eegdash 0.3.6.dev182011805__py3-none-any.whl → 0.3.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of eegdash might be problematic. Click here for more details.
- eegdash/__init__.py +5 -4
- eegdash/api.py +515 -454
- eegdash/bids_eeg_metadata.py +254 -0
- eegdash/{dataset.py → const.py} +46 -93
- eegdash/data_utils.py +180 -45
- eegdash/dataset/__init__.py +4 -0
- eegdash/dataset/dataset.py +161 -0
- eegdash/dataset/dataset_summary.csv +256 -0
- eegdash/{registry.py → dataset/registry.py} +16 -6
- eegdash/paths.py +28 -0
- eegdash/utils.py +1 -1
- {eegdash-0.3.6.dev182011805.dist-info → eegdash-0.3.7.dist-info}/METADATA +13 -5
- {eegdash-0.3.6.dev182011805.dist-info → eegdash-0.3.7.dist-info}/RECORD +16 -14
- eegdash/data_config.py +0 -34
- eegdash/dataset_summary.csv +0 -256
- eegdash/preprocessing.py +0 -63
- {eegdash-0.3.6.dev182011805.dist-info → eegdash-0.3.7.dist-info}/WHEEL +0 -0
- {eegdash-0.3.6.dev182011805.dist-info → eegdash-0.3.7.dist-info}/licenses/LICENSE +0 -0
- {eegdash-0.3.6.dev182011805.dist-info → eegdash-0.3.7.dist-info}/top_level.txt +0 -0
eegdash/api.py
CHANGED
|
@@ -3,66 +3,67 @@ import os
|
|
|
3
3
|
import tempfile
|
|
4
4
|
from pathlib import Path
|
|
5
5
|
from typing import Any, Mapping
|
|
6
|
+
from urllib.parse import urlsplit
|
|
6
7
|
|
|
7
8
|
import mne
|
|
8
9
|
import numpy as np
|
|
9
10
|
import xarray as xr
|
|
10
11
|
from dotenv import load_dotenv
|
|
11
12
|
from joblib import Parallel, delayed
|
|
12
|
-
from
|
|
13
|
+
from mne.utils import warn
|
|
14
|
+
from mne_bids import find_matching_paths, get_bids_path_from_fname, read_raw_bids
|
|
13
15
|
from pymongo import InsertOne, UpdateOne
|
|
14
16
|
from s3fs import S3FileSystem
|
|
15
17
|
|
|
16
18
|
from braindecode.datasets import BaseConcatDataset
|
|
17
19
|
|
|
18
|
-
from .
|
|
19
|
-
|
|
20
|
+
from .bids_eeg_metadata import (
|
|
21
|
+
build_query_from_kwargs,
|
|
22
|
+
load_eeg_attrs_from_bids_file,
|
|
23
|
+
merge_participants_fields,
|
|
24
|
+
normalize_key,
|
|
25
|
+
)
|
|
26
|
+
from .const import (
|
|
27
|
+
ALLOWED_QUERY_FIELDS,
|
|
28
|
+
RELEASE_TO_OPENNEURO_DATASET_MAP,
|
|
29
|
+
)
|
|
30
|
+
from .const import config as data_config
|
|
31
|
+
from .data_utils import (
|
|
32
|
+
EEGBIDSDataset,
|
|
33
|
+
EEGDashBaseDataset,
|
|
34
|
+
)
|
|
20
35
|
from .mongodb import MongoConnectionManager
|
|
36
|
+
from .paths import get_default_cache_dir
|
|
21
37
|
|
|
22
38
|
logger = logging.getLogger("eegdash")
|
|
23
39
|
|
|
24
40
|
|
|
25
41
|
class EEGDash:
|
|
26
|
-
"""
|
|
42
|
+
"""High-level interface to the EEGDash metadata database.
|
|
27
43
|
|
|
28
|
-
|
|
29
|
-
EEGDash database (or
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
While this class provides basic support for loading EEG data, please see
|
|
33
|
-
the EEGDashDataset class for a more complete way to retrieve and work with full
|
|
34
|
-
datasets.
|
|
44
|
+
Provides methods to query, insert, and update metadata records stored in the
|
|
45
|
+
EEGDash MongoDB database (public or private). Also includes utilities to load
|
|
46
|
+
EEG data from S3 for matched records.
|
|
35
47
|
|
|
48
|
+
For working with collections of
|
|
49
|
+
recordings as PyTorch datasets, prefer :class:`EEGDashDataset`.
|
|
36
50
|
"""
|
|
37
51
|
|
|
38
|
-
_ALLOWED_QUERY_FIELDS = {
|
|
39
|
-
"data_name",
|
|
40
|
-
"dataset",
|
|
41
|
-
"subject",
|
|
42
|
-
"task",
|
|
43
|
-
"session",
|
|
44
|
-
"run",
|
|
45
|
-
"modality",
|
|
46
|
-
"sampling_frequency",
|
|
47
|
-
"nchans",
|
|
48
|
-
"ntimes",
|
|
49
|
-
}
|
|
50
|
-
|
|
51
52
|
def __init__(self, *, is_public: bool = True, is_staging: bool = False) -> None:
|
|
52
|
-
"""Create new
|
|
53
|
+
"""Create a new EEGDash client.
|
|
53
54
|
|
|
54
55
|
Parameters
|
|
55
56
|
----------
|
|
56
|
-
is_public: bool
|
|
57
|
-
|
|
58
|
-
private database instance
|
|
59
|
-
(or
|
|
60
|
-
is_staging: bool
|
|
61
|
-
If True
|
|
62
|
-
production database (
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
57
|
+
is_public : bool, default True
|
|
58
|
+
Connect to the public MongoDB database. If ``False``, connect to a
|
|
59
|
+
private database instance using the ``DB_CONNECTION_STRING`` environment
|
|
60
|
+
variable (or value from a ``.env`` file).
|
|
61
|
+
is_staging : bool, default False
|
|
62
|
+
If ``True``, use the staging database (``eegdashstaging``); otherwise
|
|
63
|
+
use the production database (``eegdash``).
|
|
64
|
+
|
|
65
|
+
Examples
|
|
66
|
+
--------
|
|
66
67
|
>>> eegdash = EEGDash()
|
|
67
68
|
|
|
68
69
|
"""
|
|
@@ -103,23 +104,25 @@ class EEGDash:
|
|
|
103
104
|
|
|
104
105
|
Parameters
|
|
105
106
|
----------
|
|
106
|
-
query: dict, optional
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
107
|
+
query : dict, optional
|
|
108
|
+
Complete MongoDB query dictionary. This is a positional-only
|
|
109
|
+
argument.
|
|
110
|
+
**kwargs
|
|
111
|
+
User-friendly field filters that are converted to a MongoDB query.
|
|
112
|
+
Values can be scalars (e.g., ``"sub-01"``) or sequences (translated
|
|
113
|
+
to ``$in`` queries).
|
|
111
114
|
|
|
112
115
|
Returns
|
|
113
116
|
-------
|
|
114
|
-
list
|
|
115
|
-
|
|
117
|
+
list of dict
|
|
118
|
+
DB records that match the query.
|
|
116
119
|
|
|
117
120
|
"""
|
|
118
121
|
final_query: dict[str, Any] | None = None
|
|
119
122
|
|
|
120
123
|
# Accept explicit empty dict {} to mean "match all"
|
|
121
124
|
raw_query = query if isinstance(query, dict) else None
|
|
122
|
-
kwargs_query =
|
|
125
|
+
kwargs_query = build_query_from_kwargs(**kwargs) if kwargs else None
|
|
123
126
|
|
|
124
127
|
# Determine presence, treating {} as a valid raw query
|
|
125
128
|
has_raw = isinstance(raw_query, dict)
|
|
@@ -236,59 +239,12 @@ class EEGDash:
|
|
|
236
239
|
return record
|
|
237
240
|
|
|
238
241
|
def _build_query_from_kwargs(self, **kwargs) -> dict[str, Any]:
|
|
239
|
-
"""
|
|
242
|
+
"""Internal helper to build a validated MongoDB query from keyword args.
