emerge 0.4.7__py3-none-any.whl → 0.4.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of emerge might be problematic. Click here for more details.
- emerge/__init__.py +14 -14
- emerge/_emerge/__init__.py +42 -0
- emerge/_emerge/bc.py +197 -0
- emerge/_emerge/coord.py +119 -0
- emerge/_emerge/cs.py +523 -0
- emerge/_emerge/dataset.py +36 -0
- emerge/_emerge/elements/__init__.py +19 -0
- emerge/_emerge/elements/femdata.py +212 -0
- emerge/_emerge/elements/index_interp.py +64 -0
- emerge/_emerge/elements/legrange2.py +172 -0
- emerge/_emerge/elements/ned2_interp.py +645 -0
- emerge/_emerge/elements/nedelec2.py +140 -0
- emerge/_emerge/elements/nedleg2.py +217 -0
- emerge/_emerge/geo/__init__.py +24 -0
- emerge/_emerge/geo/horn.py +107 -0
- emerge/_emerge/geo/modeler.py +449 -0
- emerge/_emerge/geo/operations.py +254 -0
- emerge/_emerge/geo/pcb.py +1244 -0
- emerge/_emerge/geo/pcb_tools/calculator.py +28 -0
- emerge/_emerge/geo/pcb_tools/macro.py +79 -0
- emerge/_emerge/geo/pmlbox.py +204 -0
- emerge/_emerge/geo/polybased.py +529 -0
- emerge/_emerge/geo/shapes.py +427 -0
- emerge/_emerge/geo/step.py +77 -0
- emerge/_emerge/geo2d.py +86 -0
- emerge/_emerge/geometry.py +510 -0
- emerge/_emerge/howto.py +214 -0
- emerge/_emerge/logsettings.py +5 -0
- emerge/_emerge/material.py +118 -0
- emerge/_emerge/mesh3d.py +730 -0
- emerge/_emerge/mesher.py +339 -0
- emerge/_emerge/mth/common_functions.py +33 -0
- emerge/_emerge/mth/integrals.py +71 -0
- emerge/_emerge/mth/optimized.py +357 -0
- emerge/_emerge/periodic.py +263 -0
- emerge/_emerge/physics/__init__.py +0 -0
- emerge/_emerge/physics/microwave/__init__.py +1 -0
- emerge/_emerge/physics/microwave/adaptive_freq.py +279 -0
- emerge/_emerge/physics/microwave/assembly/assembler.py +569 -0
- emerge/_emerge/physics/microwave/assembly/curlcurl.py +448 -0
- emerge/_emerge/physics/microwave/assembly/generalized_eigen.py +426 -0
- emerge/_emerge/physics/microwave/assembly/robinbc.py +433 -0
- emerge/_emerge/physics/microwave/microwave_3d.py +1150 -0
- emerge/_emerge/physics/microwave/microwave_bc.py +915 -0
- emerge/_emerge/physics/microwave/microwave_data.py +1148 -0
- emerge/_emerge/physics/microwave/periodic.py +82 -0
- emerge/_emerge/physics/microwave/port_functions.py +53 -0
- emerge/_emerge/physics/microwave/sc.py +175 -0
- emerge/_emerge/physics/microwave/simjob.py +147 -0
- emerge/_emerge/physics/microwave/sparam.py +138 -0
- emerge/_emerge/physics/microwave/touchstone.py +140 -0
- emerge/_emerge/plot/__init__.py +0 -0
- emerge/_emerge/plot/display.py +394 -0
- emerge/_emerge/plot/grapher.py +93 -0
- emerge/_emerge/plot/matplotlib/mpldisplay.py +264 -0
- emerge/_emerge/plot/pyvista/__init__.py +1 -0
- emerge/_emerge/plot/pyvista/display.py +931 -0
- emerge/_emerge/plot/pyvista/display_settings.py +24 -0
- emerge/_emerge/plot/simple_plots.py +551 -0
- emerge/_emerge/plot.py +225 -0
- emerge/_emerge/projects/__init__.py +0 -0
- emerge/_emerge/projects/_gen_base.txt +32 -0
- emerge/_emerge/projects/_load_base.txt +24 -0
- emerge/_emerge/projects/generate_project.py +40 -0
- emerge/_emerge/selection.py +596 -0
- emerge/_emerge/simmodel.py +444 -0
- emerge/_emerge/simulation_data.py +411 -0
- emerge/_emerge/solver.py +993 -0
- emerge/_emerge/system.py +54 -0
- emerge/cli.py +19 -0
- emerge/lib.py +1 -1
- emerge/plot.py +1 -1
- {emerge-0.4.7.dist-info → emerge-0.4.8.dist-info}/METADATA +1 -1
- emerge-0.4.8.dist-info/RECORD +78 -0
- emerge-0.4.8.dist-info/entry_points.txt +2 -0
- emerge-0.4.7.dist-info/RECORD +0 -9
- emerge-0.4.7.dist-info/entry_points.txt +0 -2
- {emerge-0.4.7.dist-info → emerge-0.4.8.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,645 @@
