emx-onnx-cgen 0.3.0__py3-none-any.whl → 0.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of emx-onnx-cgen might be problematic. Click here for more details.
- emx_onnx_cgen/_build_info.py +1 -1
- emx_onnx_cgen/_version.py +2 -2
- emx_onnx_cgen/cli.py +50 -23
- emx_onnx_cgen/codegen/__init__.py +2 -0
- emx_onnx_cgen/codegen/c_emitter.py +1844 -1568
- emx_onnx_cgen/codegen/emitter.py +5 -0
- emx_onnx_cgen/compiler.py +30 -387
- emx_onnx_cgen/ir/context.py +87 -0
- emx_onnx_cgen/ir/op_base.py +193 -0
- emx_onnx_cgen/ir/op_context.py +65 -0
- emx_onnx_cgen/ir/ops/__init__.py +130 -0
- emx_onnx_cgen/ir/ops/elementwise.py +146 -0
- emx_onnx_cgen/ir/ops/misc.py +421 -0
- emx_onnx_cgen/ir/ops/nn.py +580 -0
- emx_onnx_cgen/ir/ops/reduce.py +95 -0
- emx_onnx_cgen/lowering/__init__.py +79 -1
- emx_onnx_cgen/lowering/adagrad.py +114 -0
- emx_onnx_cgen/lowering/arg_reduce.py +1 -1
- emx_onnx_cgen/lowering/attention.py +1 -1
- emx_onnx_cgen/lowering/average_pool.py +1 -1
- emx_onnx_cgen/lowering/batch_normalization.py +1 -1
- emx_onnx_cgen/lowering/cast.py +1 -1
- emx_onnx_cgen/lowering/common.py +36 -18
- emx_onnx_cgen/lowering/concat.py +1 -1
- emx_onnx_cgen/lowering/constant_of_shape.py +1 -1
- emx_onnx_cgen/lowering/conv.py +1 -1
- emx_onnx_cgen/lowering/conv_transpose.py +1 -1
- emx_onnx_cgen/lowering/cumsum.py +1 -1
- emx_onnx_cgen/lowering/depth_space.py +1 -1
- emx_onnx_cgen/lowering/dropout.py +1 -1
- emx_onnx_cgen/lowering/einsum.py +1 -1
- emx_onnx_cgen/lowering/elementwise.py +152 -4
- emx_onnx_cgen/lowering/expand.py +1 -1
- emx_onnx_cgen/lowering/eye_like.py +1 -1
- emx_onnx_cgen/lowering/flatten.py +1 -1
- emx_onnx_cgen/lowering/gather.py +1 -1
- emx_onnx_cgen/lowering/gather_elements.py +1 -1
- emx_onnx_cgen/lowering/gather_nd.py +1 -1
- emx_onnx_cgen/lowering/gemm.py +1 -1
- emx_onnx_cgen/lowering/global_max_pool.py +1 -1
- emx_onnx_cgen/lowering/grid_sample.py +1 -1
- emx_onnx_cgen/lowering/group_normalization.py +1 -1
- emx_onnx_cgen/lowering/hardmax.py +1 -1
- emx_onnx_cgen/lowering/identity.py +1 -1
- emx_onnx_cgen/lowering/instance_normalization.py +1 -1
- emx_onnx_cgen/lowering/layer_normalization.py +1 -1
- emx_onnx_cgen/lowering/logsoftmax.py +1 -1
- emx_onnx_cgen/lowering/lp_normalization.py +1 -1
- emx_onnx_cgen/lowering/lp_pool.py +1 -1
- emx_onnx_cgen/lowering/lrn.py +1 -1
- emx_onnx_cgen/lowering/lstm.py +1 -1
- emx_onnx_cgen/lowering/matmul.py +1 -1
- emx_onnx_cgen/lowering/maxpool.py +1 -1
- emx_onnx_cgen/lowering/mean_variance_normalization.py +1 -1
- emx_onnx_cgen/lowering/negative_log_likelihood_loss.py +1 -1
- emx_onnx_cgen/lowering/non_max_suppression.py +157 -0
- emx_onnx_cgen/lowering/nonzero.py +1 -1
- emx_onnx_cgen/lowering/one_hot.py +1 -1
- emx_onnx_cgen/lowering/pad.py +1 -1