|
|
240
243
|
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
- For list/tuple/set values: strip strings, drop None/empties, deduplicate, and use `$in`
|
|
244
|
-
- Preserve scalars as exact matches
|
|
244
|
+
This delegates to the module-level builder used across the package and
|
|
245
|
+
is exposed here for testing and convenience.
|
|
245
246
|
"""
|
|
246
|
-
|
|
247
|
-
unknown_fields = set(kwargs.keys()) - self._ALLOWED_QUERY_FIELDS
|
|
248
|
-
if unknown_fields:
|
|
249
|
-
raise ValueError(
|
|
250
|
-
f"Unsupported query field(s): {', '.join(sorted(unknown_fields))}. "
|
|
251
|
-
f"Allowed fields are: {', '.join(sorted(self._ALLOWED_QUERY_FIELDS))}"
|
|
252
|
-
)
|
|
253
|
-
|
|
254
|
-
# 2. Construct the query dictionary
|
|
255
|
-
query = {}
|
|
256
|
-
for key, value in kwargs.items():
|
|
257
|
-
# None is not a valid constraint
|
|
258
|
-
if value is None:
|
|
259
|
-
raise ValueError(
|
|
260
|
-
f"Received None for query parameter '{key}'. Provide a concrete value."
|
|
261
|
-
)
|
|
262
|
-
|
|
263
|
-
# Handle list-like values as multi-constraints
|
|
264
|
-
if isinstance(value, (list, tuple, set)):
|
|
265
|
-
cleaned: list[Any] = []
|
|
266
|
-
for item in value:
|
|
267
|
-
if item is None:
|
|
268
|
-
continue
|
|
269
|
-
if isinstance(item, str):
|
|
270
|
-
item = item.strip()
|
|
271
|
-
if not item:
|
|
272
|
-
continue
|
|
273
|
-
cleaned.append(item)
|
|
274
|
-
# Deduplicate while preserving order
|
|
275
|
-
cleaned = list(dict.fromkeys(cleaned))
|
|
276
|
-
if not cleaned:
|
|
277
|
-
raise ValueError(
|
|
278
|
-
f"Received an empty list for query parameter '{key}'. This is not supported."
|
|
279
|
-
)
|
|
280
|
-
query[key] = {"$in": cleaned}
|
|
281
|
-
else:
|
|
282
|
-
# Scalars: trim strings and validate
|
|
283
|
-
if isinstance(value, str):
|
|
284
|
-
value = value.strip()
|
|
285
|
-
if not value:
|
|
286
|
-
raise ValueError(
|
|
287
|
-
f"Received an empty string for query parameter '{key}'."
|
|
288
|
-
)
|
|
289
|
-
query[key] = value
|
|
290
|
-
|
|
291
|
-
return query
|
|
247
|
+
return build_query_from_kwargs(**kwargs)
|
|
292
248
|
|
|
293
249
|
# --- Query merging and conflict detection helpers ---
|
|
294
250
|
def _extract_simple_constraint(self, query: dict[str, Any], key: str):
|
|
@@ -321,8 +277,8 @@ class EEGDash:
|
|
|
321
277
|
return
|
|
322
278
|
|
|
323
279
|
# Only consider fields we generally allow; skip meta operators like $and
|
|
324
|
-
raw_keys = set(raw_query.keys()) &
|
|
325
|
-
kw_keys = set(kwargs_query.keys()) &
|
|
280
|
+
raw_keys = set(raw_query.keys()) & ALLOWED_QUERY_FIELDS
|
|
281
|
+
kw_keys = set(kwargs_query.keys()) & ALLOWED_QUERY_FIELDS
|
|
326
282
|
dup_keys = raw_keys & kw_keys
|
|
327
283
|
for key in dup_keys:
|
|
328
284
|
rc = self._extract_simple_constraint(raw_query, key)
|
|
@@ -357,44 +313,95 @@ class EEGDash:
|
|
|
357
313
|
)
|
|
358
314
|
|
|
359
315
|
def load_eeg_data_from_s3(self, s3path: str) -> xr.DataArray:
|
|
360
|
-
"""Load
|
|
316
|
+
"""Load EEG data from an S3 URI into an ``xarray.DataArray``.
|
|
317
|
+
|
|
318
|
+
Preserves the original filename, downloads sidecar files when applicable
|
|
319
|
+
(e.g., ``.fdt`` for EEGLAB, ``.vmrk``/``.eeg`` for BrainVision), and uses
|
|
320
|
+
MNE's direct readers.
|
|
361
321
|
|
|
362
322
|
Parameters
|
|
363
323
|
----------
|
|
364
324
|
s3path : str
|
|
365
|
-
An S3 URI (should start with "s3://")
|
|
325
|
+
An S3 URI (should start with "s3://").
|
|
366
326
|
|
|
367
327
|
Returns
|
|
368
328
|
-------
|
|
369
329
|
xr.DataArray
|
|
370
|
-
|
|
330
|
+
EEG data with dimensions ``("channel", "time")``.
|
|
371
331
|
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
>>> mydata = eegdash.load_eeg_data_from_s3(mypath)
|
|
332
|
+
Raises
|
|
333
|
+
------
|
|
334
|
+
ValueError
|
|
335
|
+
If the file extension is unsupported.
|
|
377
336
|
|
|
378
337
|
"""
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
338
|
+
# choose a temp dir so sidecars can be colocated
|
|
339
|
+
with tempfile.TemporaryDirectory() as tmpdir:
|
|
340
|
+
# Derive local filenames from the S3 key to keep base name consistent
|
|
341
|
+
s3_key = urlsplit(s3path).path # e.g., "/dsXXXX/sub-.../..._eeg.set"
|
|
342
|
+
basename = Path(s3_key).name
|
|
343
|
+
ext = Path(basename).suffix.lower()
|
|
344
|
+
local_main = Path(tmpdir) / basename
|
|
345
|
+
|
|
346
|
+
# Download main file
|
|
347
|
+
with (
|
|
348
|
+
self.filesystem.open(s3path, mode="rb") as fsrc,
|
|
349
|
+
open(local_main, "wb") as fdst,
|
|
350
|
+
):
|
|
351
|
+
fdst.write(fsrc.read())
|
|
352
|
+
|
|
353
|
+
# Determine and fetch any required sidecars
|
|
354
|
+
sidecars: list[str] = []
|
|
355
|
+
if ext == ".set": # EEGLAB
|
|
356
|
+
sidecars = [".fdt"]
|
|
357
|
+
elif ext == ".vhdr": # BrainVision
|
|
358
|
+
sidecars = [".vmrk", ".eeg", ".dat", ".raw"]
|
|
359
|
+
|
|
360
|
+
for sc_ext in sidecars:
|
|
361
|
+
sc_key = s3_key[: -len(ext)] + sc_ext
|
|
362
|
+
sc_uri = f"s3://{urlsplit(s3path).netloc}{sc_key}"
|
|
363
|
+
try:
|
|
364
|
+
# If sidecar exists, download next to the main file
|
|
365
|
+
info = self.filesystem.info(sc_uri)
|
|
366
|
+
if info:
|
|
367
|
+
sc_local = Path(tmpdir) / Path(sc_key).name
|
|
368
|
+
with (
|
|
369
|
+
self.filesystem.open(sc_uri, mode="rb") as fsrc,
|
|
370
|
+
open(sc_local, "wb") as fdst,
|
|
371
|
+
):
|
|
372
|
+
fdst.write(fsrc.read())
|
|
373
|
+
except Exception:
|
|
374
|
+
# Sidecar not present; skip silently
|
|
375
|
+
pass
|
|
376
|
+
|
|
377
|
+
# Read using appropriate MNE reader
|
|
378
|
+
raw = mne.io.read_raw(str(local_main), preload=True, verbose=False)
|
|
379
|
+
|
|
380
|
+
data = raw.get_data()
|
|
381
|
+
fs = raw.info["sfreq"]
|
|
382
|
+
max_time = data.shape[1] / fs
|
|
383
|
+
time_steps = np.linspace(0, max_time, data.shape[1]).squeeze()
|
|
384
|
+
channel_names = raw.ch_names
|
|
385
|
+
|
|
386
|
+
return xr.DataArray(
|
|
387
|
+
data=data,
|
|
388
|
+
dims=["channel", "time"],
|
|
389
|
+
coords={"time": time_steps, "channel": channel_names},
|
|
390
|
+
)
|
|
386
391
|
|
|
387
392
|
def load_eeg_data_from_bids_file(self, bids_file: str) -> xr.DataArray:
|
|
388
|
-
"""Load EEG data from a local file
|
|
393
|
+
"""Load EEG data from a local BIDS-formatted file.
