edsl 0.1.38.dev3__py3-none-any.whl → 0.1.38.dev4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (256) hide show
  1. edsl/Base.py +332 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -49
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +867 -858
  7. edsl/agents/AgentList.py +413 -362
  8. edsl/agents/Invigilator.py +233 -222
  9. edsl/agents/InvigilatorBase.py +265 -284
  10. edsl/agents/PromptConstructor.py +354 -353
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -279
  26. edsl/config.py +157 -149
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +1028 -961
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +555 -530
  37. edsl/data/CacheEntry.py +233 -228
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +78 -97
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +175 -173
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -42
  48. edsl/exceptions/cache.py +5 -5
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +148 -156
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/PerplexityService.py +163 -0
  72. edsl/inference_services/TestService.py +89 -89
  73. edsl/inference_services/TogetherAIService.py +170 -170
  74. edsl/inference_services/models_available_cache.py +118 -118
  75. edsl/inference_services/rate_limits_cache.py +25 -25
  76. edsl/inference_services/registry.py +41 -39
  77. edsl/inference_services/write_available.py +10 -10
  78. edsl/jobs/Answers.py +56 -56
  79. edsl/jobs/Jobs.py +898 -1358
  80. edsl/jobs/JobsChecks.py +147 -0
  81. edsl/jobs/JobsPrompts.py +268 -0
  82. edsl/jobs/JobsRemoteInferenceHandler.py +239 -0
  83. edsl/jobs/__init__.py +1 -1
  84. edsl/jobs/buckets/BucketCollection.py +63 -63
  85. edsl/jobs/buckets/ModelBuckets.py +65 -65
  86. edsl/jobs/buckets/TokenBucket.py +251 -251
  87. edsl/jobs/interviews/Interview.py +661 -661
  88. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  89. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  90. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  91. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  92. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  93. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  94. edsl/jobs/interviews/ReportErrors.py +66 -66
  95. edsl/jobs/interviews/interview_status_enum.py +9 -9
  96. edsl/jobs/runners/JobsRunnerAsyncio.py +466 -361
  97. edsl/jobs/runners/JobsRunnerStatus.py +330 -332
  98. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  99. edsl/jobs/tasks/TaskCreators.py +64 -64
  100. edsl/jobs/tasks/TaskHistory.py +450 -451
  101. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  102. edsl/jobs/tasks/task_status_enum.py +163 -163
  103. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  104. edsl/jobs/tokens/TokenUsage.py +34 -34
  105. edsl/language_models/KeyLookup.py +30 -30
  106. edsl/language_models/LanguageModel.py +668 -708
  107. edsl/language_models/ModelList.py +155 -109
  108. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  109. edsl/language_models/__init__.py +3 -3
  110. edsl/language_models/fake_openai_call.py +15 -15
  111. edsl/language_models/fake_openai_service.py +61 -61
  112. edsl/language_models/registry.py +190 -137
  113. edsl/language_models/repair.py +156 -156
  114. edsl/language_models/unused/ReplicateBase.py +83 -83
  115. edsl/language_models/utilities.py +64 -64
  116. edsl/notebooks/Notebook.py +258 -258
  117. edsl/notebooks/__init__.py +1 -1
  118. edsl/prompts/Prompt.py +362 -357
  119. edsl/prompts/__init__.py +2 -2
  120. edsl/questions/AnswerValidatorMixin.py +289 -289
  121. edsl/questions/QuestionBase.py +664 -660
  122. edsl/questions/QuestionBaseGenMixin.py +161 -161
  123. edsl/questions/QuestionBasePromptsMixin.py +217 -217
  124. edsl/questions/QuestionBudget.py +227 -227
  125. edsl/questions/QuestionCheckBox.py +359 -359
  126. edsl/questions/QuestionExtract.py +182 -183
  127. edsl/questions/QuestionFreeText.py +114 -114
  128. edsl/questions/QuestionFunctional.py +166 -166
  129. edsl/questions/QuestionList.py +231 -231
  130. edsl/questions/QuestionMultipleChoice.py +286 -286
  131. edsl/questions/QuestionNumerical.py +153 -153
  132. edsl/questions/QuestionRank.py +324 -324
  133. edsl/questions/Quick.py +41 -41