|
|
|
1
|
+
# EMerge is an open source Python based FEM EM simulation module.
|
|
2
|
+
# Copyright (C) 2025 Robert Fennis.
|
|
3
|
+
|
|
4
|
+
# This program is free software; you can redistribute it and/or
|
|
5
|
+
# modify it under the terms of the GNU General Public License
|
|
6
|
+
# as published by the Free Software Foundation; either version 2
|
|
7
|
+
# of the License, or (at your option) any later version.
|
|
8
|
+
|
|
9
|
+
# This program is distributed in the hope that it will be useful,
|
|
10
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
11
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
12
|
+
# GNU General Public License for more details.
|
|
13
|
+
|
|
14
|
+
# You should have received a copy of the GNU General Public License
|
|
15
|
+
# along with this program; if not, see
|
|
16
|
+
# <https://www.gnu.org/licenses/>.
|
|
17
|
+
from numba import njit, f8, c16, i8, types
|
|
18
|
+
import numpy as np
|
|
19
|
+
from ..mth.optimized import compute_distances
|
|
20
|
+
|
|
21
|
+
@njit(types.Tuple((f8[:], f8[:], f8[:], f8[:], f8))(f8[:], f8[:], f8[:]), cache = True, nogil=True)
|
|
22
|
+
def tet_coefficients(xs, ys, zs):
|
|
23
|
+
## THIS FUNCTION WORKS
|
|
24
|
+
x1, x2, x3, x4 = xs
|
|
25
|
+
y1, y2, y3, y4 = ys
|
|
26
|
+
z1, z2, z3, z4 = zs
|
|
27
|
+
|
|
28
|
+
aas = np.empty((4,), dtype=np.float64)
|
|
29
|
+
bbs = np.empty((4,), dtype=np.float64)
|
|
30
|
+
ccs = np.empty((4,), dtype=np.float64)
|
|
31
|
+
dds = np.empty((4,), dtype=np.float64)
|
|
32
|
+
|
|
33
|
+
V = np.abs(-x1*y2*z3/6 + x1*y2*z4/6 + x1*y3*z2/6 - x1*y3*z4/6 - x1*y4*z2/6 + x1*y4*z3/6 + x2*y1*z3/6 - x2*y1*z4/6 - x2*y3*z1/6 + x2*y3*z4/6 + x2*y4*z1/6 - x2*y4*z3/6 - x3*y1*z2/6 + x3*y1*z4/6 + x3*y2*z1/6 - x3*y2*z4/6 - x3*y4*z1/6 + x3*y4*z2/6 + x4*y1*z2/6 - x4*y1*z3/6 - x4*y2*z1/6 + x4*y2*z3/6 + x4*y3*z1/6 - x4*y3*z2/6)
|
|
34
|
+
|
|
35
|
+
aas[0] = x2*y3*z4 - x2*y4*z3 - x3*y2*z4 + x3*y4*z2 + x4*y2*z3 - x4*y3*z2
|
|
36
|
+
aas[1] = -x1*y3*z4 + x1*y4*z3 + x3*y1*z4 - x3*y4*z1 - x4*y1*z3 + x4*y3*z1
|
|
37
|
+
aas[2] = x1*y2*z4 - x1*y4*z2 - x2*y1*z4 + x2*y4*z1 + x4*y1*z2 - x4*y2*z1
|
|
38
|
+
aas[3] = -x1*y2*z3 + x1*y3*z2 + x2*y1*z3 - x2*y3*z1 - x3*y1*z2 + x3*y2*z1
|
|
39
|
+
bbs[0] = -y2*z3 + y2*z4 + y3*z2 - y3*z4 - y4*z2 + y4*z3
|
|
40
|
+
bbs[1] = y1*z3 - y1*z4 - y3*z1 + y3*z4 + y4*z1 - y4*z3
|
|
41
|
+
bbs[2] = -y1*z2 + y1*z4 + y2*z1 - y2*z4 - y4*z1 + y4*z2
|
|
42
|
+
bbs[3] = y1*z2 - y1*z3 - y2*z1 + y2*z3 + y3*z1 - y3*z2
|
|
43
|
+
ccs[0] = x2*z3 - x2*z4 - x3*z2 + x3*z4 + x4*z2 - x4*z3
|
|
44
|
+
ccs[1] = -x1*z3 + x1*z4 + x3*z1 - x3*z4 - x4*z1 + x4*z3
|
|
45
|
+
ccs[2] = x1*z2 - x1*z4 - x2*z1 + x2*z4 + x4*z1 - x4*z2
|
|
46
|
+
ccs[3] = -x1*z2 + x1*z3 + x2*z1 - x2*z3 - x3*z1 + x3*z2
|
|
47
|
+
dds[0] = -x2*y3 + x2*y4 + x3*y2 - x3*y4 - x4*y2 + x4*y3
|
|
48
|
+
dds[1] = x1*y3 - x1*y4 - x3*y1 + x3*y4 + x4*y1 - x4*y3
|
|
49
|
+
dds[2] = -x1*y2 + x1*y4 + x2*y1 - x2*y4 - x4*y1 + x4*y2
|
|
50
|
+
dds[3] = x1*y2 - x1*y3 - x2*y1 + x2*y3 + x3*y1 - x3*y2
|
|
51
|
+
|
|
52
|
+
return aas, bbs, ccs, dds, V
|
|
53
|
+
|
|
54
|
+
@njit(types.Tuple((f8[:], f8[:], f8[:], f8))(f8[:], f8[:]), cache = True, nogil=True)
|
|
55
|
+
def tri_coefficients(vxs, vys):
|
|
56
|
+
|
|
57
|
+
x1, x2, x3 = vxs
|
|
58
|
+
y1, y2, y3 = vys
|
|
59
|
+
|
|
60
|
+
a1 = x2*y3-y2*x3
|
|
61
|
+
a2 = x3*y1-y3*x1
|
|
62
|
+
a3 = x1*y2-y1*x2
|
|
63
|
+
b1 = y2-y3
|
|
64
|
+
b2 = y3-y1
|
|
65
|
+
b3 = y1-y2
|
|
66
|
+
c1 = x3-x2
|
|
67
|
+
c2 = x1-x3
|
|
68
|
+
c3 = x2-x1
|
|
69
|
+
|
|
70
|
+
#A = 0.5*(b1*c2 - b2*c1)
|
|
71
|
+
sA = 0.5*(((x1-x3)*(y2-y1) - (x1-x2)*(y3-y1)))
|
|
72
|
+
sign = np.sign(sA)
|
|
73
|
+
A = np.abs(sA)
|
|
74
|
+
As = np.array([a1, a2, a3])*sign
|
|
75
|
+
Bs = np.array([b1, b2, b3])*sign
|
|
76
|
+
Cs = np.array([c1, c2, c3])*sign
|
|
77
|
+
return As, Bs, Cs, A
|
|
78
|
+
|
|
79
|
+
@njit(i8[:, :](i8[:], i8[:, :]), cache=True, nogil=True)
|
|
80
|
+
def local_mapping(vertex_ids, triangle_ids):
|
|
81
|
+
"""
|
|
82
|
+
Parameters
|
|
83
|
+
----------
|
|
84
|
+
vertex_ids : 1-D int64 array (length 4)
|
|
85
|
+
Global vertex 0.1005964238ers of one tetrahedron, in *its* order
|
|
86
|
+
(v0, v1, v2, v3).
|
|
87
|
+
|
|
88
|
+
triangle_ids : 2-D int64 array (nTri × 3)
|
|
89
|
+
Each row is a global-ID triple of one face that belongs to this tet.
|
|
90
|
+
|
|
91
|
+
Returns
|
|
92
|
+
-------
|
|
93
|
+
local_tris : 2-D int64 array (nTri × 3)
|
|
94
|
+
Same triangles, but every entry replaced by the local index
|
|
95
|
+
0,1,2,3 that the vertex has inside this tetrahedron.
|
|
96
|
+
(Guaranteed to be ∈{0,1,2,3}; no -1 ever appears if the input
|
|
97
|
+
really belongs to the tet.)