|
|
389
394
|
|
|
390
395
|
Parameters
|
|
391
396
|
----------
|
|
392
397
|
bids_file : str
|
|
393
|
-
Path to
|
|
398
|
+
Path to a BIDS-compliant EEG file (e.g., ``*_eeg.edf``, ``*_eeg.bdf``,
|
|
399
|
+
``*_eeg.vhdr``, ``*_eeg.set``).
|
|
394
400
|
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
401
|
+
Returns
|
|
402
|
+
-------
|
|
403
|
+
xr.DataArray
|
|
404
|
+
EEG data with dimensions ``("channel", "time")``.
|
|
398
405
|
|
|
399
406
|
"""
|
|
400
407
|
bids_path = get_bids_path_from_fname(bids_file, verbose=False)
|
|
@@ -414,140 +421,25 @@ class EEGDash:
|
|
|
414
421
|
)
|
|
415
422
|
return eeg_xarray
|
|
416
423
|
|
|
417
|
-
def get_raw_extensions(
|
|
418
|
-
self, bids_file: str, bids_dataset: EEGBIDSDataset
|
|
419
|
-
) -> list[str]:
|
|
420
|
-
"""Helper to find paths to additional "sidecar" files that may be associated
|
|
421
|
-
with a given main data file in a BIDS dataset; paths are returned as relative to
|
|
422
|
-
the parent dataset path.
|
|
423
|
-
|
|
424
|
-
For example, if the input file is a .set file, this will return the relative path
|
|
425
|
-
to a corresponding .fdt file (if any).
|
|
426
|
-
"""
|
|
427
|
-
bids_file = Path(bids_file)
|
|
428
|
-
extensions = {
|
|
429
|
-
".set": [".set", ".fdt"], # eeglab
|
|
430
|
-
".edf": [".edf"], # european
|
|
431
|
-
".vhdr": [".eeg", ".vhdr", ".vmrk", ".dat", ".raw"], # brainvision
|
|
432
|
-
".bdf": [".bdf"], # biosemi
|
|
433
|
-
}
|
|
434
|
-
return [
|
|
435
|
-
str(bids_dataset.get_relative_bidspath(bids_file.with_suffix(suffix)))
|
|
436
|
-
for suffix in extensions[bids_file.suffix]
|
|
437
|
-
if bids_file.with_suffix(suffix).exists()
|
|
438
|
-
]
|
|
439
|
-
|
|
440
|
-
def load_eeg_attrs_from_bids_file(
|
|
441
|
-
self, bids_dataset: EEGBIDSDataset, bids_file: str
|
|
442
|
-
) -> dict[str, Any]:
|
|
443
|
-
"""Build the metadata record for a given BIDS file (single recording) in a BIDS dataset.
|
|
444
|
-
|
|
445
|
-
Attributes are at least the ones defined in data_config attributes (set to None if missing),
|
|
446
|
-
but are typically a superset, and include, among others, the paths to relevant
|
|
447
|
-
meta-data files needed to load and interpret the file in question.
|
|
448
|
-
|
|
449
|
-
Parameters
|
|
450
|
-
----------
|
|
451
|
-
bids_dataset : EEGBIDSDataset
|
|
452
|
-
The BIDS dataset object containing the file.
|
|
453
|
-
bids_file : str
|
|
454
|
-
The path to the BIDS file within the dataset.
|
|
455
|
-
|
|
456
|
-
Returns
|
|
457
|
-
-------
|
|
458
|
-
dict:
|
|
459
|
-
A dictionary representing the metadata record for the given file. This is the
|
|
460
|
-
same format as the records stored in the database.
|
|
461
|
-
|
|
462
|
-
"""
|
|
463
|
-
if bids_file not in bids_dataset.files:
|
|
464
|
-
raise ValueError(f"{bids_file} not in {bids_dataset.dataset}")
|
|
465
|
-
|
|
466
|
-
# Initialize attrs with None values for all expected fields
|
|
467
|
-
attrs = {field: None for field in self.config["attributes"].keys()}
|
|
468
|
-
|
|
469
|
-
file = Path(bids_file).name
|
|
470
|
-
dsnumber = bids_dataset.dataset
|
|
471
|
-
# extract openneuro path by finding the first occurrence of the dataset name in the filename and remove the path before that
|
|
472
|
-
openneuro_path = dsnumber + bids_file.split(dsnumber)[1]
|
|
473
|
-
|
|
474
|
-
# Update with actual values where available
|
|
475
|
-
try:
|
|
476
|
-
participants_tsv = bids_dataset.subject_participant_tsv(bids_file)
|
|
477
|
-
except Exception as e:
|
|
478
|
-
logger.error("Error getting participants_tsv: %s", str(e))
|
|
479
|
-
participants_tsv = None
|
|
480
|
-
|
|
481
|
-
try:
|
|
482
|
-
eeg_json = bids_dataset.eeg_json(bids_file)
|
|
483
|
-
except Exception as e:
|
|
484
|
-
logger.error("Error getting eeg_json: %s", str(e))
|
|
485
|
-
eeg_json = None
|
|
486
|
-
|
|
487
|
-
bids_dependencies_files = self.config["bids_dependencies_files"]
|
|
488
|
-
bidsdependencies = []
|
|
489
|
-
for extension in bids_dependencies_files:
|
|
490
|
-
try:
|
|
491
|
-
dep_path = bids_dataset.get_bids_metadata_files(bids_file, extension)
|
|
492
|
-
dep_path = [
|
|
493
|
-
str(bids_dataset.get_relative_bidspath(dep)) for dep in dep_path
|
|
494
|
-
]
|
|
495
|
-
bidsdependencies.extend(dep_path)
|
|
496
|
-
except Exception:
|
|
497
|
-
pass
|
|
498
|
-
|
|
499
|
-
bidsdependencies.extend(self.get_raw_extensions(bids_file, bids_dataset))
|
|
500
|
-
|
|
501
|
-
# Define field extraction functions with error handling
|
|
502
|
-
field_extractors = {
|
|
503
|
-
"data_name": lambda: f"{bids_dataset.dataset}_{file}",
|
|
504
|
-
"dataset": lambda: bids_dataset.dataset,
|
|
505
|
-
"bidspath": lambda: openneuro_path,
|
|
506
|
-
"subject": lambda: bids_dataset.get_bids_file_attribute(
|
|
507
|
-
"subject", bids_file
|
|
508
|
-
),
|
|
509
|
-
"task": lambda: bids_dataset.get_bids_file_attribute("task", bids_file),
|
|
510
|
-
"session": lambda: bids_dataset.get_bids_file_attribute(
|
|
511
|
-
"session", bids_file
|
|
512
|
-
),
|
|
513
|
-
"run": lambda: bids_dataset.get_bids_file_attribute("run", bids_file),
|
|
514
|
-
"modality": lambda: bids_dataset.get_bids_file_attribute(
|
|
515
|
-
"modality", bids_file
|
|
516
|
-
),
|
|
517
|
-
"sampling_frequency": lambda: bids_dataset.get_bids_file_attribute(
|
|
518
|
-
"sfreq", bids_file
|
|
519
|
-
),
|
|
520
|
-
"nchans": lambda: bids_dataset.get_bids_file_attribute("nchans", bids_file),
|
|
521
|
-
"ntimes": lambda: bids_dataset.get_bids_file_attribute("ntimes", bids_file),
|
|
522
|
-
"participant_tsv": lambda: participants_tsv,
|
|
523
|
-
"eeg_json": lambda: eeg_json,
|
|
524
|
-
"bidsdependencies": lambda: bidsdependencies,
|
|
525
|
-
}
|
|
526
|
-
|
|
527
|
-
# Dynamically populate attrs with error handling
|
|
528
|
-
for field, extractor in field_extractors.items():
|
|
529
|
-
try:
|
|
530
|
-
attrs[field] = extractor()
|
|
531
|
-
except Exception as e:
|
|
532
|
-
logger.error("Error extracting %s : %s", field, str(e))
|
|
533
|
-
attrs[field] = None
|
|
534
|
-
|
|
535
|
-
return attrs
|
|
536
|
-
|
|
537
424
|
def add_bids_dataset(
|
|
538
425
|
self, dataset: str, data_dir: str, overwrite: bool = True
|
|
539
426
|
) -> None:
|
|
540
|
-
"""
|
|
541
|
-
under the given dataset name.