  134. edsl/questions/RegisterQuestionsMeta.py +71 -71
  135. edsl/questions/ResponseValidatorABC.py +174 -174
  136. edsl/questions/SimpleAskMixin.py +73 -73
  137. edsl/questions/__init__.py +26 -26
  138. edsl/questions/compose_questions.py +98 -98
  139. edsl/questions/decorators.py +21 -21
  140. edsl/questions/derived/QuestionLikertFive.py +76 -76
  141. edsl/questions/derived/QuestionLinearScale.py +87 -87
  142. edsl/questions/derived/QuestionTopK.py +93 -93
  143. edsl/questions/derived/QuestionYesNo.py +82 -82
  144. edsl/questions/descriptors.py +413 -413
  145. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  146. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  147. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  148. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  149. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  150. edsl/questions/prompt_templates/question_list.jinja +17 -17
  151. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  152. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  153. edsl/questions/question_registry.py +177 -147
  154. edsl/questions/settings.py +12 -12
  155. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  157. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  158. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  159. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  160. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  161. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  162. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  163. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  164. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  165. edsl/questions/templates/list/question_presentation.jinja +5 -5
  166. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  167. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  168. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  169. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  170. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  171. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  172. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  173. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  174. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  176. edsl/results/CSSParameterizer.py +108 -0
  177. edsl/results/Dataset.py +424 -293
  178. edsl/results/DatasetExportMixin.py +731 -717
  179. edsl/results/DatasetTree.py +275 -145
  180. edsl/results/Result.py +465 -456
  181. edsl/results/Results.py +1165 -1071
  182. edsl/results/ResultsDBMixin.py +238 -238
  183. edsl/results/ResultsExportMixin.py +43 -43
  184. edsl/results/ResultsFetchMixin.py +33 -33
  185. edsl/results/ResultsGGMixin.py +121 -121
  186. edsl/results/ResultsToolsMixin.py +98 -98
  187. edsl/results/Selector.py +135 -135
  188. edsl/results/TableDisplay.py +198 -0
  189. edsl/results/__init__.py +2 -2
  190. edsl/results/table_display.css +78 -0
  191. edsl/results/tree_explore.py +115 -115
  192. edsl/scenarios/FileStore.py +632 -458
  193. edsl/scenarios/Scenario.py +601 -544
  194. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  195. edsl/scenarios/ScenarioJoin.py +127 -0
  196. edsl/scenarios/ScenarioList.py +1287 -1112
  197. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  198. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  199. edsl/scenarios/__init__.py +4 -4
  200. edsl/shared.py +1 -1
  201. edsl/study/ObjectEntry.py +173 -173
  202. edsl/study/ProofOfWork.py +113 -113
  203. edsl/study/SnapShot.py +80 -80
  204. edsl/study/Study.py +528 -528
  205. edsl/study/__init__.py +4 -4
  206. edsl/surveys/DAG.py +148 -148
  207. edsl/surveys/Memory.py +31 -31
  208. edsl/surveys/MemoryPlan.py +244 -244
  209. edsl/surveys/Rule.py +326 -326
  210. edsl/surveys/RuleCollection.py +387 -387
  211. edsl/surveys/Survey.py +1801 -1787
  212. edsl/surveys/SurveyCSS.py +261 -261
  213. edsl/surveys/SurveyExportMixin.py +259 -259
  214. edsl/surveys/SurveyFlowVisualizationMixin.py +179 -121
  215. edsl/surveys/SurveyQualtricsImport.py +284 -284
  216. edsl/surveys/__init__.py +3 -3
  217. edsl/surveys/base.py +53 -53
  218. edsl/surveys/descriptors.py +56 -56
  219. edsl/surveys/instructions/ChangeInstruction.py +49 -49
