edsl 0.1.38.dev3__py3-none-any.whl → 0.1.38.dev4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (256) hide show
  1. edsl/Base.py +332 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -49
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +867 -858
  7. edsl/agents/AgentList.py +413 -362
  8. edsl/agents/Invigilator.py +233 -222
  9. edsl/agents/InvigilatorBase.py +265 -284
  10. edsl/agents/PromptConstructor.py +354 -353
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -279
  26. edsl/config.py +157 -149
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +1028 -961
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +555 -530
  37. edsl/data/CacheEntry.py +233 -228
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +78 -97
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +175 -173
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -42
  48. edsl/exceptions/cache.py +5 -5
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +148 -156
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/PerplexityService.py +163 -0
  72. edsl/inference_services/TestService.py +89 -89
  73. edsl/inference_services/TogetherAIService.py +170 -170
  74. edsl/inference_services/models_available_cache.py +118 -118
  75. edsl/inference_services/rate_limits_cache.py +25 -25
  76. edsl/inference_services/registry.py +41 -39
  77. edsl/inference_services/write_available.py +10 -10
  78. edsl/jobs/Answers.py +56 -56
  79. edsl/jobs/Jobs.py +898 -1358
  80. edsl/jobs/JobsChecks.py +147 -0
  81. edsl/jobs/JobsPrompts.py +268 -0
  82. edsl/jobs/JobsRemoteInferenceHandler.py +239 -0
  83. edsl/jobs/__init__.py +1 -1
  84. edsl/jobs/buckets/BucketCollection.py +63 -63
  85. edsl/jobs/buckets/ModelBuckets.py +65 -65
  86. edsl/jobs/buckets/TokenBucket.py +251 -251
  87. edsl/jobs/interviews/Interview.py +661 -661
  88. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  89. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  90. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  91. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  92. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  93. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  94. edsl/jobs/interviews/ReportErrors.py +66 -66
  95. edsl/jobs/interviews/interview_status_enum.py +9 -9
  96. edsl/jobs/runners/JobsRunnerAsyncio.py +466 -361
  97. edsl/jobs/runners/JobsRunnerStatus.py +330 -332
  98. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  99. edsl/jobs/tasks/TaskCreators.py +64 -64
  100. edsl/jobs/tasks/TaskHistory.py +450 -451
  101. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  102. edsl/jobs/tasks/task_status_enum.py +163 -163
  103. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  104. edsl/jobs/tokens/TokenUsage.py +34 -34
  105. edsl/language_models/KeyLookup.py +30 -30
  106. edsl/language_models/LanguageModel.py +668 -708
  107. edsl/language_models/ModelList.py +155 -109
  108. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  109. edsl/language_models/__init__.py +3 -3
  110. edsl/language_models/fake_openai_call.py +15 -15
  111. edsl/language_models/fake_openai_service.py +61 -61
  112. edsl/language_models/registry.py +190 -137
  113. edsl/language_models/repair.py +156 -156
  114. edsl/language_models/unused/ReplicateBase.py +83 -83
  115. edsl/language_models/utilities.py +64 -64
  116. edsl/notebooks/Notebook.py +258 -258
  117. edsl/notebooks/__init__.py +1 -1
  118. edsl/prompts/Prompt.py +362 -357
  119. edsl/prompts/__init__.py +2 -2
  120. edsl/questions/AnswerValidatorMixin.py +289 -289
  121. edsl/questions/QuestionBase.py +664 -660
  122. edsl/questions/QuestionBaseGenMixin.py +161 -161
  123. edsl/questions/QuestionBasePromptsMixin.py +217 -217
  124. edsl/questions/QuestionBudget.py +227 -227
  125. edsl/questions/QuestionCheckBox.py +359 -359
  126. edsl/questions/QuestionExtract.py +182 -183
  127. edsl/questions/QuestionFreeText.py +114 -114
  128. edsl/questions/QuestionFunctional.py +166 -166
  129. edsl/questions/QuestionList.py +231 -231
  130. edsl/questions/QuestionMultipleChoice.py +286 -286
  131. edsl/questions/QuestionNumerical.py +153 -153
  132. edsl/questions/QuestionRank.py +324 -324
  133. edsl/questions/Quick.py +41 -41
  134. edsl/questions/RegisterQuestionsMeta.py +71 -71
  135. edsl/questions/ResponseValidatorABC.py +174 -174
  136. edsl/questions/SimpleAskMixin.py +73 -73
  137. edsl/questions/__init__.py +26 -26
  138. edsl/questions/compose_questions.py +98 -98
  139. edsl/questions/decorators.py +21 -21
  140. edsl/questions/derived/QuestionLikertFive.py +76 -76
  141. edsl/questions/derived/QuestionLinearScale.py +87 -87
  142. edsl/questions/derived/QuestionTopK.py +93 -93
  143. edsl/questions/derived/QuestionYesNo.py +82 -82
  144. edsl/questions/descriptors.py +413 -413
