardmax axis {self.axis} is out of bounds for shape {input_shape}"
|
|
353
|
+
)
|
|
354
|
+
outer = _shape_product(input_shape[:axis]) if axis > 0 else 1
|
|
355
|
+
axis_size = input_shape[axis]
|
|
356
|
+
inner = (
|
|
357
|
+
_shape_product(input_shape[axis + 1 :])
|
|
358
|
+
if axis + 1 < len(input_shape)
|
|
359
|
+
else 1
|
|
360
|
+
)
|
|
361
|
+
ctx.set_shape(self.output, input_shape)
|
|
362
|
+
ctx.set_derived(self, "outer", outer)
|
|
363
|
+
ctx.set_derived(self, "axis_size", axis_size)
|
|
364
|
+
ctx.set_derived(self, "inner", inner)
|
|
365
|
+
|
|
366
|
+
@dataclass(frozen=True)
|
|
367
|
+
class NegativeLogLikelihoodLossOp(RenderableOpBase):
|
|
368
|
+
input0: str
|
|
369
|
+
target: str
|
|
370
|
+
weight: str | None
|
|
371
|
+
output: str
|
|
372
|
+
input_shape: tuple[int, ...]
|
|
373
|
+
target_shape: tuple[int, ...]
|
|
374
|
+
output_shape: tuple[int, ...]
|
|
375
|
+
n: int
|
|
376
|
+
c: int
|
|
377
|
+
d: int
|
|
378
|
+
reduction: str
|
|
379
|
+
ignore_index: int
|
|
380
|
+
input_dtype: ScalarType
|
|
381
|
+
weight_dtype: ScalarType | None
|
|
382
|
+
weight_shape: tuple[int, ...] | None
|
|
383
|
+
dtype: ScalarType
|
|
384
|
+
target_dtype: ScalarType
|
|
385
|
+
|
|
386
|
+
@dataclass(frozen=True)
|
|
387
|
+
class SoftmaxCrossEntropyLossOp(RenderableOpBase):
|
|
388
|
+
input0: str
|
|
389
|
+
target: str
|
|
390
|
+
weight: str | None
|
|
391
|
+
output: str
|
|
392
|
+
log_prob: str | None
|
|
393
|
+
input_shape: tuple[int, ...]
|
|
394
|
+
target_shape: tuple[int, ...]
|
|
395
|
+
output_shape: tuple[int, ...]
|
|
396
|
+
log_prob_shape: tuple[int, ...] | None
|
|
397
|
+
n: int
|
|
398
|
+
c: int
|
|
399
|
+
d: int
|
|
400
|
+
reduction: str
|
|
401
|
+
ignore_index: int | None
|
|
402
|
+
input_dtype: ScalarType
|
|
403
|
+
weight_dtype: ScalarType | None
|
|
404
|
+
weight_shape: tuple[int, ...] | None
|
|
405
|
+
dtype: ScalarType
|
|
406
|
+
target_dtype: ScalarType
|
|
407
|
+
|
|
408
|
+
@dataclass(frozen=True)
|
|
409
|
+
class BatchNormOp(RenderableOpBase):
|
|
410
|
+
input0: str
|
|
411
|
+
scale: str
|
|
412
|
+
bias: str
|
|
413
|
+
mean: str
|
|
414
|
+
variance: str
|
|
415
|
+
output: str
|
|
416
|
+
shape: tuple[int, ...]
|
|
417
|
+
channels: int
|
|
418
|
+
epsilon: float
|
|
419
|
+
dtype: ScalarType
|
|
420
|
+
|
|
421
|
+
@dataclass(frozen=True)
|
|
422
|
+
class LpNormalizationOp(RenderableOpBase):
|
|
423
|
+
input0: str
|
|
424
|
+
output: str
|
|
425
|
+
shape: tuple[int, ...]