|
|
427
|
+
"""Scan a local BIDS dataset and upsert records into MongoDB.
|
|
542
428
|
|
|
543
429
|
Parameters
|
|
544
430
|
----------
|
|
545
|
-
dataset : str
|
|
546
|
-
|
|
431
|
+
dataset : str
|
|
432
|
+
Dataset identifier (e.g., ``"ds002718"``).
|
|
547
433
|
data_dir : str
|
|
548
|
-
|
|
549
|
-
overwrite : bool
|
|
550
|
-
|
|
434
|
+
Path to the local BIDS dataset directory.
|
|
435
|
+
overwrite : bool, default True
|
|
436
|
+
If ``True``, update existing records when encountered; otherwise,
|
|
437
|
+
skip records that already exist.
|
|
438
|
+
|
|
439
|
+
Raises
|
|
440
|
+
------
|
|
441
|
+
ValueError
|
|
442
|
+
If called on a public client ``(is_public=True)``.
|
|
551
443
|
|
|
552
444
|
"""
|
|
553
445
|
if self.is_public:
|
|
@@ -562,7 +454,7 @@ class EEGDash:
|
|
|
562
454
|
dataset=dataset,
|
|
563
455
|
)
|
|
564
456
|
except Exception as e:
|
|
565
|
-
logger.error("Error creating bids dataset %s:
|
|
457
|
+
logger.error("Error creating bids dataset %s: %s", dataset, str(e))
|
|
566
458
|
raise e
|
|
567
459
|
requests = []
|
|
568
460
|
for bids_file in bids_dataset.get_files():
|
|
@@ -571,15 +463,13 @@ class EEGDash:
|
|
|
571
463
|
|
|
572
464
|
if self.exist({"data_name": data_id}):
|
|
573
465
|
if overwrite:
|
|
574
|
-
eeg_attrs =
|
|
466
|
+
eeg_attrs = load_eeg_attrs_from_bids_file(
|
|
575
467
|
bids_dataset, bids_file
|
|
576
468
|
)
|
|
577
|
-
requests.append(self.
|
|
469
|
+
requests.append(self._update_request(eeg_attrs))
|
|
578
470
|
else:
|
|
579
|
-
eeg_attrs =
|
|
580
|
-
|
|
581
|
-
)
|
|
582
|
-
requests.append(self.add_request(eeg_attrs))
|
|
471
|
+
eeg_attrs = load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
|
|
472
|
+
requests.append(self._add_request(eeg_attrs))
|
|
583
473
|
except Exception as e:
|
|
584
474
|
logger.error("Error adding record %s", bids_file)
|
|
585
475
|
logger.error(str(e))
|
|
@@ -595,22 +485,22 @@ class EEGDash:
|
|
|
595
485
|
logger.info("Errors: %s ", result.bulk_api_result.get("writeErrors", []))
|
|
596
486
|
|
|
597
487
|
def get(self, query: dict[str, Any]) -> list[xr.DataArray]:
|
|
598
|
-
"""
|
|
599
|
-
the `find()` method for details on the query format.
|
|
488
|
+
"""Download and return EEG data arrays for records matching a query.
|
|
600
489
|
|
|
601
490
|
Parameters
|
|
602
491
|
----------
|
|
603
492
|
query : dict
|
|
604
|
-
|
|
605
|
-
document that is used to match records in the MongoDB collection.
|
|
493
|
+
MongoDB query used to select records.
|
|
606
494
|
|
|
607
495
|
Returns
|
|
608
496
|
-------
|
|
609
|
-
|
|
497
|
+
list of xr.DataArray
|
|
498
|
+
EEG data for each matching record, with dimensions ``("channel", "time")``.
|
|
610
499
|
|
|
611
500
|
Notes
|
|
612
501
|
-----
|
|
613
|
-
Retrieval
|
|
502
|
+
Retrieval runs in parallel. Downloaded files are read and discarded
|
|
503
|
+
(no on-disk caching here).
|
|
614
504
|
|
|
615
505
|
"""
|
|
616
506
|
sessions = self.find(query)
|
|
@@ -620,12 +510,40 @@ class EEGDash:
|
|
|
620
510
|
results = Parallel(
|
|
621
511
|
n_jobs=-1 if len(sessions) > 1 else 1, prefer="threads", verbose=1
|
|
622
512
|
)(
|
|
623
|
-
delayed(self.load_eeg_data_from_s3)(self.
|
|
513
|
+
delayed(self.load_eeg_data_from_s3)(self._get_s3path(session))
|
|
624
514
|
for session in sessions
|
|
625
515
|
)
|
|
626
516
|
return results
|
|
627
517
|
|
|
628
|
-
def
|
|
518
|
+
def _get_s3path(self, record: Mapping[str, Any] | str) -> str:
|
|
519
|
+
"""Build an S3 URI from a DB record or a relative path.
|
|
520
|
+
|
|
521
|
+
Parameters
|
|
522
|
+
----------
|
|
523
|
+
record : dict or str
|
|
524
|
+
Either a DB record containing a ``'bidspath'`` key, or a relative
|
|
525
|
+
path string under the OpenNeuro bucket.
|
|
526
|
+
|
|
527
|
+
Returns
|
|
528
|
+
-------
|
|
529
|
+
str
|
|
530
|
+
Fully qualified S3 URI.
|
|
531
|
+
|
|
532
|
+
Raises
|
|
533
|
+
------
|
|
534
|
+
ValueError
|
|
535
|
+
If a mapping is provided but ``'bidspath'`` is missing.
|
|
536
|
+
|
|
537
|
+
"""
|
|
538
|
+
if isinstance(record, str):
|
|
539
|
+
rel = record
|
|
540
|
+
else:
|
|
541
|
+
rel = record.get("bidspath")
|
|
542
|
+
if not rel:
|
|
543
|
+
raise ValueError("Record missing 'bidspath' for S3 path resolution")
|
|
544
|
+
return f"s3://openneuro.org/{rel}"
|
|
545
|
+
|
|
546
|
+
def _add_request(self, record: dict):
|
|
629
547
|
"""Internal helper method to create a MongoDB insertion request for a record."""
|
|
630
548
|
return InsertOne(record)
|
|
631
549
|
|
|
@@ -639,12 +557,19 @@ class EEGDash:
|
|
|
639
557
|
except:
|
|
640
558
|
logger.error("Error adding record: %s ", record["data_name"])
|
|
641
559
|
|
|
642
|
-
def
|
|
560
|
+
def _update_request(self, record: dict):
|
|
643
561
|
"""Internal helper method to create a MongoDB update request for a record."""
|
|
644
562
|
return UpdateOne({"data_name": record["data_name"]}, {"$set": record})
|
|
645
563
|
|
|
646
564
|
def update(self, record: dict):
|
|
647
|
-
"""Update a single record in the MongoDB collection.
|
|
565
|
+
"""Update a single record in the MongoDB collection.
|
|
566
|
+
|
|
567
|
+
Parameters
|
|
568
|
+
----------
|
|
569
|
+
record : dict
|
|
570
|
+
Record content to set at the matching ``data_name``.
|
|
571
|
+
|
|
572
|
+
"""
|
|
648
573
|
try:
|
|
649
574
|
self.__collection.update_one(
|
|
650
575
|
{"data_name": record["data_name"]}, {"$set": record}
|
|
@@ -652,15 +577,33 @@ class EEGDash:
|
|
|
652
577
|
except: # silent failure
|
|
653
578
|
logger.error("Error updating record: %s", record["data_name"])
|
|
654
579
|
|
|
580
|
+
def exists(self, query: dict[str, Any]) -> bool:
|
|
581
|
+
"""Alias for :meth:`exist` provided for API clarity."""