  145. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  146. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  147. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  148. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  149. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  150. edsl/questions/prompt_templates/question_list.jinja +17 -17
  151. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  152. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  153. edsl/questions/question_registry.py +177 -147
  154. edsl/questions/settings.py +12 -12
  155. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  157. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  158. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  159. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  160. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  161. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  162. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  163. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  164. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  165. edsl/questions/templates/list/question_presentation.jinja +5 -5
  166. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  167. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  168. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  169. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  170. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  171. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  172. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  173. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  174. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  176. edsl/results/CSSParameterizer.py +108 -0
  177. edsl/results/Dataset.py +424 -293
  178. edsl/results/DatasetExportMixin.py +731 -717
  179. edsl/results/DatasetTree.py +275 -145
  180. edsl/results/Result.py +465 -456
  181. edsl/results/Results.py +1165 -1071
  182. edsl/results/ResultsDBMixin.py +238 -238
  183. edsl/results/ResultsExportMixin.py +43 -43
  184. edsl/results/ResultsFetchMixin.py +33 -33
  185. edsl/results/ResultsGGMixin.py +121 -121
  186. edsl/results/ResultsToolsMixin.py +98 -98
  187. edsl/results/Selector.py +135 -135
  188. edsl/results/TableDisplay.py +198 -0
  189. edsl/results/__init__.py +2 -2
  190. edsl/results/table_display.css +78 -0
  191. edsl/results/tree_explore.py +115 -115
  192. edsl/scenarios/FileStore.py +632 -458
  193. edsl/scenarios/Scenario.py +601 -544
  194. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  195. edsl/scenarios/ScenarioJoin.py +127 -0
  196. edsl/scenarios/ScenarioList.py +1287 -1112
  197. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  198. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  199. edsl/scenarios/__init__.py +4 -4
  200. edsl/shared.py +1 -1
  201. edsl/study/ObjectEntry.py +173 -173
  202. edsl/study/ProofOfWork.py +113 -113
  203. edsl/study/SnapShot.py +80 -80
  204. edsl/study/Study.py +528 -528
  205. edsl/study/__init__.py +4 -4
  206. edsl/surveys/DAG.py +148 -148
  207. edsl/surveys/Memory.py +31 -31
  208. edsl/surveys/MemoryPlan.py +244 -244
  209. edsl/surveys/Rule.py +326 -326
  210. edsl/surveys/RuleCollection.py +387 -387
  211. edsl/surveys/Survey.py +1801 -1787
  212. edsl/surveys/SurveyCSS.py +261 -261
  213. edsl/surveys/SurveyExportMixin.py +259 -259
  214. edsl/surveys/SurveyFlowVisualizationMixin.py +179 -121
  215. edsl/surveys/SurveyQualtricsImport.py +284 -284
  216. edsl/surveys/__init__.py +3 -3
  217. edsl/surveys/base.py +53 -53
  218. edsl/surveys/descriptors.py +56 -56
  219. edsl/surveys/instructions/ChangeInstruction.py +49 -49
  220. edsl/surveys/instructions/Instruction.py +65 -53
  221. edsl/surveys/instructions/InstructionCollection.py +77 -77
  222. edsl/templates/error_reporting/base.html +23 -23
  223. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  224. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  225. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  226. edsl/templates/error_reporting/interview_details.html +115 -115
  227. edsl/templates/error_reporting/interviews.html +19 -10
  228. edsl/templates/error_reporting/overview.html +4 -4
  229. edsl/templates/error_reporting/performance_plot.html +1 -1
  230. edsl/templates/error_reporting/report.css +73 -73
  231. edsl/templates/error_reporting/report.html +117 -117
  232. edsl/templates/error_reporting/report.js +25 -25
  233. edsl/tools/__init__.py +1 -1
  234. edsl/tools/clusters.py +192 -192
  235. edsl/tools/embeddings.py +27 -27
  236. edsl/tools/embeddings_plotting.py +118 -118
  237. edsl/tools/plotting.py +112 -112
  238. edsl/tools/summarize.py +18 -18
  239. edsl/utilities/SystemInfo.py +28 -28
  240. edsl/utilities/__init__.py +22 -22
  241. edsl/utilities/ast_utilities.py +25 -25
  242. edsl/utilities/data/Registry.py +6 -6
  243. edsl/utilities/data/__init__.py +1 -1