|
|
426
|
+
axis: int
|
|
427
|
+
p: int
|
|
428
|
+
outer: int
|
|
429
|
+
axis_size: int
|
|
430
|
+
inner: int
|
|
431
|
+
dtype: ScalarType
|
|
432
|
+
|
|
433
|
+
@dataclass(frozen=True)
|
|
434
|
+
class InstanceNormalizationOp(RenderableOpBase):
|
|
435
|
+
input0: str
|
|
436
|
+
scale: str
|
|
437
|
+
bias: str
|
|
438
|
+
output: str
|
|
439
|
+
shape: tuple[int, ...]
|
|
440
|
+
channels: int
|
|
441
|
+
spatial_size: int
|
|
442
|
+
epsilon: float
|
|
443
|
+
dtype: ScalarType
|
|
444
|
+
|
|
445
|
+
@dataclass(frozen=True)
|
|
446
|
+
class GroupNormalizationOp(RenderableOpBase):
|
|
447
|
+
input0: str
|
|
448
|
+
scale: str
|
|
449
|
+
bias: str
|
|
450
|
+
output: str
|
|
451
|
+
shape: tuple[int, ...]
|
|
452
|
+
channels: int
|
|
453
|
+
num_groups: int
|
|
454
|
+
group_size: int
|
|
455
|
+
spatial_size: int
|
|
456
|
+
epsilon: float
|
|
457
|
+
dtype: ScalarType
|
|
458
|
+
|
|
459
|
+
@dataclass(frozen=True)
|
|
460
|
+
class LayerNormalizationOp(RenderableOpBase):
|
|
461
|
+
input0: str
|
|
462
|
+
scale: str
|
|
463
|
+
bias: str | None
|
|
464
|
+
output: str
|
|
465
|
+
mean_output: str | None
|
|
466
|
+
invstd_output: str | None
|
|
467
|
+
shape: tuple[int, ...]
|
|
468
|
+
normalized_shape: tuple[int, ...]
|
|
469
|
+
scale_shape: tuple[int, ...]
|
|
470
|
+
bias_shape: tuple[int, ...] | None
|
|
471
|
+
outer: int
|
|
472
|
+
inner: int
|
|
473
|
+
axis: int
|
|
474
|
+
epsilon: float
|
|
475
|
+
dtype: ScalarType
|
|
476
|
+
|
|
477
|
+
@dataclass(frozen=True)
|
|
478
|
+
class MeanVarianceNormalizationOp(RenderableOpBase):
|
|
479
|
+
input0: str
|
|
480
|
+
output: str
|
|
481
|
+
shape: tuple[int, ...]
|
|
482
|
+
axes: tuple[int, ...]
|
|
483
|
+
non_axes: tuple[int, ...]
|
|
484
|
+
reduce_count: int
|
|
485
|
+
epsilon: float
|
|
486
|
+
dtype: ScalarType
|
|
487
|
+
|
|
488
|
+
@dataclass(frozen=True)
|
|
489
|
+
class RMSNormalizationOp(RenderableOpBase):
|
|
490
|
+
input0: str
|
|
491
|
+
scale: str
|
|
492
|
+
output: str
|
|
493
|
+
shape: tuple[int, ...]
|
|
494
|
+
normalized_shape: tuple[int, ...]
|
|
495
|
+
scale_shape: tuple[int, ...]
|
|
496
|
+
outer: int
|
|
497
|
+
inner: int
|
|
498
|
+
axis: int
|
|
499
|
+
epsilon: float
|
|
500
|
+
dtype: ScalarType
|
|
501
|
+
|
|
502
|
+
@dataclass(frozen=True)
|
|
503
|
+
class LrnOp(RenderableOpBase):
|
|
504
|
+
input0: str
|
|
505
|
+
output: str
|
|
506
|
+
shape: tuple[int, ...]