|
|
582
|
+
return self.exist(query)
|
|
583
|
+
|
|
655
584
|
def remove_field(self, record, field):
|
|
656
|
-
"""Remove a specific field from a record in the MongoDB collection.
|
|
585
|
+
"""Remove a specific field from a record in the MongoDB collection.
|
|
586
|
+
|
|
587
|
+
Parameters
|
|
588
|
+
----------
|
|
589
|
+
record : dict
|
|
590
|
+
Record identifying object with ``data_name``.
|
|
591
|
+
field : str
|
|
592
|
+
Field name to remove.
|
|
593
|
+
|
|
594
|
+
"""
|
|
657
595
|
self.__collection.update_one(
|
|
658
596
|
{"data_name": record["data_name"]}, {"$unset": {field: 1}}
|
|
659
597
|
)
|
|
660
598
|
|
|
661
599
|
def remove_field_from_db(self, field):
|
|
662
|
-
"""
|
|
663
|
-
|
|
600
|
+
"""Remove a field from all records (destructive).
|
|
601
|
+
|
|
602
|
+
Parameters
|
|
603
|
+
----------
|
|
604
|
+
field : str
|
|
605
|
+
Field name to remove from every document.
|
|
606
|
+
|
|
664
607
|
"""
|
|
665
608
|
self.__collection.update_many({}, {"$unset": {field: 1}})
|
|
666
609
|
|
|
@@ -670,11 +613,13 @@ class EEGDash:
|
|
|
670
613
|
return self.__collection
|
|
671
614
|
|
|
672
615
|
def close(self):
|
|
673
|
-
"""
|
|
616
|
+
"""Backward-compatibility no-op; connections are managed globally.
|
|
617
|
+
|
|
618
|
+
Notes
|
|
619
|
+
-----
|
|
620
|
+
Connections are managed by :class:`MongoConnectionManager`. Use
|
|
621
|
+
:meth:`close_all_connections` to explicitly close all clients.
|
|
674
622
|
|
|
675
|
-
Note: Since MongoDB clients are now managed by a singleton,
|
|
676
|
-
this method no longer closes connections. Use close_all_connections()
|
|
677
|
-
class method to close all connections if needed.
|
|
678
623
|
"""
|
|
679
624
|
# Individual instances no longer close the shared client
|
|
680
625
|
pass
|
|
@@ -685,7 +630,7 @@ class EEGDash:
|
|
|
685
630
|
MongoConnectionManager.close_all()
|
|
686
631
|
|
|
687
632
|
def __del__(self):
|
|
688
|
-
"""
|
|
633
|
+
"""Destructor; no explicit action needed due to global connection manager."""
|
|
689
634
|
# No longer needed since we're using singleton pattern
|
|
690
635
|
pass
|
|
691
636
|
|
|
@@ -693,9 +638,8 @@ class EEGDash:
|
|
|
693
638
|
class EEGDashDataset(BaseConcatDataset):
|
|
694
639
|
def __init__(
|
|
695
640
|
self,
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
dataset: str | list[str] | None = None,
|
|
641
|
+
cache_dir: str | Path,
|
|
642
|
+
query: dict[str, Any] = None,
|
|
699
643
|
description_fields: list[str] = [
|
|
700
644
|
"subject",
|
|
701
645
|
"session",
|
|
@@ -706,16 +650,16 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
706
650
|
"sex",
|
|
707
651
|
],
|
|
708
652
|
s3_bucket: str | None = None,
|
|
709
|
-
data_dir: str | None = None,
|
|
710
|
-
eeg_dash_instance=None,
|
|
711
653
|
records: list[dict] | None = None,
|
|
654
|
+
download: bool = True,
|
|
655
|
+
n_jobs: int = -1,
|
|
656
|
+
eeg_dash_instance: EEGDash | None = None,
|
|
712
657
|
**kwargs,
|
|
713
658
|
):
|
|
714
659
|
"""Create a new EEGDashDataset from a given query or local BIDS dataset directory
|
|
715
660
|
and dataset name. An EEGDashDataset is pooled collection of EEGDashBaseDataset
|
|
716
661
|
instances (individual recordings) and is a subclass of braindecode's BaseConcatDataset.
|
|
717
662
|
|
|
718
|
-
|
|
719
663
|
Querying Examples:
|
|
720
664
|
------------------
|
|
721
665
|
# Find by single subject
|
|
@@ -731,140 +675,314 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
731
675
|
|
|
732
676
|
Parameters
|
|
733
677
|
----------
|
|
678
|
+
cache_dir : str | Path
|
|
679
|
+
Directory where data are cached locally. If not specified, a default
|
|
680
|
+
cache directory under the user cache is used.
|
|
734
681
|
query : dict | None
|
|
735
|
-
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
A directory where the dataset will be cached locally.
|
|
741
|
-
data_dir : str | None
|
|
742
|
-
Optionally a string specifying a local BIDS dataset directory from which to load the EEG data files. Exactly one
|
|
743
|
-
of query or data_dir must be provided.
|
|
744
|
-
dataset : str | None
|
|
745
|
-
If data_dir is given, a name for the dataset to be loaded.
|
|
682
|
+
Raw MongoDB query to filter records. If provided, it is merged with
|
|
683
|
+
keyword filtering arguments (see ``**kwargs``) using logical AND.
|
|
684
|
+
You must provide at least a ``dataset`` (either in ``query`` or
|
|
685
|
+
as a keyword argument). Only fields in ``ALLOWED_QUERY_FIELDS`` are
|
|
686
|
+
considered for filtering.
|
|
746
687
|
description_fields : list[str]
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
subject metadata fields such as "subject", "session", "run", "task", etc.;
|
|
750
|
-
see also data_config.description_fields for the default set of fields.
|
|
688
|
+
Fields to extract from each record and include in dataset descriptions
|
|
689
|
+
(e.g., "subject", "session", "run", "task").
|
|
751
690
|
s3_bucket : str | None
|
|
752
|
-
|
|
753
|
-
default OpenNeuro bucket
|
|
691
|
+
Optional S3 bucket URI (e.g., "s3://mybucket") to use instead of the
|
|
692
|
+
default OpenNeuro bucket when downloading data files.
|
|
754
693
|
records : list[dict] | None
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
|
|
758
|
-
|
|
759
|
-
|
|
694
|
+
Pre-fetched metadata records. If provided, the dataset is constructed
|
|
695
|
+
directly from these records and no MongoDB query is performed.
|
|
696
|
+
download : bool, default True
|
|
697
|
+
If False, load from local BIDS files only. Local data are expected
|
|
698
|
+
under ``cache_dir / dataset``; no DB or S3 access is attempted.
|
|
699
|
+
n_jobs : int
|
|
700
|
+
Number of parallel jobs to use where applicable (-1 uses all cores).
|
|
701
|
+
eeg_dash_instance : EEGDash | None
|
|
702
|
+
Optional existing EEGDash client to reuse for DB queries. If None,
|
|
703
|
+
a new client is created on demand, not used in the case of no download.
|
|
704
|
+
**kwargs : dict
|
|
705
|
+
Additional keyword arguments serving two purposes:
|
|
706
|
+
- Filtering: any keys present in ``ALLOWED_QUERY_FIELDS`` are treated
|
|
707
|
+
as query filters (e.g., ``dataset``, ``subject``, ``task``, ...).
|
|
708
|
+
- Dataset options: remaining keys are forwarded to the
|
|
709
|
+
``EEGDashBaseDataset`` constructor.
|
|
760
710
|
|
|
761
711
|
"""
|
|
762
|
-
|
|
712
|
+
# Parameters that don't need validation
|
|
713
|
+
_suppress_comp_warning: bool = kwargs.pop("_suppress_comp_warning", False)
|
|
763
714
|
self.s3_bucket = s3_bucket
|
|
764
|
-
self.