- emx_onnx_cgen/lowering/qlinear_matmul.py +212 -0
- emx_onnx_cgen/lowering/quantize_linear.py +1 -1
- emx_onnx_cgen/lowering/range.py +1 -1
- emx_onnx_cgen/lowering/reduce.py +1 -1
- emx_onnx_cgen/lowering/registry.py +24 -5
- emx_onnx_cgen/lowering/reshape.py +1 -1
- emx_onnx_cgen/lowering/resize.py +1 -1
- emx_onnx_cgen/lowering/rms_normalization.py +1 -1
- emx_onnx_cgen/lowering/rotary_embedding.py +165 -0
- emx_onnx_cgen/lowering/scatter_nd.py +1 -1
- emx_onnx_cgen/lowering/shape.py +6 -25
- emx_onnx_cgen/lowering/size.py +1 -1
- emx_onnx_cgen/lowering/slice.py +1 -1
- emx_onnx_cgen/lowering/softmax.py +1 -1
- emx_onnx_cgen/lowering/softmax_cross_entropy_loss.py +1 -1
- emx_onnx_cgen/lowering/split.py +1 -1
- emx_onnx_cgen/lowering/squeeze.py +1 -1
- emx_onnx_cgen/lowering/tensor_scatter.py +110 -0
- emx_onnx_cgen/lowering/tile.py +1 -1
- emx_onnx_cgen/lowering/topk.py +25 -7
- emx_onnx_cgen/lowering/transpose.py +1 -1
- emx_onnx_cgen/lowering/trilu.py +1 -1
- emx_onnx_cgen/lowering/unsqueeze.py +1 -1
- emx_onnx_cgen/lowering/variadic.py +1 -1
- emx_onnx_cgen/lowering/where.py +1 -1
- emx_onnx_cgen/runtime/evaluator.py +325 -1
- emx_onnx_cgen/verification.py +9 -39
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/METADATA +8 -7
- emx_onnx_cgen-0.3.1.dist-info/RECORD +107 -0
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/WHEEL +1 -1
- shared/scalar_functions.py +11 -0
- shared/ulp.py +17 -0
- emx_onnx_cgen-0.3.0.dist-info/RECORD +0 -93
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/entry_points.txt +0 -0
- {emx_onnx_cgen-0.3.0.dist-info → emx_onnx_cgen-0.3.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,421 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
|
|
5
|
+
from shared.scalar_types import ScalarType
|
|
6
|
+
|
|
7
|
+
from ...errors import ShapeInferenceError
|
|
8
|
+
from ..op_base import BroadcastingOpBase, RenderableOpBase
|
|
9
|
+
from ..op_context import OpContext
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@dataclass(frozen=True)
|
|
13
|
+
class CastOp(RenderableOpBase):
|
|
14
|
+
input0: str
|
|
15
|
+
output: str
|
|
16
|
+
shape: tuple[int, ...]
|
|
17
|
+
input_dtype: ScalarType
|
|
18
|
+
dtype: ScalarType
|
|
19
|
+
|
|
20
|
+
def infer_types(self, ctx: OpContext) -> None:
|
|
21
|
+
ctx.dtype(self.input0)
|
|
22
|
+
ctx.dtype(self.output)
|
|
23
|
+
|
|
24
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
25
|
+
shape = ctx.shape(self.input0)
|
|
26
|
+
ctx.set_shape(self.output, shape)
|
|
27
|
+
|
|
28
|
+
@dataclass(frozen=True)
|
|
29
|
+
class QuantizeLinearOp(RenderableOpBase):
|
|
30
|
+
input0: str
|
|
31
|
+
scale: str
|
|
32
|
+
zero_point: str | None
|
|
33
|
+
output: str
|
|
34
|
+
input_shape: tuple[int, ...]