  244. edsl/utilities/data/scooter_results.json +1 -1
  245. edsl/utilities/decorators.py +77 -77
  246. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  247. edsl/utilities/interface.py +627 -627
  248. edsl/utilities/naming_utilities.py +263 -263
  249. edsl/utilities/repair_functions.py +28 -28
  250. edsl/utilities/restricted_python.py +70 -70
  251. edsl/utilities/utilities.py +424 -409
  252. {edsl-0.1.38.dev3.dist-info → edsl-0.1.38.dev4.dist-info}/LICENSE +21 -21
  253. {edsl-0.1.38.dev3.dist-info → edsl-0.1.38.dev4.dist-info}/METADATA +2 -1
  254. edsl-0.1.38.dev4.dist-info/RECORD +277 -0
  255. edsl-0.1.38.dev3.dist-info/RECORD +0 -269
  256. {edsl-0.1.38.dev3.dist-info → edsl-0.1.38.dev4.dist-info}/WHEEL +0 -0
edsl/auto/StagePersona.py CHANGED
@@ -1,61 +1,61 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from typing import List
4
-
5
- from edsl.auto.StageBase import StageBase
6
- from edsl.auto.StageBase import FlowDataBase
7
- from edsl import Model
8
- from edsl.auto.StageQuestions import StageQuestions
9
-
10
- from edsl.questions import QuestionFreeText
11
- from edsl.scenarios import Scenario
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StagePersona(StageBase):
17
- input = StageQuestions.output
18
-
19
- @dataclass
20
- class Output(FlowDataBase):
21
- persona: str
22
- questions: List[str]
23
-
24
- output = Output
25
-
26
- def handle_data(self, data):
27
- m = Model()
28
- q_persona = QuestionFreeText(
29
- question_text=dedent(
30
- """\
31
- Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
- Make up a 1 paragraph persona for this person who would have answers for these questions.
33
- """
34
- ),
35
- question_name="persona",
36
- )
37
- results = (
38
- q_persona.by(m)
39
- .by(Scenario({"questions": data.questions, "population": data.population}))
40
- .run()
41
- )
42
- print("Constructing a persona that could answer the following questions:")
43
- print(data.questions)
44
- results.select("persona").print(
45
- pretty_labels={
46
- "answer.persona": f"Persona that can answer: {data.questions}"
47
- },
48
- split_at_dot=False,
49
- )
50
- persona = results.select("persona").first()
51
- return self.output(persona=persona, questions=data.questions)
52
-
53
-
54
- if __name__ == "__main__":
55
- pipeline = gen_pipeline([StageQuestions, StagePersona])
56
- pipeline.process(
57
- pipeline.input(
58
- overall_question="What are some factors that could determine whether someone likes ice cream?",
59
- persona="People",
60
- )
61
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from typing import List
4
+
5
+ from edsl.auto.StageBase import StageBase
6
+ from edsl.auto.StageBase import FlowDataBase
7
+ from edsl import Model
8
+ from edsl.auto.StageQuestions import StageQuestions
9
+
10
+ from edsl.questions import QuestionFreeText
11
+ from edsl.scenarios import Scenario
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StagePersona(StageBase):
17
+ input = StageQuestions.output
18
+
19
+ @dataclass
20
+ class Output(FlowDataBase):
21
+ persona: str
22
+ questions: List[str]
23
+
24
+ output = Output
25
+
26
+ def handle_data(self, data):
27
+ m = Model()
28
+ q_persona = QuestionFreeText(
29
+ question_text=dedent(
30
+ """\
31
+ Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
+ Make up a 1 paragraph persona for this person who would have answers for these questions.
33
+ """
34
+ ),
35
+ question_name="persona",
36
+ )
37
+ results = (
38
+ q_persona.by(m)
39
+ .by(Scenario({"questions": data.questions, "population": data.population}))
40
+ .run()
41
+ )
42
+ print("Constructing a persona that could answer the following questions:")
43
+ print(data.questions)
44
+ results.select("persona").print(
45
+ pretty_labels={
46
+ "answer.persona": f"Persona that can answer: {data.questions}"
47
+ },
48
+ split_at_dot=False,
49
+ )
50
+ persona = results.select("persona").first()
51
+ return self.output(persona=persona, questions=data.questions)
52
+
53
+
54
+ if __name__ == "__main__":
55
+ pipeline = gen_pipeline([StageQuestions, StagePersona])
56
+ pipeline.process(
57
+ pipeline.input(
58
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
59
+ persona="People",
60
+ )
61
+ )
@@ -1,88 +1,88 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValueRanges(StageBase):
18
- input = StagePersonaDimensionValues.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- focal_dimension_values: List[dict]
23
- mapping: dict
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- # breakpoint()
30
- """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
- dimension_values = data["dimension_values"]
32
- attribute_results = data["attribute_results"]
33
- persona = data["persona"]
34
- m = Model()
35
- d = dict(zip(attribute_results, dimension_values))
36
- q = QuestionList(
37
- question_text=dedent(
38
- """\
39
- Consider the following persona: {{ persona }}.