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
_owns_client = True
|
|
715
|
+
self.records = records
|
|
716
|
+
self.download = download
|
|
717
|
+
self.n_jobs = n_jobs
|
|
718
|
+
self.eeg_dash_instance = eeg_dash_instance or EEGDash()
|
|
769
719
|
|
|
770
|
-
#
|
|
771
|
-
|
|
772
|
-
k: v for k, v in kwargs.items() if k in EEGDash._ALLOWED_QUERY_FIELDS
|
|
773
|
-
}
|
|
774
|
-
base_dataset_kwargs = {k: v for k, v in kwargs.items() if k not in query_kwargs}
|
|
720
|
+
# Resolve a unified cache directory across code/tests/CI
|
|
721
|
+
self.cache_dir = Path(cache_dir or get_default_cache_dir())
|
|
775
722
|
|
|
776
|
-
|
|
777
|
-
|
|
778
|
-
|
|
779
|
-
# Allow callers to pass a single dataset id (str) or a list of them.
|
|
780
|
-
# If list is provided, let _build_query_from_kwargs turn it into $in later.
|
|
781
|
-
query_kwargs.setdefault("dataset", dataset)
|
|
723
|
+
if not self.cache_dir.exists():
|
|
724
|
+
warn(f"Cache directory does not exist, creating it: {self.cache_dir}")
|
|
725
|
+
self.cache_dir.mkdir(exist_ok=True, parents=True)
|
|
782
726
|
|
|
783
|
-
#
|
|
784
|
-
|
|
727
|
+
# Separate query kwargs from other kwargs passed to the BaseDataset constructor
|
|
728
|
+
self.query = query or {}
|
|
729
|
+
self.query.update(
|
|
730
|
+
{k: v for k, v in kwargs.items() if k in ALLOWED_QUERY_FIELDS}
|
|
731
|
+
)
|
|
732
|
+
base_dataset_kwargs = {k: v for k, v in kwargs.items() if k not in self.query}
|
|
733
|
+
if "dataset" not in self.query:
|
|
734
|
+
# If explicit records are provided, infer dataset from records
|
|
735
|
+
if isinstance(records, list) and records and isinstance(records[0], dict):
|
|
736
|
+
inferred = records[0].get("dataset")
|
|
737
|
+
if inferred:
|
|
738
|
+
self.query["dataset"] = inferred
|
|
739
|
+
else:
|
|
740
|
+
raise ValueError("You must provide a 'dataset' argument")
|
|
741
|
+
else:
|
|
742
|
+
raise ValueError("You must provide a 'dataset' argument")
|
|
743
|
+
|
|
744
|
+
# Decide on a dataset subfolder name for cache isolation. If using
|
|
745
|
+
# challenge/preprocessed buckets (e.g., BDF, mini subsets), append
|
|
746
|
+
# informative suffixes to avoid overlapping with the original dataset.
|
|
747
|
+
dataset_folder = self.query["dataset"]
|
|
748
|
+
if self.s3_bucket:
|
|
749
|
+
suffixes: list[str] = []
|
|
750
|
+
bucket_lower = str(self.s3_bucket).lower()
|
|
751
|
+
if "bdf" in bucket_lower:
|
|
752
|
+
suffixes.append("bdf")
|
|
753
|
+
if "mini" in bucket_lower:
|
|
754
|
+
suffixes.append("mini")
|
|
755
|
+
if suffixes:
|
|
756
|
+
dataset_folder = f"{dataset_folder}-{'-'.join(suffixes)}"
|
|
757
|
+
|
|
758
|
+
self.data_dir = self.cache_dir / dataset_folder
|
|
759
|
+
|
|
760
|
+
if (
|
|
761
|
+
not _suppress_comp_warning
|
|
762
|
+
and self.query["dataset"] in RELEASE_TO_OPENNEURO_DATASET_MAP.values()
|
|
763
|
+
):
|
|
764
|
+
warn(
|
|
765
|
+
"If you are not participating in the competition, you can ignore this warning!"
|
|
766
|
+
"\n\n"
|
|
767
|
+
"EEG 2025 Competition Data Notice:\n"
|
|
768
|
+
"---------------------------------\n"
|
|
769
|
+
" You are loading the dataset that is used in the EEG 2025 Competition:\n"
|
|
770
|
+
"IMPORTANT: The data accessed via `EEGDashDataset` is NOT identical to what you get from `EEGChallengeDataset` object directly.\n"
|
|
771
|
+
"and it is not what you will use for the competition. Downsampling and filtering were applied to the data"
|
|
772
|
+
"to allow more people to participate.\n"
|
|
773
|
+
"\n"
|
|
774
|
+
"If you are participating in the competition, always use `EEGChallengeDataset` to ensure consistency with the challenge data.\n"
|
|
775
|
+
"\n",
|
|
776
|
+
UserWarning,
|
|
777
|
+
module="eegdash",
|
|
778
|
+
)
|
|
779
|
+
if records is not None:
|
|
780
|
+
self.records = records
|
|
781
|
+
datasets = [
|
|
782
|
+
EEGDashBaseDataset(
|
|
783
|
+
record,
|
|
784
|
+
self.cache_dir,
|
|
785
|
+
self.s3_bucket,
|
|
786
|
+
**base_dataset_kwargs,
|
|
787
|
+
)
|
|
788
|
+
for record in self.records
|
|
789
|
+
]
|
|
790
|
+
elif not download: # only assume local data is complete if not downloading
|
|
791
|
+
if not self.data_dir.exists():
|
|
792
|
+
raise ValueError(
|
|
793
|
+
f"Offline mode is enabled, but local data_dir {self.data_dir} does not exist."
|
|
794
|
+
)
|
|
795
|
+
records = self._find_local_bids_records(self.data_dir, self.query)
|
|
796
|
+
# Try to enrich from local participants.tsv to restore requested fields
|
|
797
|
+
try:
|
|
798
|
+
bids_ds = EEGBIDSDataset(
|
|
799
|
+
data_dir=str(self.data_dir), dataset=self.query["dataset"]
|
|
800
|
+
) # type: ignore[index]
|
|
801
|
+
except Exception:
|
|
802
|
+
bids_ds = None
|
|
803
|
+
|
|
804
|
+
datasets = []
|
|
805
|
+
for record in records:
|
|
806
|
+
# Start with entity values from filename
|
|
807
|
+
desc: dict[str, Any] = {
|
|
808
|
+
k: record.get(k)
|
|
809
|
+
for k in ("subject", "session", "run", "task")
|
|
810
|
+
if record.get(k) is not None
|
|
811
|
+
}
|
|
812
|
+
|
|
813
|
+
if bids_ds is not None:
|
|
814
|
+
try:
|
|
815
|
+
rel_from_dataset = Path(record["bidspath"]).relative_to(
|
|
816
|
+
record["dataset"]
|
|
817
|
+
) # type: ignore[index]
|
|
818
|
+
local_file = (self.data_dir / rel_from_dataset).as_posix()
|
|
819
|
+
part_row = bids_ds.subject_participant_tsv(local_file)
|
|
820
|
+
desc = merge_participants_fields(
|
|
821
|
+
description=desc,
|
|
822
|
+
participants_row=part_row
|
|
823
|
+
if isinstance(part_row, dict)
|
|
824
|
+
else None,
|
|
825
|
+
description_fields=description_fields,
|
|
826
|
+
)
|
|
827
|
+
except Exception:
|
|
828
|
+
pass
|
|
785
829
|
|
|
786
|
-
|
|
787
|
-
if records is not None:
|
|
788
|
-
self.records = records
|
|
789
|
-
datasets = [
|
|
830
|
+
datasets.append(
|
|
790
831
|
EEGDashBaseDataset(
|
|
791
|
-
record,
|
|
792
|
-
self.cache_dir,
|
|
793
|
-
self.s3_bucket,
|
|
794
|
-
|
|
795
|
-
)
|
|
796
|
-
for record in self.records
|
|
797
|
-
]
|
|
798
|
-
elif data_dir:
|
|
799
|
-
# This path loads from a local directory and is not affected by DB query logic
|
|
800
|
-
if isinstance(data_dir, (str, Path)):
|
|
801
|
-
datasets = self.load_bids_dataset(
|
|
802
|
-
dataset=dataset
|
|
803
|
-
if isinstance(dataset, str)
|
|
804
|
-
else (dataset[0] if dataset else None),
|
|
805
|
-