|
|
98
|
+
"""
|
|
99
|
+
ndim = triangle_ids.shape[0]
|
|
100
|
+
ntri = triangle_ids.shape[1]
|
|
101
|
+
out = np.zeros(triangle_ids.shape, dtype=np.int64)
|
|
102
|
+
|
|
103
|
+
for t in range(ntri): # each triangle
|
|
104
|
+
for j in range(ndim): # each vertex in that triangle
|
|
105
|
+
gid = triangle_ids[j, t] # global ID to look up
|
|
106
|
+
|
|
107
|
+
# linear search over the four tet vertices
|
|
108
|
+
for k in range(4):
|
|
109
|
+
if vertex_ids[k] == gid:
|
|
110
|
+
out[j, t] = k # store local index 0-3
|
|
111
|
+
break # stop the k-loop
|
|
112
|
+
|
|
113
|
+
return out
|
|
114
|
+
|
|
115
|
+
@njit(types.Tuple((c16[:], c16[:], c16[:]))(f8[:,:], c16[:], i8[:,:], i8[:,:], i8[:,:], f8[:,:], i8[:,:], i8[:]), cache=True, nogil=True)
|
|
116
|
+
def ned2_tet_interp(coords: np.ndarray,
|
|
117
|
+
solutions: np.ndarray,
|
|
118
|
+
tets: np.ndarray,
|
|
119
|
+
tris: np.ndarray,
|
|
120
|
+
edges: np.ndarray,
|
|
121
|
+
nodes: np.ndarray,
|
|
122
|
+
tet_to_field: np.ndarray,
|
|
123
|
+
tetids: np.ndarray):
|
|
124
|
+
''' Nedelec 2 tetrahedral interpolation'''
|
|
125
|
+
# Solution has shape (nEdges, nsols)
|
|
126
|
+
nNodes = coords.shape[1]
|
|
127
|
+
nEdges = edges.shape[1]
|
|
128
|
+
|
|
129
|
+
xs = coords[0,:]
|
|
130
|
+
ys = coords[1,:]
|
|
131
|
+
zs = coords[2,:]
|
|
132
|
+
|
|
133
|
+
Ex = np.zeros((nNodes, ), dtype=np.complex128)
|
|
134
|
+
Ey = np.zeros((nNodes, ), dtype=np.complex128)
|
|
135
|
+
Ez = np.zeros((nNodes, ), dtype=np.complex128)
|
|
136
|
+
|
|
137
|
+
for i_iter in range(tetids.shape[0]):
|
|
138
|
+
itet = tetids[i_iter]
|
|
139
|
+
|
|
140
|
+
iv1, iv2, iv3, iv4 = tets[:, itet]
|
|
141
|
+
|
|
142
|
+
g_node_ids = tets[:, itet]
|
|
143
|
+
g_edge_ids = edges[:, tet_to_field[:6, itet]]
|
|
144
|
+
g_tri_ids = tris[:, tet_to_field[6:10, itet]-nEdges]
|
|
145
|
+
|
|
146
|
+
l_edge_ids = local_mapping(g_node_ids, g_edge_ids)
|
|
147
|
+
l_tri_ids = local_mapping(g_node_ids, g_tri_ids)
|
|
148
|
+
|
|
149
|
+
v1 = nodes[:,iv1]
|
|
150
|
+
v2 = nodes[:,iv2]
|
|
151
|
+
v3 = nodes[:,iv3]
|
|
152
|
+
v4 = nodes[:,iv4]
|
|
153
|
+
|
|
154
|
+
bv1 = v2 - v1
|
|
155
|
+
bv2 = v3 - v1
|
|
156
|
+
bv3 = v4 - v1
|
|
157
|
+
|
|
158
|
+
blocal = np.zeros((3,3))
|
|
159
|
+
blocal[:,0] = bv1
|
|
160
|
+
blocal[:,1] = bv2
|
|
161
|
+
blocal[:,2] = bv3
|
|
162
|
+
basis = np.linalg.pinv(blocal)
|
|
163
|
+
|
|
164
|
+
coords_offset = coords - v1[:,np.newaxis]
|
|
165
|
+
coords_local = (basis @ (coords_offset))
|
|
166
|
+
|
|
167
|
+
field_ids = tet_to_field[:, itet]
|
|
168
|
+
Etet = solutions[field_ids]
|
|
169
|
+
|
|
170
|
+
inside = ((coords_local[0,:] + coords_local[1,:] + coords_local[2,:]) <= 1.00000001) & (coords_local[0,:] >= -1e-6) & (coords_local[1,:] >= -1e-6) & (coords_local[2,:] >= -1e-6)
|
|
171
|
+
|
|
172
|
+
if inside.sum() == 0:
|
|
173
|
+
continue
|
|
174
|
+
|
|
175
|
+
######### INSIDE THE TETRAHEDRON #########
|
|
176
|
+
|
|
177
|
+
x = xs[inside==1]
|
|
178
|
+
y = ys[inside==1]
|
|
179
|
+
z = zs[inside==1]
|
|
180
|
+
|
|
181
|
+
xvs = nodes[0, tets[:,itet]]
|
|
182
|
+
yvs = nodes[1, tets[:,itet]]
|
|
183
|
+
zvs = nodes[2, tets[:,itet]]
|
|
184
|
+
|
|
185
|
+
a_s, b_s, c_s, d_s, V = tet_coefficients(xvs, yvs, zvs)
|
|
186
|
+
|
|
187
|
+
Em1s = Etet[0:6]
|
|
188
|
+
Ef1s = Etet[6:10]
|
|
189
|
+
Em2s = Etet[10:16]
|
|
190
|
+
Ef2s = Etet[16:20]
|
|
191
|
+
|
|
192
|
+
Exl = np.zeros(x.shape, dtype=np.complex128)
|
|
193
|
+
Eyl = np.zeros(x.shape, dtype=np.complex128)
|
|
194
|
+
Ezl = np.zeros(x.shape, dtype=np.complex128)
|
|
195
|
+
for ie in range(6):
|
|
196
|
+
Em1, Em2 = Em1s[ie], Em2s[ie]
|
|
197
|
+
edgeids = l_edge_ids[:, ie]
|
|
198
|
+
a1, a2 = a_s[edgeids]
|
|
199
|
+
b1, b2 = b_s[edgeids]
|
|
200
|
+
c1, c2 = c_s[edgeids]
|
|
201
|
+
d1, d2 = d_s[edgeids]
|
|
202
|
+
x1, x2 = xvs[edgeids]
|
|
203
|
+
y1, y2 = yvs[edgeids]
|
|
204
|
+
z1, z2 = zvs[edgeids]
|
|
205
|
+
|
|
206
|
+
L = np.sqrt((x1 - x2)**2 + (y1 - y2)**2 + (z1 - z2)**2)
|
|
207
|
+
ex = L*(Em1*(a1 + b1*x + c1*y + d1*z) + Em2*(a2 + b2*x + c2*y + d2*z))*(b1*(a2 + b2*x + c2*y + d2*z) - b2*(a1 + b1*x + c1*y + d1*z))/(216*V**3)
|
|
208
|
+
ey = L*(Em1*(a1 + b1*x + c1*y + d1*z) + Em2*(a2 + b2*x + c2*y + d2*z))*(c1*(a2 + b2*x + c2*y + d2*z) - c2*(a1 + b1*x + c1*y + d1*z))/(216*V**3)