|
|
507
|
+
channels: int
|
|
508
|
+
size: int
|
|
509
|
+
half: int
|
|
510
|
+
alpha: float
|
|
511
|
+
beta: float
|
|
512
|
+
bias: float
|
|
513
|
+
dtype: ScalarType
|
|
514
|
+
|
|
515
|
+
@dataclass(frozen=True)
|
|
516
|
+
class LstmOp(RenderableOpBase):
|
|
517
|
+
input_x: str
|
|
518
|
+
input_w: str
|
|
519
|
+
input_r: str
|
|
520
|
+
input_b: str | None
|
|
521
|
+
input_sequence_lens: str | None
|
|
522
|
+
input_initial_h: str | None
|
|
523
|
+
input_initial_c: str | None
|
|
524
|
+
input_p: str | None
|
|
525
|
+
output_y: str | None
|
|
526
|
+
output_y_h: str | None
|
|
527
|
+
output_y_c: str | None
|
|
528
|
+
seq_length: int
|
|
529
|
+
batch_size: int
|
|
530
|
+
input_size: int
|
|
531
|
+
hidden_size: int
|
|
532
|
+
num_directions: int
|
|
533
|
+
direction: str
|
|
534
|
+
layout: int
|
|
535
|
+
input_forget: int
|
|
536
|
+
clip: float | None
|
|
537
|
+
activation_kinds: tuple[int, ...]
|
|
538
|
+
activation_alphas: tuple[float, ...]
|
|
539
|
+
activation_betas: tuple[float, ...]
|
|
540
|
+
dtype: ScalarType
|
|
541
|
+
sequence_lens_dtype: ScalarType | None
|
|
542
|
+
|
|
543
|
+
@dataclass(frozen=True)
|
|
544
|
+
class AdagradOp(RenderableOpBase):
|
|
545
|
+
rate: str
|
|
546
|
+
timestep: str
|
|
547
|
+
inputs: tuple[str, ...]
|
|
548
|
+
gradients: tuple[str, ...]
|
|
549
|
+
accumulators: tuple[str, ...]
|
|
550
|
+
outputs: tuple[str, ...]
|
|
551
|
+
accumulator_outputs: tuple[str, ...]
|
|
552
|
+
rate_shape: tuple[int, ...]
|
|
553
|
+
timestep_shape: tuple[int, ...]
|
|
554
|
+
tensor_shapes: tuple[tuple[int, ...], ...]
|
|
555
|
+
output_shapes: tuple[tuple[int, ...], ...]
|
|
556
|
+
dtype: ScalarType
|
|
557
|
+
rate_dtype: ScalarType
|
|
558
|
+
timestep_dtype: ScalarType
|
|
559
|
+
norm_coefficient: float
|
|
560
|
+
epsilon: float
|
|
561
|
+
decay_factor: float
|
|
562
|
+
|
|
563
|
+
@dataclass(frozen=True)
|
|
564
|
+
class MaxPoolOp(RenderableOpBase):
|
|
565
|
+
input0: str
|
|
566
|
+
output: str
|
|
567
|
+
indices: str | None
|
|
568
|
+
batch: int
|
|
569
|
+
channels: int
|
|
570
|
+
spatial_rank: int
|
|
571
|
+
in_spatial: tuple[int, ...]
|
|
572
|
+
out_spatial: tuple[int, ...]
|
|
573
|
+
kernel_shape: tuple[int, ...]
|
|
574
|
+
strides: tuple[int, ...]
|
|
575
|
+
pads: tuple[int, ...]
|
|
576
|
+
dilations: tuple[int, ...]
|
|
577
|
+
ceil_mode: bool
|
|
578
|
+
storage_order: int
|
|
579
|
+
dtype: ScalarType
|
|
580
|
+
indices_dtype: ScalarType | None
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
|
|
5
|
+
from shared.scalar_types import ScalarType
|
|
6
|
+
|
|
7
|
+
from ..op_base import ReduceOpBase
|
|
8
|
+
from ..op_context import OpContext
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@dataclass(frozen=True)
|
|
12
|
+
class ReduceOp(ReduceOpBase):
|
|
13
|
+
input0: str
|
|
14
|
+
output: str
|
|
15
|
+
input_shape: tuple[int, ...]
|
|
16
|
+
output_shape: tuple[int, ...]
|
|
17
|
+
axes: tuple[int, ...]