data_dir=data_dir,
|
|
806
|
-
description_fields=description_fields,
|
|
807
|
-
s3_bucket=s3_bucket,
|
|
832
|
+
record=record,
|
|
833
|
+
cache_dir=self.cache_dir,
|
|
834
|
+
s3_bucket=self.s3_bucket,
|
|
835
|
+
description=desc,
|
|
808
836
|
**base_dataset_kwargs,
|
|
809
837
|
)
|
|
810
|
-
else:
|
|
811
|
-
assert dataset is not None, (
|
|
812
|
-
"dataset must be provided when passing multiple data_dir"
|
|
813
|
-
)
|
|
814
|
-
assert len(data_dir) == len(dataset), (
|
|
815
|
-
"Number of datasets and directories must match"
|
|
816
|
-
)
|
|
817
|
-
datasets = []
|
|
818
|
-
for i, _ in enumerate(data_dir):
|
|
819
|
-
datasets.extend(
|
|
820
|
-
self.load_bids_dataset(
|
|
821
|
-
dataset=dataset[i],
|
|
822
|
-
data_dir=data_dir[i],
|
|
823
|
-
description_fields=description_fields,
|
|
824
|
-
s3_bucket=s3_bucket,
|
|
825
|
-
**base_dataset_kwargs,
|
|
826
|
-
)
|
|
827
|
-
)
|
|
828
|
-
elif query is not None or query_kwargs:
|
|
829
|
-
# This is the DB query path that we are improving
|
|
830
|
-
datasets = self.find_datasets(
|
|
831
|
-
query=query,
|
|
832
|
-
description_fields=description_fields,
|
|
833
|
-
query_kwargs=query_kwargs,
|
|
834
|
-
base_dataset_kwargs=base_dataset_kwargs,
|
|
835
|
-
)
|
|
836
|
-
# We only need filesystem if we need to access S3
|
|
837
|
-
self.filesystem = S3FileSystem(
|
|
838
|
-
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
839
838
|
)
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
)
|
|
844
|
-
|
|
845
|
-
|
|
846
|
-
|
|
839
|
+
elif self.query:
|
|
840
|
+
# This is the DB query path that we are improving
|
|
841
|
+
datasets = self._find_datasets(
|
|
842
|
+
query=build_query_from_kwargs(**self.query),
|
|
843
|
+
description_fields=description_fields,
|
|
844
|
+
base_dataset_kwargs=base_dataset_kwargs,
|
|
845
|
+
)
|
|
846
|
+
# We only need filesystem if we need to access S3
|
|
847
|
+
self.filesystem = S3FileSystem(
|
|
848
|
+
anon=True, client_kwargs={"region_name": "us-east-2"}
|
|
849
|
+
)
|
|
850
|
+
else:
|
|
851
|
+
raise ValueError(
|
|
852
|
+
"You must provide either 'records', a 'data_dir', or a query/keyword arguments for filtering."
|
|
853
|
+
)
|
|
847
854
|
|
|
848
855
|
super().__init__(datasets)
|
|
849
856
|
|
|
850
|
-
def
|
|
851
|
-
|
|
852
|
-
|
|
857
|
+
def _find_local_bids_records(
|
|
858
|
+
self, dataset_root: Path, filters: dict[str, Any]
|
|
859
|
+
) -> list[dict]:
|
|
860
|
+
"""Discover local BIDS EEG files and build minimal records.
|
|
861
|
+
|
|
862
|
+
This helper enumerates EEG recordings under ``dataset_root`` via
|
|
863
|
+
``mne_bids.find_matching_paths`` and applies entity filters to produce a
|
|
864
|
+
list of records suitable for ``EEGDashBaseDataset``. No network access
|
|
865
|
+
is performed and files are not read.
|
|
866
|
+
|
|
867
|
+
Parameters
|
|
868
|
+
----------
|
|
869
|
+
dataset_root : Path
|
|
870
|
+
Local dataset directory. May be the plain dataset folder (e.g.,
|
|
871
|
+
``ds005509``) or a suffixed cache variant (e.g.,
|
|
872
|
+
``ds005509-bdf-mini``).
|
|
873
|
+
filters : dict of {str, Any}
|
|
874
|
+
Query filters. Must include ``'dataset'`` with the dataset id (without
|
|
875
|
+
local suffixes). May include BIDS entities ``'subject'``,
|
|
876
|
+
``'session'``, ``'task'``, and ``'run'``. Each value can be a scalar
|
|
877
|
+
or a sequence of scalars.
|
|
878
|
+
|
|
879
|
+
Returns
|
|
880
|
+
-------
|
|
881
|
+
records : list of dict
|
|
882
|
+
One record per matched EEG file with at least:
|
|
883
|
+
|
|
884
|
+
- ``'data_name'``
|
|
885
|
+
- ``'dataset'`` (dataset id, without suffixes)
|
|
886
|
+
- ``'bidspath'`` (normalized to start with the dataset id)
|
|
887
|
+
- ``'subject'``, ``'session'``, ``'task'``, ``'run'`` (may be None)
|
|
888
|
+
- ``'bidsdependencies'`` (empty list)
|
|
889
|
+
- ``'modality'`` (``"eeg"``)
|
|
890
|
+
- ``'sampling_frequency'``, ``'nchans'``, ``'ntimes'`` (minimal
|
|
891
|
+
defaults for offline usage)
|
|
892
|
+
|
|
893
|
+
Notes
|
|
894
|
+
-----
|
|
895
|
+
- Matching uses ``datatypes=['eeg']`` and ``suffixes=['eeg']``.
|
|
896
|
+
- ``bidspath`` is constructed as
|
|
897
|
+
``<dataset_id> / <relative_path_from_dataset_root>`` to ensure the
|
|
898
|
+
first path component is the dataset id (without local cache suffixes).
|
|
899
|
+
- Minimal defaults are set for ``sampling_frequency``, ``nchans``, and
|
|
900
|
+
``ntimes`` to satisfy dataset length requirements offline.
|
|
901
|
+
|
|
853
902
|
"""
|
|
903
|
+
dataset_id = filters["dataset"]
|
|
904
|
+
arg_map = {
|
|
905
|
+
"subjects": "subject",
|
|
906
|
+
"sessions": "session",
|
|
907
|
+
"tasks": "task",
|
|
908
|
+
"runs": "run",
|
|
909
|
+
}
|
|
910
|
+
matching_args: dict[str, list[str]] = {}
|
|
911
|
+
for finder_key, entity_key in arg_map.items():
|
|
912
|
+
entity_val = filters.get(entity_key)
|
|
913
|
+
if entity_val is None:
|
|
914
|
+
continue
|
|
915
|
+
if isinstance(entity_val, (list, tuple, set)):
|
|
916
|
+
entity_vals = list(entity_val)
|
|
917
|
+
if not entity_vals:
|
|
918
|
+
continue
|
|
919
|
+
matching_args[finder_key] = entity_vals
|
|
920
|
+
else:
|
|
921
|
+
matching_args[finder_key] = [entity_val]
|
|
922
|
+
|
|
923
|
+
matched_paths = find_matching_paths(
|
|
924
|
+
root=str(dataset_root),
|
|
925
|
+
datatypes=["eeg"],
|
|
926
|
+
suffixes=["eeg"],
|
|
927
|
+
ignore_json=True,
|
|
928
|
+
**matching_args,
|
|
929
|
+
)
|
|
930
|
+
records_out: list[dict] = []
|
|
931
|
+
|
|
932
|
+
for bids_path in matched_paths:
|
|
933
|
+
# Build bidspath as dataset_id / relative_path_from_dataset_root (POSIX)
|
|
934
|
+
rel_from_root = (
|
|
935
|
+
Path(bids_path.fpath)
|
|
936
|
+
.resolve()
|
|
937
|
+
.relative_to(Path(bids_path.root).resolve())
|
|
938
|
+
)
|
|
939
|
+
bidspath = f"{dataset_id}/{rel_from_root.as_posix()}"
|
|
940
|
+
|
|
941
|
+
rec = {
|
|
942
|
+
"data_name": f"{dataset_id}_{Path(bids_path.fpath).name}",
|
|
943
|
+
"dataset": dataset_id,
|
|
944
|
+
"bidspath": bidspath,
|
|
945
|
+
"subject": (bids_path.subject or None),
|
|
946
|
+
"session": (bids_path.session or None),
|
|
947
|
+
"task": (bids_path.task or None),
|
|
948
|
+
"run": (bids_path.run or None),
|
|
949
|
+
# minimal fields to satisfy BaseDataset from eegdash
|
|
950
|
+
"bidsdependencies": [], # not needed to just run.