|
|
209
|
+
ez = L*(Em1*(a1 + b1*x + c1*y + d1*z) + Em2*(a2 + b2*x + c2*y + d2*z))*(d1*(a2 + b2*x + c2*y + d2*z) - d2*(a1 + b1*x + c1*y + d1*z))/(216*V**3)
|
|
210
|
+
|
|
211
|
+
Exl += ex
|
|
212
|
+
Eyl += ey
|
|
213
|
+
Ezl += ez
|
|
214
|
+
|
|
215
|
+
for ie in range(4):
|
|
216
|
+
Em1, Em2 = Ef1s[ie], Ef2s[ie]
|
|
217
|
+
triids = l_tri_ids[:, ie]
|
|
218
|
+
a1, a2, a3 = a_s[triids]
|
|
219
|
+
b1, b2, b3 = b_s[triids]
|
|
220
|
+
c1, c2, c3 = c_s[triids]
|
|
221
|
+
d1, d2, d3 = d_s[triids]
|
|
222
|
+
|
|
223
|
+
x1, x2, x3 = xvs[l_tri_ids[:, ie]]
|
|
224
|
+
y1, y2, y3 = yvs[l_tri_ids[:, ie]]
|
|
225
|
+
z1, z2, z3 = zvs[l_tri_ids[:, ie]]
|
|
226
|
+
|
|
227
|
+
L1 = np.sqrt((x1-x3)**2 + (y1-y3)**2 + (z1-z3)**2)
|
|
228
|
+
L2 = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
|
|
229
|
+
|
|
230
|
+
ex = (-Em1*L1*(b1*(a3 + b3*x + c3*y + d3*z) - b3*(a1 + b1*x + c1*y + d1*z))*(a2 + b2*x + c2*y + d2*z) + Em2*L2*(b1*(a2 + b2*x + c2*y + d2*z) - b2*(a1 + b1*x + c1*y + d1*z))*(a3 + b3*x + c3*y + d3*z))/(216*V**3)
|
|
231
|
+
ey = (-Em1*L1*(c1*(a3 + b3*x + c3*y + d3*z) - c3*(a1 + b1*x + c1*y + d1*z))*(a2 + b2*x + c2*y + d2*z) + Em2*L2*(c1*(a2 + b2*x + c2*y + d2*z) - c2*(a1 + b1*x + c1*y + d1*z))*(a3 + b3*x + c3*y + d3*z))/(216*V**3)
|
|
232
|
+
ez = (-Em1*L1*(d1*(a3 + b3*x + c3*y + d3*z) - d3*(a1 + b1*x + c1*y + d1*z))*(a2 + b2*x + c2*y + d2*z) + Em2*L2*(d1*(a2 + b2*x + c2*y + d2*z) - d2*(a1 + b1*x + c1*y + d1*z))*(a3 + b3*x + c3*y + d3*z))/(216*V**3)
|
|
233
|
+
|
|
234
|
+
Exl += ex
|
|
235
|
+
Eyl += ey
|
|
236
|
+
Ezl += ez
|
|
237
|
+
|
|
238
|
+
Ex[inside] = Exl
|
|
239
|
+
Ey[inside] = Eyl
|
|
240
|
+
Ez[inside] = Ezl
|
|
241
|
+
return Ex, Ey, Ez
|
|
242
|
+
|
|
243
|
+
@njit(types.Tuple((c16[:], c16[:], c16[:]))(f8[:,:], c16[:], i8[:,:], i8[:,:], i8[:,:], f8[:,:], i8[:,:], c16[:], i8[:]), cache=True, nogil=True)
|
|
244
|
+
def ned2_tet_interp_curl(coords: np.ndarray,
|
|
245
|
+
solutions: np.ndarray,
|
|
246
|
+
tets: np.ndarray,
|
|
247
|
+
tris: np.ndarray,
|
|
248
|
+
edges: np.ndarray,
|
|
249
|
+
nodes: np.ndarray,
|
|
250
|
+
tet_to_field: np.ndarray,
|
|
251
|
+
c: np.ndarray,
|
|
252
|
+
tetids: np.ndarray):
|
|
253
|
+
''' Nedelec 2 tetrahedral interpolation of the analytic curl'''
|
|
254
|
+
# Solution has shape (nEdges, nsols)
|
|
255
|
+
nNodes = coords.shape[1]
|
|
256
|
+
nEdges = edges.shape[1]
|
|
257
|
+
|
|
258
|
+
xs = coords[0,:]
|
|
259
|
+
ys = coords[1,:]
|
|
260
|
+
zs = coords[2,:]
|
|
261
|
+
|
|
262
|
+
Ex = np.zeros((nNodes, ), dtype=np.complex128)
|
|
263
|
+
Ey = np.zeros((nNodes, ), dtype=np.complex128)
|
|
264
|
+
Ez = np.zeros((nNodes, ), dtype=np.complex128)
|
|
265
|
+
|
|
266
|
+
for i_iter in range(tetids.shape[0]):
|
|
267
|
+
itet = tetids[i_iter]
|
|
268
|
+
|
|
269
|
+
iv1, iv2, iv3, iv4 = tets[:, itet]
|
|
270
|
+
|
|
271
|
+
g_node_ids = tets[:, itet]
|
|
272
|
+
g_edge_ids = edges[:, tet_to_field[:6, itet]]
|
|
273
|
+
g_tri_ids = tris[:, tet_to_field[6:10, itet]-nEdges]
|
|
274
|
+
|
|
275
|
+
l_edge_ids = local_mapping(g_node_ids, g_edge_ids)
|
|
276
|
+
l_tri_ids = local_mapping(g_node_ids, g_tri_ids)
|
|
277
|
+
|
|
278
|
+
v1 = nodes[:,iv1]
|
|
279
|
+
v2 = nodes[:,iv2]
|
|
280
|
+
v3 = nodes[:,iv3]
|
|
281
|
+
v4 = nodes[:,iv4]
|
|
282
|
+
|
|
283
|
+
bv1 = v2 - v1
|
|
284
|
+
bv2 = v3 - v1
|
|
285
|
+
bv3 = v4 - v1
|
|
286
|
+
|
|
287
|
+
blocal = np.zeros((3,3))
|
|
288
|
+
blocal[:,0] = bv1
|
|
289
|
+
blocal[:,1] = bv2
|
|
290
|
+
blocal[:,2] = bv3
|
|
291
|
+
basis = np.linalg.pinv(blocal)
|
|
292
|
+
|
|
293
|
+
coords_offset = coords - v1[:,np.newaxis]
|
|
294
|
+
coords_local = (basis @ (coords_offset))
|
|
295
|
+
|
|
296
|
+
field_ids = tet_to_field[:, itet]
|
|
297
|
+
Etet = solutions[field_ids]
|
|
298
|
+
|
|
299
|
+
inside = ((coords_local[0,:] + coords_local[1,:] + coords_local[2,:]) <= 1.00000001) & (coords_local[0,:] >= -1e-6) & (coords_local[1,:] >= -1e-6) & (coords_local[2,:] >= -1e-6)
|
|
300
|
+
|
|
301
|
+
if inside.sum() == 0:
|
|
302
|
+
continue
|
|
303
|
+
|
|
304
|
+
const = c[itet]
|
|
305
|
+
######### INSIDE THE TETRAHEDRON #########
|
|
306
|
+
|
|
307
|
+
x = xs[inside==1]
|
|
308
|
+
y = ys[inside==1]
|
|
309
|
+
z = zs[inside==1]