|
|
35
|
+
axis: int | None
|
|
36
|
+
dtype: ScalarType
|
|
37
|
+
input_dtype: ScalarType
|
|
38
|
+
scale_dtype: ScalarType
|
|
39
|
+
|
|
40
|
+
@dataclass(frozen=True)
|
|
41
|
+
class ConcatOp(RenderableOpBase):
|
|
42
|
+
inputs: tuple[str, ...]
|
|
43
|
+
output: str
|
|
44
|
+
axis: int
|
|
45
|
+
input_shapes: tuple[tuple[int, ...], ...]
|
|
46
|
+
output_shape: tuple[int, ...]
|
|
47
|
+
dtype: ScalarType
|
|
48
|
+
|
|
49
|
+
@dataclass(frozen=True)
|
|
50
|
+
class GatherElementsOp(RenderableOpBase):
|
|
51
|
+
data: str
|
|
52
|
+
indices: str
|
|
53
|
+
output: str
|
|
54
|
+
axis: int
|
|
55
|
+
data_shape: tuple[int, ...]
|
|
56
|
+
indices_shape: tuple[int, ...]
|
|
57
|
+
output_shape: tuple[int, ...]
|
|
58
|
+
dtype: ScalarType
|
|
59
|
+
indices_dtype: ScalarType
|
|
60
|
+
|
|
61
|
+
@dataclass(frozen=True)
|
|
62
|
+
class GatherOp(RenderableOpBase):
|
|
63
|
+
data: str
|
|
64
|
+
indices: str
|
|
65
|
+
output: str
|
|
66
|
+
axis: int
|
|
67
|
+
data_shape: tuple[int, ...]
|
|
68
|
+
indices_shape: tuple[int, ...]
|
|
69
|
+
output_shape: tuple[int, ...]
|
|
70
|
+
dtype: ScalarType
|
|
71
|
+
indices_dtype: ScalarType
|
|
72
|
+
|
|
73
|
+
@dataclass(frozen=True)
|
|
74
|
+
class GatherNDOp(RenderableOpBase):
|
|
75
|
+
data: str
|
|
76
|
+
indices: str
|
|
77
|
+
output: str
|
|
78
|
+
batch_dims: int
|
|
79
|
+
data_shape: tuple[int, ...]
|
|
80
|
+
indices_shape: tuple[int, ...]
|
|
81
|
+
output_shape: tuple[int, ...]
|
|
82
|
+
dtype: ScalarType
|
|
83
|
+
indices_dtype: ScalarType
|
|
84
|
+
|
|
85
|
+
@dataclass(frozen=True)
|
|
86
|
+
class ScatterNDOp(RenderableOpBase):
|
|
87
|
+
data: str
|
|
88
|
+
indices: str
|
|
89
|
+
updates: str
|
|
90
|
+
output: str
|
|
91
|
+
data_shape: tuple[int, ...]
|
|
92
|
+
indices_shape: tuple[int, ...]
|
|
93
|
+
updates_shape: tuple[int, ...]
|
|
94
|
+
output_shape: tuple[int, ...]
|
|
95
|
+
reduction: str
|
|
96
|
+
dtype: ScalarType
|
|
97
|
+
indices_dtype: ScalarType
|
|
98
|
+
|
|
99
|
+
@dataclass(frozen=True)
|
|
100
|
+
class TensorScatterOp(RenderableOpBase):
|
|
101
|
+
past_cache: str
|
|
102
|
+
update: str
|
|
103
|
+
write_indices: str | None
|
|
104
|
+
output: str
|
|
105
|
+
past_cache_shape: tuple[int, ...]
|
|
106
|
+
update_shape: tuple[int, ...]
|
|
107
|
+
output_shape: tuple[int, ...]
|
|
108
|
+
write_indices_shape: tuple[int, ...] | None
|
|
109
|
+
axis: int
|
|
110
|
+
mode: str
|
|
111
|
+
dtype: ScalarType
|
|
112
|
+
write_indices_dtype: ScalarType | None
|
|
113
|
+
|
|
114
|
+
@dataclass(frozen=True)
|
|
115
|
+
class TransposeOp(RenderableOpBase):
|
|
116
|
+
input0: str
|
|
117
|
+
output: str
|
|
118
|
+
perm: tuple[int, ...]