  220. edsl/surveys/instructions/Instruction.py +65 -53
  221. edsl/surveys/instructions/InstructionCollection.py +77 -77
  222. edsl/templates/error_reporting/base.html +23 -23
  223. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  224. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  225. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  226. edsl/templates/error_reporting/interview_details.html +115 -115
  227. edsl/templates/error_reporting/interviews.html +19 -10
  228. edsl/templates/error_reporting/overview.html +4 -4
  229. edsl/templates/error_reporting/performance_plot.html +1 -1
  230. edsl/templates/error_reporting/report.css +73 -73
  231. edsl/templates/error_reporting/report.html +117 -117
  232. edsl/templates/error_reporting/report.js +25 -25
  233. edsl/tools/__init__.py +1 -1
  234. edsl/tools/clusters.py +192 -192
  235. edsl/tools/embeddings.py +27 -27
  236. edsl/tools/embeddings_plotting.py +118 -118
  237. edsl/tools/plotting.py +112 -112
  238. edsl/tools/summarize.py +18 -18
  239. edsl/utilities/SystemInfo.py +28 -28
  240. edsl/utilities/__init__.py +22 -22
  241. edsl/utilities/ast_utilities.py +25 -25
  242. edsl/utilities/data/Registry.py +6 -6
  243. edsl/utilities/data/__init__.py +1 -1
  244. edsl/utilities/data/scooter_results.json +1 -1
  245. edsl/utilities/decorators.py +77 -77
  246. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  247. edsl/utilities/interface.py +627 -627
  248. edsl/utilities/naming_utilities.py +263 -263
  249. edsl/utilities/repair_functions.py +28 -28
  250. edsl/utilities/restricted_python.py +70 -70
  251. edsl/utilities/utilities.py +424 -409
  252. {edsl-0.1.38.dev3.dist-info → edsl-0.1.38.dev4.dist-info}/LICENSE +21 -21
  253. {edsl-0.1.38.dev3.dist-info → edsl-0.1.38.dev4.dist-info}/METADATA +2 -1
  254. edsl-0.1.38.dev4.dist-info/RECORD +277 -0
  255. edsl-0.1.38.dev3.dist-info/RECORD +0 -269
  256. {edsl-0.1.38.dev3.dist-info → edsl-0.1.38.dev4.dist-info}/WHEEL +0 -0
@@ -1,73 +1,73 @@
1
- from dataclasses import dataclass
2
- from typing import List
3
- from textwrap import dedent
4
-
5
-
6
- from edsl import Scenario
7
- from edsl import Model
8
- from edsl.questions.QuestionList import QuestionList
9
-
10
- from edsl.auto.StageBase import StageBase
11
- from edsl.auto.StageBase import FlowDataBase
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StageQuestions(StageBase):
17
- "This stages takes as input an overall question and returns a list of questions"
18
-
19
- @dataclass
20
- class Input(FlowDataBase):
21
- overall_question: str
22
- population: str
23
-
24
- @dataclass
25
- class Output(FlowDataBase):
26
- questions: List[str]
27
- population: str
28
-
29
- input = Input
30
- output = Output
31
-
32
- def handle_data(self, data):
33
- m = Model()
34
- overall_question = data.overall_question
35
- population = data.population
36
- s = Scenario({"overall_question": overall_question, "population": population})
37
- q = QuestionList(
38
- question_text=dedent(
39
- """\
40
- Suppose I am interested in the question:
41
- "{{ overall_question }}"
42
- What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
- """
44
- ),
45
- question_name="questions",
46
- )
47
- results = q.by(s).by(m).run()
48
- (
49
- results.select("questions").print(
50
- pretty_labels={
51
- "answer.questions": f'Questions for overall question: "{overall_question }"'
52
- },
53
- split_at_dot=False,
54
- )
55
- )
56
-
57
- raw_questions = results.select("questions").first()
58
- questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
- return self.Output(questions=questions, population=population)
60
-
61
-
62
- if __name__ == "__main__":
63
- pipeline = gen_pipeline([StageQuestions])
64
-
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?",
68
- population="Consumers",
69
- )
70
- )
71
- StageQuestions.func(
72
- overall_question="Why aren't my students studying more?", population="Tech"
73
- )
1
+ from dataclasses import dataclass
2
+ from typing import List
3
+ from textwrap import dedent
4
+
5
+
6
+ from edsl import Scenario
7
+ from edsl import Model
8
+ from edsl.questions.QuestionList import QuestionList
9
+
10
+ from edsl.auto.StageBase import StageBase
11
+ from edsl.auto.StageBase import FlowDataBase