|
|
310
|
+
|
|
311
|
+
xvs = nodes[0, tets[:,itet]]
|
|
312
|
+
yvs = nodes[1, tets[:,itet]]
|
|
313
|
+
zvs = nodes[2, tets[:,itet]]
|
|
314
|
+
|
|
315
|
+
a_s, b_s, c_s, d_s, V = tet_coefficients(xvs, yvs, zvs)
|
|
316
|
+
|
|
317
|
+
Em1s = Etet[0:6]
|
|
318
|
+
Ef1s = Etet[6:10]
|
|
319
|
+
Em2s = Etet[10:16]
|
|
320
|
+
Ef2s = Etet[16:20]
|
|
321
|
+
|
|
322
|
+
Exl = np.zeros(x.shape, dtype=np.complex128)
|
|
323
|
+
Eyl = np.zeros(x.shape, dtype=np.complex128)
|
|
324
|
+
Ezl = np.zeros(x.shape, dtype=np.complex128)
|
|
325
|
+
for ie in range(6):
|
|
326
|
+
Em1, Em2 = Em1s[ie], Em2s[ie]
|
|
327
|
+
edgeids = l_edge_ids[:, ie]
|
|
328
|
+
a1, a2 = a_s[edgeids]
|
|
329
|
+
b1, b2 = b_s[edgeids]
|
|
330
|
+
c1, c2 = c_s[edgeids]
|
|
331
|
+
d1, d2 = d_s[edgeids]
|
|
332
|
+
x1, x2 = xvs[edgeids]
|
|
333
|
+
y1, y2 = yvs[edgeids]
|
|
334
|
+
z1, z2 = zvs[edgeids]
|
|
335
|
+
|
|
336
|
+
L = np.sqrt((x1 - x2)**2 + (y1 - y2)**2 + (z1 - z2)**2)
|
|
337
|
+
ex = L*(-Em1*a1*c1*d2 + Em1*a1*c2*d1 - Em1*b1*c1*d2*x + Em1*b1*c2*d1*x - Em1*c1**2*d2*y + Em1*c1*c2*d1*y - Em1*c1*d1*d2*z + Em1*c2*d1**2*z - Em2*a2*c1*d2 + Em2*a2*c2*d1 - Em2*b2*c1*d2*x + Em2*b2*c2*d1*x - Em2*c1*c2*d2*y - Em2*c1*d2**2*z + Em2*c2**2*d1*y + Em2*c2*d1*d2*z)/(72*V**3)
|
|
338
|
+
ey = L*(Em1*a1*b1*d2 - Em1*a1*b2*d1 + Em1*b1**2*d2*x - Em1*b1*b2*d1*x + Em1*b1*c1*d2*y + Em1*b1*d1*d2*z - Em1*b2*c1*d1*y - Em1*b2*d1**2*z + Em2*a2*b1*d2 - Em2*a2*b2*d1 + Em2*b1*b2*d2*x + Em2*b1*c2*d2*y + Em2*b1*d2**2*z - Em2*b2**2*d1*x - Em2*b2*c2*d1*y - Em2*b2*d1*d2*z)/(72*V**3)
|
|
339
|
+
ez = L*(-Em1*a1*b1*c2 + Em1*a1*b2*c1 - Em1*b1**2*c2*x + Em1*b1*b2*c1*x - Em1*b1*c1*c2*y - Em1*b1*c2*d1*z + Em1*b2*c1**2*y + Em1*b2*c1*d1*z - Em2*a2*b1*c2 + Em2*a2*b2*c1 - Em2*b1*b2*c2*x - Em2*b1*c2**2*y - Em2*b1*c2*d2*z + Em2*b2**2*c1*x + Em2*b2*c1*c2*y + Em2*b2*c1*d2*z)/(72*V**3)
|
|
340
|
+
Exl += ex
|
|
341
|
+
Eyl += ey
|
|
342
|
+
Ezl += ez
|
|
343
|
+
|
|
344
|
+
for ie in range(4):
|
|
345
|
+
Em1, Em2 = Ef1s[ie], Ef2s[ie]
|
|
346
|
+
triids = l_tri_ids[:, ie]
|
|
347
|
+
a1, a2, a3 = a_s[triids]
|
|
348
|
+
b1, b2, b3 = b_s[triids]
|
|
349
|
+
c1, c2, c3 = c_s[triids]
|
|
350
|
+
d1, d2, d3 = d_s[triids]
|
|
351
|
+
|
|
352
|
+
x1, x2, x3 = xvs[l_tri_ids[:, ie]]
|
|
353
|
+
y1, y2, y3 = yvs[l_tri_ids[:, ie]]
|
|
354
|
+
z1, z2, z3 = zvs[l_tri_ids[:, ie]]
|
|
355
|
+
|
|
356
|
+
L1 = np.sqrt((x1-x3)**2 + (y1-y3)**2 + (z1-z3)**2)
|
|
357
|
+
L2 = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
|
|
358
|
+
|
|
359
|
+
ex = (Em1*L1*(-c2*(d1*(a3 + b3*x + c3*y + d3*z) - d3*(a1 + b1*x + c1*y + d1*z)) + d2*(c1*(a3 + b3*x + c3*y + d3*z) - c3*(a1 + b1*x + c1*y + d1*z)) + 2*(c1*d3 - c3*d1)*(a2 + b2*x + c2*y + d2*z)) - Em2*L2*(-c3*(d1*(a2 + b2*x + c2*y + d2*z) - d2*(a1 + b1*x + c1*y + d1*z)) + d3*(c1*(a2 + b2*x + c2*y + d2*z) - c2*(a1 + b1*x + c1*y + d1*z)) + 2*(c1*d2 - c2*d1)*(a3 + b3*x + c3*y + d3*z)))/(216*V**3)
|
|
360
|
+
ey = (-Em1*L1*(-b2*(d1*(a3 + b3*x + c3*y + d3*z) - d3*(a1 + b1*x + c1*y + d1*z)) + d2*(b1*(a3 + b3*x + c3*y + d3*z) - b3*(a1 + b1*x + c1*y + d1*z)) + 2*(b1*d3 - b3*d1)*(a2 + b2*x + c2*y + d2*z)) + Em2*L2*(-b3*(d1*(a2 + b2*x + c2*y + d2*z) - d2*(a1 + b1*x + c1*y + d1*z)) + d3*(b1*(a2 + b2*x + c2*y + d2*z) - b2*(a1 + b1*x + c1*y + d1*z)) + 2*(b1*d2 - b2*d1)*(a3 + b3*x + c3*y + d3*z)))/(216*V**3)
|
|
361
|
+
ez = (Em1*L1*(-b2*(c1*(a3 + b3*x + c3*y + d3*z) - c3*(a1 + b1*x + c1*y + d1*z)) + c2*(b1*(a3 + b3*x + c3*y + d3*z) - b3*(a1 + b1*x + c1*y + d1*z)) + 2*(b1*c3 - b3*c1)*(a2 + b2*x + c2*y + d2*z)) - Em2*L2*(-b3*(c1*(a2 + b2*x + c2*y + d2*z) - c2*(a1 + b1*x + c1*y + d1*z)) + c3*(b1*(a2 + b2*x + c2*y + d2*z) - b2*(a1 + b1*x + c1*y + d1*z)) + 2*(b1*c2 - b2*c1)*(a3 + b3*x + c3*y + d3*z)))/(216*V**3)
|
|
362
|
+
|
|
363
|
+
Exl += ex
|
|
364
|
+
Eyl += ey
|
|
365
|
+
Ezl += ez
|
|
366
|
+
|
|
367
|
+
Ex[inside] = Exl*const
|
|
368
|
+
Ey[inside] = Eyl*const
|
|
369
|
+
Ez[inside] = Ezl*const
|
|
370
|
+
return Ex, Ey, Ez
|
|
371
|
+
|
|
372
|
+
@njit(types.Tuple((c16[:], c16[:], c16[:]))(f8[:,:], c16[:], i8[:,:], f8[:,:], i8[:,:]), cache=True, nogil=True)
|
|
373
|
+
def ned2_tri_interp(coords: np.ndarray,
|
|
374
|
+
solutions: np.ndarray,
|
|
375
|
+
tris: np.ndarray,
|
|
376
|
+
nodes: np.ndarray,
|
|
377
|
+