|
|
119
|
+
input_shape: tuple[int, ...]
|
|
120
|
+
output_shape: tuple[int, ...]
|
|
121
|
+
dtype: ScalarType
|
|
122
|
+
input_dtype: ScalarType
|
|
123
|
+
|
|
124
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
125
|
+
input_shape = ctx.shape(self.input0)
|
|
126
|
+
if len(self.perm) != len(input_shape):
|
|
127
|
+
raise ShapeInferenceError(
|
|
128
|
+
"Transpose perm rank must match input rank, "
|
|
129
|
+
f"got perm {self.perm} for input shape {input_shape}"
|
|
130
|
+
)
|
|
131
|
+
output_shape = tuple(input_shape[axis] for axis in self.perm)
|
|
132
|
+
ctx.set_shape(self.output, output_shape)
|
|
133
|
+
|
|
134
|
+
@dataclass(frozen=True)
|
|
135
|
+
class ReshapeOp(RenderableOpBase):
|
|
136
|
+
input0: str
|
|
137
|
+
output: str
|
|
138
|
+
input_shape: tuple[int, ...]
|
|
139
|
+
output_shape: tuple[int, ...] | None
|
|
140
|
+
dtype: ScalarType
|
|
141
|
+
input_dtype: ScalarType
|
|
142
|
+
|
|
143
|
+
def infer_shapes(self, ctx: OpContext) -> None:
|
|
144
|
+
input_shape = ctx.shape(self.input0)
|
|
145
|
+
output_shape = (
|
|
146
|
+
self.output_shape
|
|
147
|
+
if self.output_shape is not None
|
|
148
|
+
else ctx.shape(self.output)
|
|
149
|
+
)
|
|
150
|
+
ctx.set_shape(self.output, output_shape)
|
|
151
|
+
|
|
152
|
+
@dataclass(frozen=True)
|
|
153
|
+
class EyeLikeOp(RenderableOpBase):
|
|
154
|
+
input0: str
|
|
155
|
+
output: str
|
|
156
|
+
output_shape: tuple[int, ...]
|
|
157
|
+
k: int
|
|
158
|
+
dtype: ScalarType
|
|
159
|
+
input_dtype: ScalarType
|
|
160
|
+
|
|
161
|
+
@dataclass(frozen=True)
|
|
162
|
+
class TriluOp(RenderableOpBase):
|
|
163
|
+
input0: str
|
|
164
|
+
output: str
|
|
165
|
+
input_shape: tuple[int, ...]
|
|
166
|
+
output_shape: tuple[int, ...]
|
|
167
|
+
upper: bool
|
|
168
|
+
k_value: int
|
|
169
|
+
k_input: str | None
|
|
170
|
+
k_input_shape: tuple[int, ...] | None
|
|
171
|
+
k_input_dtype: ScalarType | None
|
|
172
|
+
dtype: ScalarType
|
|
173
|
+
input_dtype: ScalarType
|
|
174
|
+
|
|
175
|
+
@dataclass(frozen=True)
|
|
176
|
+
class TileOp(RenderableOpBase):
|
|
177
|
+
input0: str
|
|
178
|
+
output: str
|
|
179
|
+
input_shape: tuple[int, ...]
|
|
180
|
+
output_shape: tuple[int, ...]
|
|
181
|
+
repeats: tuple[int, ...]
|
|
182
|
+
input_strides: tuple[int, ...]
|
|
183
|
+
dtype: ScalarType
|
|
184
|
+
input_dtype: ScalarType
|
|
185
|
+
|
|
186
|
+
@dataclass(frozen=True)
|
|
187
|
+
class PadOp(RenderableOpBase):
|
|
188
|
+
input0: str
|
|
189
|
+
output: str
|
|
190
|
+
input_shape: tuple[int, ...]
|
|
191
|
+
output_shape: tuple[int, ...]