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StageQuestions(StageBase):
17
+ "This stages takes as input an overall question and returns a list of questions"
18
+
19
+ @dataclass
20
+ class Input(FlowDataBase):
21
+ overall_question: str
22
+ population: str
23
+
24
+ @dataclass
25
+ class Output(FlowDataBase):
26
+ questions: List[str]
27
+ population: str
28
+
29
+ input = Input
30
+ output = Output
31
+
32
+ def handle_data(self, data):
33
+ m = Model()
34
+ overall_question = data.overall_question
35
+ population = data.population
36
+ s = Scenario({"overall_question": overall_question, "population": population})
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ """\
40
+ Suppose I am interested in the question:
41
+ "{{ overall_question }}"
42
+ What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
+ """
44
+ ),
45
+ question_name="questions",
46
+ )
47
+ results = q.by(s).by(m).run()
48
+ (
49
+ results.select("questions").print(
50
+ pretty_labels={
51
+ "answer.questions": f'Questions for overall question: "{overall_question }"'
52
+ },
53
+ split_at_dot=False,
54
+ )
55
+ )
56
+
57
+ raw_questions = results.select("questions").first()
58
+ questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
+ return self.Output(questions=questions, population=population)
60
+
61
+
62
+ if __name__ == "__main__":
63
+ pipeline = gen_pipeline([StageQuestions])
64
+
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
68
+ population="Consumers",
69
+ )
70
+ )
71
+ StageQuestions.func(
72
+ overall_question="Why aren't my students studying more?", population="Tech"
73
+ )
@@ -1,21 +1,21 @@
1
- import random
2
- from typing import Dict, List, Any, TypeVar, Generator, Optional
3
-
4
- from textwrap import dedent
5
-
6
- # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
- from edsl import Model
8
- from edsl.agents.AgentList import AgentList
9
- from edsl.results.Results import Results
10
- from edsl import Agent
11
-
12
- from edsl import Scenario
13
- from edsl.surveys.Survey import Survey
14
-
15
- from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
- from edsl.questions.QuestionFreeText import QuestionFreeText
17
- from edsl.auto.utilities import gen_pipeline
18
- from edsl.utilities.naming_utilities import sanitize_string
19
-
20
-
21
- m = Model()
1
+ import random
2
+ from typing import Dict, List, Any, TypeVar, Generator, Optional
3
+
4
+ from textwrap import dedent
5
+
6
+ # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
+ from edsl import Model
8
+ from edsl.agents.AgentList import AgentList
9
+ from edsl.results.Results import Results
10
+ from edsl import Agent
11
+
12
+ from edsl import Scenario
13
+ from edsl.surveys.Survey import Survey
14
+
15
+ from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
+ from edsl.questions.QuestionFreeText import QuestionFreeText
17
+ from edsl.auto.utilities import gen_pipeline
18
+ from edsl.utilities.naming_utilities import sanitize_string
19
+
20
+
21
+ m = Model()
edsl/auto/utilities.py CHANGED
@@ -1,224 +1,224 @@
1
- from textwrap import dedent
2
- import random
3
- from typing import List, TypeVar, Generator, Optional
4
- from edsl.auto.StageBase import StageBase
5
- from edsl.utilities.naming_utilities import sanitize_string
6
- from edsl import Agent, Survey, Model, Cache, AgentList
7
- from edsl import QuestionFreeText, Scenario
8
- from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
-
10
- StageClassType = TypeVar("StageClassType", bound=StageBase)
11
-
12
-
13
- def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
- """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
- A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
-
17
- """
18
- pipeline = stages_list[0]()
19
- last_stage = pipeline
20
- for stage in stages_list[1:]:
21
- while last_stage.next_stage is not None: # find the end of the pipeline
22
- last_stage = last_stage.next_stage
23
- stage_to_add = stage()
24
- last_stage.next_stage = stage_to_add
25
- return pipeline
26
-
27
-
28
- q_eligibility = QuestionMultipleChoice(
29
- question_text=dedent(
30
- """\
31
- Consider this set of question: '{{ questions }}'.
32
- Consider this persona: '{{ persona }}'.
33
- Would this persona be able to answer all of these questions?