tri_to_field: np.ndarray):
|
|
378
|
+
''' Nedelec 2 tetrahedral interpolation'''
|
|
379
|
+
### THIS IS VERIFIED TO WORK
|
|
380
|
+
# Solution has shape (nEdges, nsols)
|
|
381
|
+
nNodes = coords.shape[1]
|
|
382
|
+
xs = coords[0,:]
|
|
383
|
+
ys = coords[1,:]
|
|
384
|
+
|
|
385
|
+
Ex = np.zeros((nNodes, ), dtype=np.complex128)
|
|
386
|
+
Ey = np.zeros((nNodes, ), dtype=np.complex128)
|
|
387
|
+
Ez = np.zeros((nNodes, ), dtype=np.complex128)
|
|
388
|
+
|
|
389
|
+
nodes = nodes[:2,:]
|
|
390
|
+
|
|
391
|
+
l_edge_ids = np.array([[0,1,0],[1,2,2]])
|
|
392
|
+
|
|
393
|
+
for itri in range(tris.shape[1]):
|
|
394
|
+
|
|
395
|
+
iv1, iv2, iv3 = tris[:, itri]
|
|
396
|
+
|
|
397
|
+
v1 = nodes[:,iv1]
|
|
398
|
+
v2 = nodes[:,iv2]
|
|
399
|
+
v3 = nodes[:,iv3]
|
|
400
|
+
|
|
401
|
+
bv1 = v2 - v1
|
|
402
|
+
bv2 = v3 - v1
|
|
403
|
+
|
|
404
|
+
blocal = np.zeros((2,2))
|
|
405
|
+
blocal[:,0] = bv1
|
|
406
|
+
blocal[:,1] = bv2
|
|
407
|
+
basis = np.linalg.pinv(blocal)
|
|
408
|
+
|
|
409
|
+
coords_offset = coords - v1[:,np.newaxis]
|
|
410
|
+
coords_local = (basis @ (coords_offset))
|
|
411
|
+
|
|
412
|
+
field_ids = tri_to_field[:, itri]
|
|
413
|
+
|
|
414
|
+
Etri = solutions[field_ids]
|
|
415
|
+
|
|
416
|
+
inside = ((coords_local[0,:] + coords_local[1,:]) <= 1.0001) & (coords_local[0,:] >= -1e-6) & (coords_local[1,:] >= -1e-6)
|
|
417
|
+
|
|
418
|
+
if inside.sum() == 0:
|
|
419
|
+
continue
|
|
420
|
+
|
|
421
|
+
######### INSIDE THE TETRAHEDRON #########
|
|
422
|
+
|
|
423
|
+
x = xs[inside==1]
|
|
424
|
+
y = ys[inside==1]
|
|
425
|
+
|
|
426
|
+
xvs = nodes[0, tris[:,itri]]
|
|
427
|
+
yvs = nodes[1, tris[:,itri]]
|
|
428
|
+
|
|
429
|
+
Ds = compute_distances(xvs, yvs, 0*xvs)
|
|
430
|
+
|
|
431
|
+
L1 = Ds[0,1]
|
|
432
|
+
L2 = Ds[1,2]
|
|
433
|
+
L3 = Ds[0,2]
|
|
434
|
+
|
|
435
|
+
mult = np.array([L1,L2,L3,L3,L1,L2,L3,L1])
|
|
436
|
+
|
|
437
|
+
a_s, b_s, c_s, A = tri_coefficients(xvs, yvs)
|
|
438
|
+
|
|
439
|
+
Etri = Etri*mult
|
|
440
|
+
|
|
441
|
+
Em1s = Etri[:3]
|
|
442
|
+
Ef1s = Etri[3]
|
|
443
|
+
Em2s = Etri[4:7]
|
|
444
|
+
Ef2s = Etri[7]
|
|
445
|
+
|
|
446
|
+
Exl = np.zeros(x.shape, dtype=np.complex128)
|
|
447
|
+
Eyl = np.zeros(x.shape, dtype=np.complex128)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
for ie in range(3):
|
|
451
|
+
Em1, Em2 = Em1s[ie], Em2s[ie]
|
|
452
|
+
edgeids = l_edge_ids[:, ie]
|
|
453
|
+
a1, a2 = a_s[edgeids]
|
|
454
|
+
b1, b2 = b_s[edgeids]
|
|
455
|
+
c1, c2 = c_s[edgeids]
|
|
456
|
+
|
|
457
|
+
ex = (Em1*(a1 + b1*x + c1*y) + Em2*(a2 + b2*x + c2*y))*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))/(8*A**3)
|
|
458
|
+
ey = (Em1*(a1 + b1*x + c1*y) + Em2*(a2 + b2*x + c2*y))*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))/(8*A**3)
|
|
459
|
+
|
|
460
|
+
Exl += ex
|
|
461
|
+
Eyl += ey
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
Em1, Em2 = Ef1s, Ef2s
|
|
465
|
+
triids = np.array([0,1,2])
|
|
466
|
+
|
|
467
|
+
a1, a2, a3 = a_s[triids]
|
|
468
|
+
b1, b2, b3 = b_s[triids]
|
|
469
|
+
c1, c2, c3 = c_s[triids]
|
|
470
|
+
|
|
471
|
+
ex = (-Em1*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + Em2*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y))/(8*A**3)
|
|
472
|
+
ey = (-Em1*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + Em2*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y))/(8*A**3)
|
|
473
|
+
|
|
474
|
+
Exl += ex
|
|
475
|
+
Eyl += ey
|
|
476
|
+
|
|
477
|
+
Ex[inside] = Exl
|
|
478
|
+
Ey[inside] = Eyl
|
|
479
|
+
return Ex, Ey, Ez
|
|
480
|
+
|
|
481
|
+
@njit(types.Tuple((c16[:], c16[:], c16[:]))(f8[:,:], c16[:], i8[:,:], f8[:,:], i8[:,:]), cache=True, nogil=True)
|
|
482
|
+
def ned2_tri_interp_full(coords: np.ndarray,
|
|
483
|
+
solutions: np.ndarray,
|
|
484
|
+
tris: np.ndarray,
|
|
485
|
+
nodes: np.ndarray,
|
|
486
|
+
tri_to_field: np.ndarray):
|
|
487
|
+
''' Nedelec 2 tetrahedral interpolation'''
|
|
488
|
+
### THIS IS VERIFIED TO WORK
|
|
489
|
+
# Solution has shape (nEdges, nsols)
|
|
490
|
+
nNodes = coords.shape[1]
|
|
491
|
+
xs = coords[0,:]
|
|
492
|
+
ys = coords[1,:]
|
|
493
|
+
|
|
494
|
+
Ex = np.zeros((nNodes, ), dtype=np.complex128)
|
|
495
|
+
Ey = np.zeros((nNodes, ), dtype=np.complex128)
|
|
496
|
+