|
|
192
|
+
pads_begin: tuple[int, ...] | None
|
|
193
|
+
pads_end: tuple[int, ...] | None
|
|
194
|
+
pads_input: str | None
|
|
195
|
+
pads_shape: tuple[int, ...] | None
|
|
196
|
+
pads_dtype: ScalarType | None
|
|
197
|
+
pads_axis_map: tuple[int | None, ...] | None
|
|
198
|
+
pads_values: tuple[int, ...] | None
|
|
199
|
+
axes_input: str | None
|
|
200
|
+
axes_shape: tuple[int, ...] | None
|
|
201
|
+
axes_dtype: ScalarType | None
|
|
202
|
+
mode: str
|
|
203
|
+
value: float | int | bool
|
|
204
|
+
value_input: str | None
|
|
205
|
+
value_shape: tuple[int, ...] | None
|
|
206
|
+
dtype: ScalarType
|
|
207
|
+
input_dtype: ScalarType
|
|
208
|
+
input_strides: tuple[int, ...]
|
|
209
|
+
|
|
210
|
+
@dataclass(frozen=True)
|
|
211
|
+
class DepthToSpaceOp(RenderableOpBase):
|
|
212
|
+
input0: str
|
|
213
|
+
output: str
|
|
214
|
+
input_shape: tuple[int, ...]
|
|
215
|
+
output_shape: tuple[int, ...]
|
|
216
|
+
blocksize: int
|
|
217
|
+
mode: str
|
|
218
|
+
dtype: ScalarType
|
|
219
|
+
input_dtype: ScalarType
|
|
220
|
+
|
|
221
|
+
@dataclass(frozen=True)
|
|
222
|
+
class SpaceToDepthOp(RenderableOpBase):
|
|
223
|
+
input0: str
|
|
224
|
+
output: str
|
|
225
|
+
input_shape: tuple[int, ...]
|
|
226
|
+
output_shape: tuple[int, ...]
|
|
227
|
+
blocksize: int
|
|
228
|
+
dtype: ScalarType
|
|
229
|
+
input_dtype: ScalarType
|
|
230
|
+
|
|
231
|
+
@dataclass(frozen=True)
|
|
232
|
+
class SliceOp(RenderableOpBase):
|
|
233
|
+
input0: str
|
|
234
|
+
output: str
|
|
235
|
+
input_shape: tuple[int, ...]
|
|
236
|
+
output_shape: tuple[int, ...]
|
|
237
|
+
starts: tuple[int, ...] | None
|
|
238
|
+
steps: tuple[int, ...] | None
|
|
239
|
+
axes: tuple[int, ...] | None
|
|
240
|
+
starts_input: str | None
|
|
241
|
+
ends_input: str | None
|
|
242
|
+
axes_input: str | None
|
|
243
|
+
steps_input: str | None
|
|
244
|
+
starts_shape: tuple[int, ...] | None
|
|
245
|
+
ends_shape: tuple[int, ...] | None
|
|
246
|
+
axes_shape: tuple[int, ...] | None
|
|
247
|
+
steps_shape: tuple[int, ...] | None
|
|
248
|
+
starts_dtype: ScalarType | None
|
|
249
|
+
ends_dtype: ScalarType | None
|
|
250
|
+
axes_dtype: ScalarType | None
|
|
251
|
+
steps_dtype: ScalarType | None
|
|
252
|
+
dtype: ScalarType
|
|
253
|
+
input_dtype: ScalarType
|
|
254
|
+
|
|
255
|
+
@dataclass(frozen=True)
|
|
256
|
+
class ResizeOp(RenderableOpBase):
|
|
257
|
+
input0: str
|
|
258
|
+
output: str
|
|
259
|
+
input_shape: tuple[int, ...]
|
|
260
|
+
output_shape: tuple[int, ...]
|
|
261
|
+
scales: tuple[float, ...]
|
|
262
|
+
scales_input: str | None
|
|
263
|
+
sizes_input: str | None
|
|
264
|
+
roi_input: str | None
|
|
265
|
+
axes: tuple[int, ...]