34
- """
35
- ),
36
- question_options=["No", "Yes"],
37
- question_name="eligibility",
38
- )
39
-
40
-
41
- def agent_list_eligibility(
42
- agent_list: AgentList,
43
- survey: Optional[Survey] = None,
44
- model: Optional[Model] = None,
45
- cache: Optional[Cache] = None,
46
- ) -> List[bool]:
47
- """
48
- Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
-
50
- >>> from edsl.language_models import LanguageModel
51
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
- >>> agent_list_eligibility(AgentList.example())
53
- [True, True]
54
- >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
- [True, True]
56
- """
57
- if survey is None:
58
- return [True] * len(agent_list)
59
- if "persona" not in agent_list.all_traits:
60
- raise ValueError(
61
- f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
- )
63
- sl = agent_list.select("persona").to_scenario_list()
64
- sl.add_value("questions", [q.question_text for q in survey._questions])
65
- results = q_eligibility.by(sl).by(model).run(cache=cache)
66
- return [r == "Yes" for r in results.select("eligibility").to_list()]
67
-
68
-
69
- def agent_eligibility(
70
- agent: Agent,
71
- survey: Survey,
72
- model: Optional[Model] = None,
73
- cache: Optional[Cache] = None,
74
- ) -> bool:
75
- """NB: This could be parallelized.
76
-
77
- >>> from edsl.language_models import LanguageModel
78
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
- >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
- True
81
-
82
- """
83
- model = model or Model()
84
-
85
- questions = [q.question_text for q in survey._questions]
86
- persona = agent.traits["persona"]
87
- return (
88
- q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
- == "Yes"
90
- )
91
- # results = (
92
- # q.by(model)
93
- # .by(Scenario({"questions": questions, "persona": persona}))
94
- # .run(cache=cache)
95
- # )
96
- # return results.select("eligibility").first() == "Yes"
97
-
98
-
99
- def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
- """
101
- >>> dimension_dict = {'attitude':['positive', 'negative']}
102
- >>> ag = gen_agent_traits(dimension_dict)
103
- >>> a = next(ag)
104
- >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
- True
106
- >>> len([next(ag) for _ in range(100)])
107
- 100
108
- """
109
- if seed_value is None:
110
- seed_value = "edsl"
111
-
112
- random.seed(seed_value)
113
-
114
- while True:
115
- new_agent_traits = {}
116
- for key, list_of_values in dimension_dict.items():
117
- new_agent_traits[key] = random.choice(list_of_values)
118
- yield new_agent_traits
119
-
120
-
121
- def agent_generator(
122
- persona: str,
123
- dimension_dict: dict,
124
- model: Optional[Model] = None,
125
- cache: Optional["Cache"] = None,
126
- ) -> Generator["Results", None, None]:
127
- """
128
- >>> from edsl.language_models import LanguageModel
129
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
- >>> next(ag).select('new_agent_persona').first()
132
- 'This is a cool dude.'
133
- >>> next(ag).select('new_agent_persona').first()
134
- 'This is a cool dude.'
135
- """
136
-
137
- if model is None:
138
- model = Model()
139
-
140
- q = QuestionFreeText(
141
- question_text=dedent(
142
- """\
143
- Consider this persona: '{{ persona }}'.
144
- Now imagine writing a new persona with these traits:
145
- '{{ new_agent_traits }}'
146
- Please write this persona as a narrative.