|
|
951
|
+
"modality": "eeg",
|
|
952
|
+
# minimal numeric defaults for offline length calculation
|
|
953
|
+
"sampling_frequency": None,
|
|
954
|
+
"nchans": None,
|
|
955
|
+
"ntimes": None,
|
|
956
|
+
}
|
|
957
|
+
records_out.append(rec)
|
|
958
|
+
|
|
959
|
+
return records_out
|
|
960
|
+
|
|
961
|
+
def _find_key_in_nested_dict(self, data: Any, target_key: str) -> Any:
|
|
962
|
+
"""Recursively search for target_key in nested dicts/lists with normalized matching.
|
|
963
|
+
|
|
964
|
+
This makes lookups tolerant to naming differences like "p-factor" vs "p_factor".
|
|
965
|
+
Returns the first match or None.
|
|
966
|
+
"""
|
|
967
|
+
norm_target = normalize_key(target_key)
|
|
854
968
|
if isinstance(data, dict):
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
if
|
|
860
|
-
return
|
|
969
|
+
for k, v in data.items():
|
|
970
|
+
if normalize_key(k) == norm_target:
|
|
971
|
+
return v
|
|
972
|
+
res = self._find_key_in_nested_dict(v, target_key)
|
|
973
|
+
if res is not None:
|
|
974
|
+
return res
|
|
975
|
+
elif isinstance(data, list):
|
|
976
|
+
for item in data:
|
|
977
|
+
res = self._find_key_in_nested_dict(item, target_key)
|
|
978
|
+
if res is not None:
|
|
979
|
+
return res
|
|
861
980
|
return None
|
|
862
981
|
|
|
863
|
-
def
|
|
982
|
+
def _find_datasets(
|
|
864
983
|
self,
|
|
865
984
|
query: dict[str, Any] | None,
|
|
866
985
|
description_fields: list[str],
|
|
867
|
-
query_kwargs: dict,
|
|
868
986
|
base_dataset_kwargs: dict,
|
|
869
987
|
) -> list[EEGDashBaseDataset]:
|
|
870
988
|
"""Helper method to find datasets in the MongoDB collection that satisfy the
|
|
@@ -887,87 +1005,30 @@ class EEGDashDataset(BaseConcatDataset):
|
|
|
887
1005
|
|
|
888
1006
|
"""
|
|
889
1007
|
datasets: list[EEGDashBaseDataset] = []
|
|
890
|
-
|
|
891
|
-
# Build records using either a raw query OR keyword filters, but not both.
|
|
892
|
-
# Note: callers may accidentally pass an empty dict for `query` along with
|
|
893
|
-
# kwargs. In that case, treat it as if no query was provided and rely on kwargs.
|
|
894
|
-
# Always delegate merging of raw query + kwargs to EEGDash.find
|
|
895
|
-
self.records = self.eeg_dash.find(query, **query_kwargs)
|
|
1008
|
+
self.records = self.eeg_dash_instance.find(query)
|
|
896
1009
|
|
|
897
1010
|
for record in self.records:
|
|
898
|
-
description = {}
|
|
1011
|
+
description: dict[str, Any] = {}
|
|
1012
|
+
# Requested fields first (normalized matching)
|
|
899
1013
|
for field in description_fields:
|
|
900
|
-
value = self.
|
|
1014
|
+
value = self._find_key_in_nested_dict(record, field)
|
|
901
1015
|
if value is not None:
|
|
902
1016
|
description[field] = value
|
|
1017
|
+
# Merge all participants.tsv columns generically
|
|
1018
|
+
part = self._find_key_in_nested_dict(record, "participant_tsv")
|
|
1019
|
+
if isinstance(part, dict):
|
|
1020
|
+
description = merge_participants_fields(
|
|
1021
|
+
description=description,
|
|
1022
|
+
participants_row=part,
|
|
1023
|
+
description_fields=description_fields,
|
|
1024
|
+
)
|
|
903
1025
|
datasets.append(
|
|
904
1026
|
EEGDashBaseDataset(
|
|
905
1027
|
record,
|
|
906
|
-
self.cache_dir,
|
|
907
|
-
self.s3_bucket,
|
|
1028
|
+
cache_dir=self.cache_dir,
|
|
1029
|
+
s3_bucket=self.s3_bucket,
|
|
908
1030
|
description=description,
|
|
909
1031
|
**base_dataset_kwargs,
|
|
910
1032
|
)
|
|
911
1033
|
)
|
|
912
1034
|
return datasets
|
|
913
|
-
|
|
914
|
-
def load_bids_dataset(
|
|
915
|
-
self,
|
|
916
|
-
dataset: str,
|
|
917
|
-
data_dir: str | Path,
|
|
918
|
-
description_fields: list[str],
|
|
919
|
-
s3_bucket: str | None = None,
|
|
920
|
-
**kwargs,
|
|
921
|
-
):
|
|
922
|
-
"""Helper method to load a single local BIDS dataset and return it as a list of
|
|
923
|
-
EEGDashBaseDatasets (one for each recording in the dataset).
|
|
924
|
-
|
|
925
|
-
Parameters
|
|
926
|
-
----------
|
|
927
|
-
dataset : str
|
|
928
|
-
A name for the dataset to be loaded (e.g., "ds002718").
|
|
929
|
-
data_dir : str
|
|
930
|
-
The path to the local BIDS dataset directory.
|
|
931
|
-
description_fields : list[str]
|
|
932
|
-
A list of fields to be extracted from the dataset records
|
|
933
|
-
and included in the returned dataset description(s).
|
|
934
|
-
|
|
935
|
-
"""
|
|
936
|
-
bids_dataset = EEGBIDSDataset(
|
|
937
|
-
data_dir=data_dir,
|
|
938
|
-
dataset=dataset,
|
|
939
|
-
)
|
|
940
|
-
datasets = Parallel(n_jobs=-1, prefer="threads", verbose=1)(
|
|
941
|
-
delayed(self.get_base_dataset_from_bids_file)(
|
|
942
|
-
bids_dataset=bids_dataset,
|
|
943
|
-
bids_file=bids_file,
|
|
944
|
-
s3_bucket=s3_bucket,
|
|
945
|
-
description_fields=description_fields,
|
|
946
|
-
**kwargs,
|
|
947
|
-
)
|
|
948
|
-
for bids_file in bids_dataset.get_files()
|
|
949
|
-
)
|
|
950
|
-
return datasets
|
|
951
|
-
|
|
952
|
-
def get_base_dataset_from_bids_file(
|
|
953
|
-
self,
|
|
954
|
-
bids_dataset: "EEGBIDSDataset",
|
|
955
|
-
bids_file: str,
|
|
956
|
-
s3_bucket: str | None,
|
|
957
|
-
description_fields: list[str],
|
|
958
|
-
**kwargs,
|
|
959
|
-
) -> "EEGDashBaseDataset":
|
|
960
|
-
"""Instantiate a single EEGDashBaseDataset given a local BIDS file (metadata only)."""
|
|
961
|
-
record = self.eeg_dash.load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
|
|
962
|
-
description = {}
|
|
963
|
-
for field in description_fields:
|
|
964
|
-
value = self.find_key_in_nested_dict(record, field)
|
|
965
|
-
if value is not None:
|
|
966
|
-
description[field] = value
|
|
967
|
-
return EEGDashBaseDataset(
|
|
968
|
-
record,
|
|
969
|
-
self.cache_dir,
|
|
970
|
-
s3_bucket,
|
|
971
|
-
description=description,
|
|
972
|
-
**kwargs,
|
|
973
|
-
)
|