|
|
266
|
+
scales_shape: tuple[int, ...] | None
|
|
267
|
+
sizes_shape: tuple[int, ...] | None
|
|
268
|
+
roi_shape: tuple[int, ...] | None
|
|
269
|
+
scales_dtype: ScalarType | None
|
|
270
|
+
sizes_dtype: ScalarType | None
|
|
271
|
+
roi_dtype: ScalarType | None
|
|
272
|
+
scales_axes: tuple[int, ...] | None
|
|
273
|
+
sizes_axes: tuple[int, ...] | None
|
|
274
|
+
roi_axes: tuple[int, ...] | None
|
|
275
|
+
mode: str
|
|
276
|
+
coordinate_transformation_mode: str
|
|
277
|
+
nearest_mode: str
|
|
278
|
+
cubic_coeff_a: float
|
|
279
|
+
exclude_outside: bool
|
|
280
|
+
extrapolation_value: float
|
|
281
|
+
antialias: bool
|
|
282
|
+
keep_aspect_ratio_policy: str
|
|
283
|
+
dtype: ScalarType
|
|
284
|
+
|
|
285
|
+
@dataclass(frozen=True)
|
|
286
|
+
class GridSampleOp(RenderableOpBase):
|
|
287
|
+
input0: str
|
|
288
|
+
grid: str
|
|
289
|
+
output: str
|
|
290
|
+
input_shape: tuple[int, ...]
|
|
291
|
+
grid_shape: tuple[int, ...]
|
|
292
|
+
output_shape: tuple[int, ...]
|
|
293
|
+
spatial_rank: int
|
|
294
|
+
input_spatial: tuple[int, ...]
|
|
295
|
+
output_spatial: tuple[int, ...]
|
|
296
|
+
mode: str
|
|
297
|
+
padding_mode: str
|
|
298
|
+
align_corners: bool
|
|
299
|
+
dtype: ScalarType
|
|
300
|
+
grid_dtype: ScalarType
|
|
301
|
+
|
|
302
|
+
@dataclass(frozen=True)
|
|
303
|
+
class ConstantOfShapeOp(RenderableOpBase):
|
|
304
|
+
input0: str
|
|
305
|
+
output: str
|
|
306
|
+
input_shape: tuple[int, ...]
|
|
307
|
+
shape: tuple[int, ...]
|
|
308
|
+
value: float | int | bool
|
|
309
|
+
dtype: ScalarType
|
|
310
|
+
input_dtype: ScalarType
|
|
311
|
+
|
|
312
|
+
@dataclass(frozen=True)
|
|
313
|
+
class ShapeOp(RenderableOpBase):
|
|
314
|
+
input0: str
|
|
315
|
+
output: str
|
|
316
|
+
input_shape: tuple[int, ...]
|
|
317
|
+
output_shape: tuple[int, ...]
|
|
318
|
+
values: tuple[int, ...]
|
|
319
|
+
dtype: ScalarType
|
|
320
|
+
input_dtype: ScalarType
|
|
321
|
+
|
|
322
|
+
@dataclass(frozen=True)
|
|
323
|
+
class SizeOp(RenderableOpBase):
|
|
324
|
+
input0: str
|
|
325
|
+
output: str
|
|
326
|
+
input_shape: tuple[int, ...]
|
|
327
|
+
output_shape: tuple[int, ...]
|
|
328
|
+
value: int
|
|
329
|
+
dtype: ScalarType
|
|
330
|
+
input_dtype: ScalarType
|
|
331
|
+
|
|
332
|
+
@dataclass(frozen=True)
|
|
333
|
+
class NonZeroOp(RenderableOpBase):
|
|
334
|
+
input0: str
|
|
335
|
+
output: str
|
|
336
|
+
input_shape: tuple[int, ...]
|
|
337
|
+
output_shape: tuple[int, ...]
|
|
338
|
+
dtype: ScalarType
|
|
339
|
+
input_dtype: ScalarType
|
|
340
|
+
|
|
341
|
+
@dataclass(frozen=True)
|
|
342
|
+
class NonMaxSuppressionOp(RenderableOpBase):
|
|
343
|
+
boxes: str
|
|
344
|
+
scores: str
|
|
345
|
+
max_output_boxes_per_class: str | None
|
|
346
|
+
iou_threshold: str | None
|
|
347
|
+
score_threshold: str | None
|
|
348
|
+
output: str
|
|
349
|
+
boxes_shape: tuple[int, ...]