147
- """
148
- ),
149
- question_name="new_agent_persona",
150
- )
151
- agent_trait_generator = gen_agent_traits(dimension_dict)
152
- codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
- while True:
154
- new_agent_traits = next(agent_trait_generator)
155
- yield q(
156
- persona=persona,
157
- new_agent_traits=new_agent_traits,
158
- codebook=codebook,
159
- just_answer=False,
160
- cache=cache,
161
- model=model,
162
- )
163
-
164
-
165
- def create_agents(
166
- agent_generator: Generator["Results", None, None],
167
- survey: Optional[Survey] = None,
168
- num_agents=11,
169
- ) -> AgentList:
170
- """
171
- >>> from edsl.language_models import LanguageModel
172
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
- >>> new_agent_list = create_agents(agent_generator = ag)
175
- >>> new_agent_list
176
-
177
- """
178
- agent_list = AgentList([])
179
-
180
- MAX_ITERATIONS_MULTIPLIER = 2
181
- iterations = 0
182
-
183
- while len(agent_list) < num_agents:
184
- iterations += 1
185
- candidate_agent = next(agent_generator)
186
- codebook = candidate_agent.select("codebook").to_list()[0]
187
-
188
- koobedoc = {v: k for k, v in codebook.items()}
189
- persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
- traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
- new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
- "persona": persona
193
- }
194
- agent = Agent(traits=new_traits, codebook=codebook)
195
- if survey is not None:
196
- if agent_eligibility(agent, survey):
197
- agent_list.append(agent)
198
- else:
199
- print("Agent not eligible")
200
- else:
201
- agent_list.append(agent)
202
-
203
- if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
- raise Exception("Too many failures")
205
-
206
- return agent_list
207
-
208
-
209
- if __name__ == "__main__":
210
- import doctest
211
-
212
- doctest.testmod()
213
- # from edsl.language_models import LanguageModel
214
-
215
- # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
- # ag = agent_generator(
217
- # persona="Base person",
218
- # dimension_dict={"attitude": ["Positive", "Negative"]},
219
- # model=m,
220
- # )
221
- # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
- # dimension_dict = {"attitude": ["positive", "negative"]}
223
- # ag = gen_agent_traits(dimension_dict)
224
- # example = [next(ag) for _ in range(100)]
1
+ from textwrap import dedent
2
+ import random
3
+ from typing import List, TypeVar, Generator, Optional
4
+ from edsl.auto.StageBase import StageBase
5
+ from edsl.utilities.naming_utilities import sanitize_string
6
+ from edsl import Agent, Survey, Model, Cache, AgentList
7
+ from edsl import QuestionFreeText, Scenario
8
+ from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
+
10
+ StageClassType = TypeVar("StageClassType", bound=StageBase)
11
+
12
+
13
+ def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
+ """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
+ A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
+
17
+ """
18
+ pipeline = stages_list[0]()
19
+ last_stage = pipeline
20
+ for stage in stages_list[1:]:
21
+ while last_stage.next_stage is not None: # find the end of the pipeline
22
+ last_stage = last_stage.next_stage
23
+ stage_to_add = stage()
24
+ last_stage.next_stage = stage_to_add
25
+ return pipeline
26
+
27
+
28
+ q_eligibility = QuestionMultipleChoice(
29
+ question_text=dedent(
30
+ """\
31
+ Consider this set of question: '{{ questions }}'.
32
+ Consider this persona: '{{ persona }}'.
33
+ Would this persona be able to answer all of these questions?
34
+ """
35
+ ),
36
+ question_options=["No", "Yes"],
37
+ question_name="eligibility",
38
+ )
39
+
40
+
41
+ def agent_list_eligibility(
42
+ agent_list: AgentList,
43
+ survey: Optional[Survey] = None,
44
+ model: Optional[Model] = None,
45
+ cache: Optional[Cache] = None,
46
+ ) -> List[bool]:
47
+ """
48
+ Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
+
50
+ >>> from edsl.language_models import LanguageModel
51
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
+ >>> agent_list_eligibility(AgentList.example())
53
+ [True, True]
54
+ >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
+ [True, True]
56
+ """
57
+ if survey is None:
58
+ return [True] * len(agent_list)
59
+ if "persona" not in agent_list.all_traits:
60
+ raise ValueError(
61
+ f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
+ )
63
+ sl = agent_list.select("persona").to_scenario_list()
64
+ sl.add_value("questions", [q.question_text for q in survey._questions])
65
+ results = q_eligibility.by(sl).by(model).run(cache=cache)
66
+ return [r == "Yes" for r in results.select("eligibility").to_list()]
67
+
68
+
69
+ def agent_eligibility(
70
+ agent: Agent,
71
+ survey: Survey,
72
+ model: Optional[Model] = None,
73
+ cache: Optional[Cache] = None,
74
+ ) -> bool:
75
+ """NB: This could be parallelized.