|
|
18
|
+
axes_input: str | None
|
|
19
|
+
axes_input_shape: tuple[int, ...] | None
|
|
20
|
+
axes_input_dtype: ScalarType | None
|
|
21
|
+
keepdims: bool
|
|
22
|
+
noop_with_empty_axes: bool
|
|
23
|
+
reduce_kind: str
|
|
24
|
+
reduce_count: int | None
|
|
25
|
+
dtype: ScalarType
|
|
26
|
+
|
|
27
|
+
def infer_types(self, ctx: OpContext) -> None:
|
|
28
|
+
ctx.dtype(self.output)
|
|
29
|
+
|
|
30
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
31
|
+
input_shape = ctx.shape(self.input0)
|
|
32
|
+
if self.axes_input is None:
|
|
33
|
+
axes = self.normalize_axes(self.axes, len(input_shape))
|
|
34
|
+
output_shape = self.reduced_shape(
|
|
35
|
+
input_shape, axes, keepdims=self.keepdims
|
|
36
|
+
)
|
|
37
|
+
else:
|
|
38
|
+
axes = self.axes
|
|
39
|
+
output_shape = ctx.shape(self.output)
|
|
40
|
+
ctx.set_shape(self.output, output_shape)
|
|
41
|
+
ctx.set_derived(self, "axes", axes)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
@dataclass(frozen=True)
|
|
45
|
+
class ArgReduceOp(ReduceOpBase):
|
|
46
|
+
input0: str
|
|
47
|
+
output: str
|
|
48
|
+
input_shape: tuple[int, ...]
|
|
49
|
+
output_shape: tuple[int, ...]
|
|
50
|
+
axis: int
|
|
51
|
+
keepdims: bool
|
|
52
|
+
select_last_index: bool
|
|
53
|
+
reduce_kind: str
|
|
54
|
+
input_dtype: ScalarType
|
|
55
|
+
output_dtype: ScalarType
|
|
56
|
+
|
|
57
|
+
def infer_types(self, ctx: OpContext) -> None:
|
|
58
|
+
ctx.dtype(self.input0)
|
|
59
|
+
ctx.dtype(self.output)
|
|
60
|
+
|
|
61
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
62
|
+
input_shape = ctx.shape(self.input0)
|
|
63
|
+
axes = self.normalize_axes((self.axis,), len(input_shape))
|
|
64
|
+
output_shape = self.reduced_shape(
|
|
65
|
+
input_shape, axes, keepdims=self.keepdims
|
|
66
|
+
)
|
|
67
|
+
ctx.set_shape(self.output, output_shape)
|
|
68
|
+
ctx.set_derived(self, "axis", axes[0])
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@dataclass(frozen=True)
|
|
72
|
+
class TopKOp(ReduceOpBase):
|
|
73
|
+
input0: str
|
|
74
|
+
output_values: str
|
|
75
|
+
output_indices: str
|
|
76
|
+
input_shape: tuple[int, ...]
|
|
77
|
+
output_shape: tuple[int, ...]
|
|
78
|
+
axis: int
|
|
79
|
+
k: int
|
|
80
|
+
largest: bool
|
|
81
|
+
sorted: bool
|
|
82
|
+
input_dtype: ScalarType
|
|
83
|
+
output_values_dtype: ScalarType
|
|
84
|
+
output_indices_dtype: ScalarType
|
|
85
|
+
|
|
86
|
+
def infer_types(self, ctx: OpContext) -> None:
|
|
87
|
+
ctx.dtype(self.input0)
|
|
88
|
+
ctx.dtype(self.output_values)
|
|
89
|
+
ctx.dtype(self.output_indices)
|
|
90
|
+
|
|
91
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
92
|
+
input_shape = ctx.shape(self.input0)
|
|
93
|
+
output_shape = ctx.shape(self.output_values)
|
|
94
|
+
ctx.set_shape(self.output_values, output_shape)
|
|
95
|
+
ctx.set_shape(self.output_indices, ctx.shape(self.output_indices))
|