Ez = np.zeros((nNodes, ), dtype=np.complex128)
|
|
497
|
+
|
|
498
|
+
nodes = nodes[:2,:]
|
|
499
|
+
|
|
500
|
+
for itri in range(tris.shape[1]):
|
|
501
|
+
|
|
502
|
+
iv1, iv2, iv3 = tris[:, itri]
|
|
503
|
+
|
|
504
|
+
v1 = nodes[:,iv1]
|
|
505
|
+
v2 = nodes[:,iv2]
|
|
506
|
+
v3 = nodes[:,iv3]
|
|
507
|
+
|
|
508
|
+
bv1 = v2 - v1
|
|
509
|
+
bv2 = v3 - v1
|
|
510
|
+
|
|
511
|
+
blocal = np.zeros((2,2))
|
|
512
|
+
blocal[:,0] = bv1
|
|
513
|
+
blocal[:,1] = bv2
|
|
514
|
+
basis = np.linalg.pinv(blocal)
|
|
515
|
+
|
|
516
|
+
coords_offset = coords - v1[:,np.newaxis]
|
|
517
|
+
coords_local = (basis @ (coords_offset))
|
|
518
|
+
|
|
519
|
+
field_ids = tri_to_field[:, itri]
|
|
520
|
+
|
|
521
|
+
Etri = solutions[field_ids]
|
|
522
|
+
|
|
523
|
+
inside = ((coords_local[0,:] + coords_local[1,:]) <= 1.00001) & (coords_local[0,:] >= -1e-6) & (coords_local[1,:] >= -1e-6)
|
|
524
|
+
|
|
525
|
+
if inside.sum() == 0:
|
|
526
|
+
continue
|
|
527
|
+
|
|
528
|
+
######### INSIDE THE TETRAHEDRON #########
|
|
529
|
+
|
|
530
|
+
x = xs[inside==1]
|
|
531
|
+
y = ys[inside==1]
|
|
532
|
+
|
|
533
|
+
xvs = nodes[0, tris[:,itri]]
|
|
534
|
+
yvs = nodes[1, tris[:,itri]]
|
|
535
|
+
|
|
536
|
+
Ds = compute_distances(xvs, yvs, 0*xvs)
|
|
537
|
+
|
|
538
|
+
L1 = Ds[0,1]
|
|
539
|
+
L2 = Ds[1,2]
|
|
540
|
+
L3 = Ds[0,2]
|
|
541
|
+
|
|
542
|
+
mult = np.array([L1,L2,L3,L3,L1,L2,L3,L1,1,1,1,1,1,1])
|
|
543
|
+
|
|
544
|
+
a_s, b_s, c_s, A = tri_coefficients(xvs, yvs)
|
|
545
|
+
|
|
546
|
+
e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 = Etri*mult
|
|
547
|
+
|
|
548
|
+
a1, a2, a3 = a_s
|
|
549
|
+
b1, b2, b3 = b_s
|
|
550
|
+
c1, c2, c3 = c_s
|
|
551
|
+
|
|
552
|
+
ex = (e1*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) + e2*(b2*(a3 + b3*x + c3*y) - b3*(a2 + b2*x + c2*y))*(a2 + b2*x + c2*y) + e3*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) - e4*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e5*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e6*(b2*(a3 + b3*x + c3*y) - b3*(a2 + b2*x + c2*y))*(a3 + b3*x + c3*y) + e7*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y) + e8*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y))/(8*A**3)
|
|
553
|
+
ey = (e1*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) + e2*(c2*(a3 + b3*x + c3*y) - c3*(a2 + b2*x + c2*y))*(a2 + b2*x + c2*y) + e3*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) - e4*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e5*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e6*(c2*(a3 + b3*x + c3*y) - c3*(a2 + b2*x + c2*y))*(a3 + b3*x + c3*y) + e7*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y) + e8*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y))/(8*A**3)
|
|
554
|
+
ez = (a1 + b1*x + c1*y)*(e10*(-A + a1 + b1*x + c1*y) + e11*(-A + a1 + b1*x + c1*y) + e12*(a2 + b2*x + c2*y) + e13*(a2 + b2*x + c2*y) + e14*(a2 + b2*x + c2*y) + e9*(-A + a1 + b1*x + c1*y))/(2*A**2)
|
|
555
|
+
|
|
556
|
+
Ex[inside] = ex
|
|
557
|
+
Ey[inside] = ey
|
|
558
|
+
Ez[inside] = ez
|
|
559
|
+
return Ex, Ey, Ez
|
|
560
|
+
|
|
561
|
+
@njit(types.Tuple((c16[:], c16[:], c16[:]))(f8[:,:], c16[:], i8[:,:], f8[:,:], i8[:,:], c16[:,:,:], c16), cache=True, nogil=True)
|
|
562
|
+
def ned2_tri_interp_curl(coords: np.ndarray,
|
|
563
|
+
solutions: np.ndarray,
|
|
564
|
+
tris: np.ndarray,
|
|
565
|
+
nodes: np.ndarray,
|
|
566
|
+
tri_to_field: np.ndarray,
|
|
567
|
+
diadic: np.ndarray,
|
|
568
|
+
beta: float):
|
|
569
|
+
''' Nedelec 2 tetrahedral interpolation'''
|
|
570
|
+
### THIS IS VERIFIED TO WORK
|
|
571
|
+
# Solution has shape (nEdges, nsols)
|
|
572
|
+
### THIS IS VERIFIED TO WORK
|
|
573
|
+
# Solution has shape (nEdges, nsols)
|
|
574
|
+
nNodes = coords.shape[1]
|
|
575
|
+
xs = coords[0,:]
|
|
576
|
+
ys = coords[1,:]
|
|
577
|
+
jB = 1j*beta
|
|
578
|
+
Ex = np.zeros((nNodes, ), dtype=np.complex128)
|
|
579
|
+
Ey = np.zeros((nNodes, ), dtype=np.complex128)
|
|
580
|
+
Ez = np.zeros((nNodes, ), dtype=np.complex128)
|
|
581
|
+
|
|
582
|
+
nodes = nodes[:2,:]
|
|
583
|
+
|
|
584
|
+
for itri in range(tris.shape[1]):
|
|
585
|
+
|
|
586
|
+
dc = diadic[:,:,itri]
|
|
587
|
+
|
|
588
|
+
iv1, iv2, iv3 = tris[:, itri]
|
|
589
|
+
|
|
590
|
+
v1 = nodes[:,iv1]
|
|
591