|
|
350
|
+
scores_shape: tuple[int, ...]
|
|
351
|
+
output_shape: tuple[int, ...]
|
|
352
|
+
center_point_box: int
|
|
353
|
+
boxes_dtype: ScalarType
|
|
354
|
+
output_dtype: ScalarType
|
|
355
|
+
max_output_dtype: ScalarType | None
|
|
356
|
+
max_output_shape: tuple[int, ...] | None
|
|
357
|
+
iou_threshold_dtype: ScalarType | None
|
|
358
|
+
iou_threshold_shape: tuple[int, ...] | None
|
|
359
|
+
score_threshold_dtype: ScalarType | None
|
|
360
|
+
score_threshold_shape: tuple[int, ...] | None
|
|
361
|
+
|
|
362
|
+
@dataclass(frozen=True)
|
|
363
|
+
class ExpandOp(BroadcastingOpBase):
|
|
364
|
+
input0: str
|
|
365
|
+
output: str
|
|
366
|
+
input_shape: tuple[int, ...]
|
|
367
|
+
output_shape: tuple[int, ...]
|
|
368
|
+
input_shape_padded: tuple[int, ...]
|
|
369
|
+
input_strides: tuple[int, ...]
|
|
370
|
+
dtype: ScalarType
|
|
371
|
+
input_dtype: ScalarType
|
|
372
|
+
|
|
373
|
+
@dataclass(frozen=True)
|
|
374
|
+
class CumSumOp(RenderableOpBase):
|
|
375
|
+
input0: str
|
|
376
|
+
axis_input: str | None
|
|
377
|
+
axis_input_dtype: ScalarType | None
|
|
378
|
+
axis: int | None
|
|
379
|
+
output: str
|
|
380
|
+
input_shape: tuple[int, ...]
|
|
381
|
+
dtype: ScalarType
|
|
382
|
+
input_dtype: ScalarType
|
|
383
|
+
exclusive: bool
|
|
384
|
+
reverse: bool
|
|
385
|
+
|
|
386
|
+
@dataclass(frozen=True)
|
|
387
|
+
class RangeOp(RenderableOpBase):
|
|
388
|
+
start: str
|
|
389
|
+
limit: str
|
|
390
|
+
delta: str
|
|
391
|
+
output: str
|
|
392
|
+
output_shape: tuple[int, ...]
|
|
393
|
+
length: int
|
|
394
|
+
dtype: ScalarType
|
|
395
|
+
input_dtype: ScalarType
|
|
396
|
+
|
|
397
|
+
@dataclass(frozen=True)
|
|
398
|
+
class OneHotOp(RenderableOpBase):
|
|
399
|
+
indices: str
|
|
400
|
+
depth: str
|
|
401
|
+
values: str
|
|
402
|
+
output: str
|
|
403
|
+
axis: int
|
|
404
|
+
indices_shape: tuple[int, ...]
|
|
405
|
+
values_shape: tuple[int, ...]
|
|
406
|
+
output_shape: tuple[int, ...]
|
|
407
|
+
depth_dim: int
|
|
408
|
+
dtype: ScalarType
|
|
409
|
+
indices_dtype: ScalarType
|
|
410
|
+
depth_dtype: ScalarType
|
|
411
|
+
|
|
412
|
+
@dataclass(frozen=True)
|
|
413
|
+
class SplitOp(RenderableOpBase):
|
|
414
|
+
input0: str
|
|
415
|
+
outputs: tuple[str, ...]
|
|
416
|
+
input_shape: tuple[int, ...]
|
|
417
|
+
output_shapes: tuple[tuple[int, ...], ...]
|
|
418
|
+
axis: int
|
|
419
|
+
split_sizes: tuple[int, ...]
|
|
420
|
+
dtype: ScalarType
|
|
421
|
+
input_dtype: ScalarType
|