76
+
77
+ >>> from edsl.language_models import LanguageModel
78
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
+ >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
+ True
81
+
82
+ """
83
+ model = model or Model()
84
+
85
+ questions = [q.question_text for q in survey._questions]
86
+ persona = agent.traits["persona"]
87
+ return (
88
+ q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
+ == "Yes"
90
+ )
91
+ # results = (
92
+ # q.by(model)
93
+ # .by(Scenario({"questions": questions, "persona": persona}))
94
+ # .run(cache=cache)
95
+ # )
96
+ # return results.select("eligibility").first() == "Yes"
97
+
98
+
99
+ def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
+ """
101
+ >>> dimension_dict = {'attitude':['positive', 'negative']}
102
+ >>> ag = gen_agent_traits(dimension_dict)
103
+ >>> a = next(ag)
104
+ >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
+ True
106
+ >>> len([next(ag) for _ in range(100)])
107
+ 100
108
+ """
109
+ if seed_value is None:
110
+ seed_value = "edsl"
111
+
112
+ random.seed(seed_value)
113
+
114
+ while True:
115
+ new_agent_traits = {}
116
+ for key, list_of_values in dimension_dict.items():
117
+ new_agent_traits[key] = random.choice(list_of_values)
118
+ yield new_agent_traits
119
+
120
+
121
+ def agent_generator(
122
+ persona: str,
123
+ dimension_dict: dict,
124
+ model: Optional[Model] = None,
125
+ cache: Optional["Cache"] = None,
126
+ ) -> Generator["Results", None, None]:
127
+ """
128
+ >>> from edsl.language_models import LanguageModel
129
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
+ >>> next(ag).select('new_agent_persona').first()
132
+ 'This is a cool dude.'
133
+ >>> next(ag).select('new_agent_persona').first()
134
+ 'This is a cool dude.'
135
+ """
136
+
137
+ if model is None:
138
+ model = Model()
139
+
140
+ q = QuestionFreeText(
141
+ question_text=dedent(
142
+ """\
143
+ Consider this persona: '{{ persona }}'.
144
+ Now imagine writing a new persona with these traits:
145
+ '{{ new_agent_traits }}'
146
+ Please write this persona as a narrative.
147
+ """
148
+ ),
149
+ question_name="new_agent_persona",
150
+ )
151
+ agent_trait_generator = gen_agent_traits(dimension_dict)
152
+ codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
+ while True:
154
+ new_agent_traits = next(agent_trait_generator)
155
+ yield q(
156
+ persona=persona,
157
+ new_agent_traits=new_agent_traits,
158
+ codebook=codebook,
159
+ just_answer=False,
160
+ cache=cache,
161
+ model=model,
162
+ )
163
+
164
+
165
+ def create_agents(
166
+ agent_generator: Generator["Results", None, None],
167
+ survey: Optional[Survey] = None,
168
+ num_agents=11,
169
+ ) -> AgentList:
170
+ """
171
+ >>> from edsl.language_models import LanguageModel
172
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
+ >>> new_agent_list = create_agents(agent_generator = ag)
175
+ >>> new_agent_list
176
+
177
+ """
178
+ agent_list = AgentList([])
179
+
180
+ MAX_ITERATIONS_MULTIPLIER = 2
181
+ iterations = 0
182
+
183
+ while len(agent_list) < num_agents:
184
+ iterations += 1
185
+ candidate_agent = next(agent_generator)
186
+ codebook = candidate_agent.select("codebook").to_list()[0]
187
+
188
+ koobedoc = {v: k for k, v in codebook.items()}
189
+ persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
+ traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
+ new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
+ "persona": persona
193
+ }
194
+ agent = Agent(traits=new_traits, codebook=codebook)
195
+ if survey is not None:
196
+ if agent_eligibility(agent, survey):
197
+ agent_list.append(agent)
198
+ else:
199
+ print("Agent not eligible")
200
+ else:
201
+ agent_list.append(agent)
202
+
203
+ if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
+ raise Exception("Too many failures")
205
+
206
+ return agent_list
207
+
208
+
209
+ if __name__ == "__main__":
210
+ import doctest
211
+
212
+ doctest.testmod()
213
+ # from edsl.language_models import LanguageModel
214
+
215
+ # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
+ # ag = agent_generator(
217
+ # persona="Base person",
218
+ # dimension_dict={"attitude": ["Positive", "Negative"]},
219
+ # model=m,
220
+ # )
221
+ # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
+ # dimension_dict = {"attitude": ["positive", "negative"]}
223
+ # ag = gen_agent_traits(dimension_dict)
224
+ # example = [next(ag) for _ in range(100)]