|
+
v2 = nodes[:,iv2]
|
|
592
|
+
v3 = nodes[:,iv3]
|
|
593
|
+
|
|
594
|
+
bv1 = v2 - v1
|
|
595
|
+
bv2 = v3 - v1
|
|
596
|
+
|
|
597
|
+
blocal = np.zeros((2,2))
|
|
598
|
+
blocal[:,0] = bv1
|
|
599
|
+
blocal[:,1] = bv2
|
|
600
|
+
basis = np.linalg.pinv(blocal)
|
|
601
|
+
|
|
602
|
+
coords_offset = coords - v1[:,np.newaxis]
|
|
603
|
+
coords_local = (basis @ (coords_offset))
|
|
604
|
+
|
|
605
|
+
field_ids = tri_to_field[:, itri]
|
|
606
|
+
|
|
607
|
+
Etri = solutions[field_ids]
|
|
608
|
+
|
|
609
|
+
inside = ((coords_local[0,:] + coords_local[1,:]) <= 1.0001) & (coords_local[0,:] >= -1e-6) & (coords_local[1,:] >= -1e-6)
|
|
610
|
+
|
|
611
|
+
if inside.sum() == 0:
|
|
612
|
+
continue
|
|
613
|
+
|
|
614
|
+
######### INSIDE THE TETRAHEDRON #########
|
|
615
|
+
|
|
616
|
+
x = xs[inside==1]
|
|
617
|
+
y = ys[inside==1]
|
|
618
|
+
|
|
619
|
+
xvs = nodes[0, tris[:,itri]]
|
|
620
|
+
yvs = nodes[1, tris[:,itri]]
|
|
621
|
+
|
|
622
|
+
a_s, b_s, c_s, A = tri_coefficients(xvs, yvs)
|
|
623
|
+
|
|
624
|
+
Ds = compute_distances(xvs, yvs, 0*xvs)
|
|
625
|
+
|
|
626
|
+
L1 = Ds[0,1]
|
|
627
|
+
L2 = Ds[1,2]
|
|
628
|
+
L3 = Ds[0,2]
|
|
629
|
+
|
|
630
|
+
mult = np.array([L1,L2,L3,L3,L1,L2,L3,L1,1,1,1,1,1,1])
|
|
631
|
+
|
|
632
|
+
e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 = Etri*mult
|
|
633
|
+
|
|
634
|
+
a1, a2, a3 = a_s
|
|
635
|
+
b1, b2, b3 = b_s
|
|
636
|
+
c1, c2, c3 = c_s
|
|
637
|
+
|
|
638
|
+
hx = (4*A*(c1*(e10*(-A + a1 + b1*x + c1*y) + e11*(-A + a1 + b1*x + c1*y) + e12*(a2 + b2*x + c2*y) + e13*(a2 + b2*x + c2*y) + e14*(a2 + b2*x + c2*y) + e9*(-A + a1 + b1*x + c1*y)) + (a1 + b1*x + c1*y)*(c1*e10 + c1*e11 + c1*e9 + c2*e12 + c2*e13 + c2*e14)) + jB*(e1*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) + e2*(c2*(a3 + b3*x + c3*y) - c3*(a2 + b2*x + c2*y))*(a2 + b2*x + c2*y) + e3*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) - e4*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e5*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e6*(c2*(a3 + b3*x + c3*y) - c3*(a2 + b2*x + c2*y))*(a3 + b3*x + c3*y) + e7*(c1*(a3 + b3*x + c3*y) - c3*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y) + e8*(c1*(a2 + b2*x + c2*y) - c2*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y)))/(8*A**3)
|
|
639
|
+
hy = (4*A*(b1*(e10*(-A + a1 + b1*x + c1*y) + e11*(-A + a1 + b1*x + c1*y) + e12*(a2 + b2*x + c2*y) + e13*(a2 + b2*x + c2*y) + e14*(a2 + b2*x + c2*y) + e9*(-A + a1 + b1*x + c1*y)) + (a1 + b1*x + c1*y)*(b1*e10 + b1*e11 + b1*e9 + b2*e12 + b2*e13 + b2*e14)) - jB*(e1*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) + e2*(b2*(a3 + b3*x + c3*y) - b3*(a2 + b2*x + c2*y))*(a2 + b2*x + c2*y) + e3*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a1 + b1*x + c1*y) - e4*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e5*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a2 + b2*x + c2*y) + e6*(b2*(a3 + b3*x + c3*y) - b3*(a2 + b2*x + c2*y))*(a3 + b3*x + c3*y) + e7*(b1*(a3 + b3*x + c3*y) - b3*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y) + e8*(b1*(a2 + b2*x + c2*y) - b2*(a1 + b1*x + c1*y))*(a3 + b3*x + c3*y)))/(8*A**3)
|
|
640
|
+
hz = (-3*a1*b1*c2*e1 - 3*a1*b1*c3*e3 + 3*a1*b2*c1*e1 + a1*b2*c3*e4 + a1*b2*c3*e8 + 3*a1*b3*c1*e3 - a1*b3*c2*e4 - a1*b3*c2*e8 - 3*a2*b1*c2*e5 + 2*a2*b1*c3*e4 - a2*b1*c3*e8 + 3*a2*b2*c1*e5 - 3*a2*b2*c3*e2 - 2*a2*b3*c1*e4 + a2*b3*c1*e8 + 3*a2*b3*c2*e2 + a3*b1*c2*e4 - 2*a3*b1*c2*e8 - 3*a3*b1*c3*e7 - a3*b2*c1*e4 + 2*a3*b2*c1*e8 - 3*a3*b2*c3*e6 + 3*a3*b3*c1*e7 + 3*a3*b3*c2*e6 - 3*b1**2*c2*e1*x - 3*b1**2*c3*e3*x + 3*b1*b2*c1*e1*x - 3*b1*b2*c2*e5*x + 3*b1*b2*c3*e4*x + 3*b1*b3*c1*e3*x - 3*b1*b3*c2*e8*x - 3*b1*b3*c3*e7*x - 3*b1*c1*c2*e1*y - 3*b1*c1*c3*e3*y - 3*b1*c2**2*e5*y + 3*b1*c2*c3*e4*y - 3*b1*c2*c3*e8*y - 3*b1*c3**2*e7*y + 3*b2**2*c1*e5*x - 3*b2**2*c3*e2*x - 3*b2*b3*c1*e4*x + 3*b2*b3*c1*e8*x + 3*b2*b3*c2*e2*x - 3*b2*b3*c3*e6*x + 3*b2*c1**2*e1*y + 3*b2*c1*c2*e5*y + 3*b2*c1*c3*e8*y - 3*b2*c2*c3*e2*y - 3*b2*c3**2*e6*y + 3*b3**2*c1*e7*x + 3*b3**2*c2*e6*x + 3*b3*c1**2*e3*y - 3*b3*c1*c2*e4*y + 3*b3*c1*c3*e7*y + 3*b3*c2**2*e2*y + 3*b3*c2*c3*e6*y)/(8*A**3)
|
|
641
|
+
|
|
642
|
+
Ex[inside] = hx*dc[0,0]
|
|
643
|
+
Ey[inside] = hy*dc[1,1]
|
|
644
|
+
Ez[inside] = hz*dc[2,2]
|
|
645
|
+
return Ex, Ey, Ez
|