40
- They were categorized as having the following attributes: {{ d }}.
41
- For this dimension: {{ focal_dimension }},
42
- What are values that other people might have on this attribute?
43
- """
44
- ),
45
- question_name="focal_dimension_values",
46
- )
47
- s = [
48
- Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
- for k in d.keys()
50
- ]
51
- results = q.by(s).by(m).run()
52
- # breakpoint()
53
- results.select("focal_dimension", "answer.*").print(
54
- pretty_labels={
55
- "scenario.focal_dimension": f"Dimensions of a persona",
56
- "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
- },
58
- split_at_dot=False,
59
- )
60
-
61
- focal_dimension_values = results.select("focal_dimension_values").to_list()
62
- mapping = dict(zip(attribute_results, focal_dimension_values))
63
- return self.output(
64
- focal_dimension_values=focal_dimension_values,
65
- mapping=mapping,
66
- persona=persona,
67
- )
68
-
69
-
70
- if __name__ == "__main__":
71
- from edsl.auto.StageQuestions import StageQuestions
72
- from edsl.auto.StagePersona import StagePersona
73
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
-
75
- pipeline = gen_pipeline(
76
- [
77
- StageQuestions,
78
- StagePersona,
79
- StagePersonaDimensions,
80
- StagePersonaDimensionValues,
81
- StagePersonaDimensionValueRanges,
82
- ]
83
- )
84
- pipeline.process(
85
- pipeline.input(
86
- overall_question="What are some factors that could determine whether someone likes ice cream?"
87
- )
88
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValueRanges(StageBase):
18
+ input = StagePersonaDimensionValues.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ focal_dimension_values: List[dict]
23
+ mapping: dict
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ # breakpoint()
30
+ """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
+ dimension_values = data["dimension_values"]
32
+ attribute_results = data["attribute_results"]
33
+ persona = data["persona"]
34
+ m = Model()
35
+ d = dict(zip(attribute_results, dimension_values))
36
+ q = QuestionList(
37
+ question_text=dedent(
38
+ """\
39
+ Consider the following persona: {{ persona }}.
40
+ They were categorized as having the following attributes: {{ d }}.
41
+ For this dimension: {{ focal_dimension }},
42
+ What are values that other people might have on this attribute?
43
+ """
44
+ ),
45
+ question_name="focal_dimension_values",
46
+ )
47
+ s = [
48
+ Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
+ for k in d.keys()
50
+ ]
51
+ results = q.by(s).by(m).run()
52
+ # breakpoint()
53
+ results.select("focal_dimension", "answer.*").print(
54
+ pretty_labels={
55
+ "scenario.focal_dimension": f"Dimensions of a persona",
56
+ "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
+ },
58
+ split_at_dot=False,
59
+ )
60
+
61
+ focal_dimension_values = results.select("focal_dimension_values").to_list()
62
+ mapping = dict(zip(attribute_results, focal_dimension_values))
63
+ return self.output(
64
+ focal_dimension_values=focal_dimension_values,
65
+ mapping=mapping,
66
+ persona=persona,
67
+ )
68
+
69
+
70
+ if __name__ == "__main__":
71
+ from edsl.auto.StageQuestions import StageQuestions
72
+ from edsl.auto.StagePersona import StagePersona
73
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
+
75
+ pipeline = gen_pipeline(
76
+ [
77
+ StageQuestions,
78
+ StagePersona,
79
+ StagePersonaDimensions,
80
+ StagePersonaDimensionValues,
81
+ StagePersonaDimensionValueRanges,
82
+ ]
83
+ )
84
+ pipeline.process(
85
+ pipeline.input(
86
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
87
+ )
88
+ )
@@ -1,74 +1,74 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List, Dict
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
- from edsl import Model
11
- from edsl.questions import QuestionList, QuestionExtract
12
- from edsl.scenarios import Scenario
13
-
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValues(StageBase):
18
- input = StagePersonaDimensions.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- attribute_results: List[str]
23
- dimension_values: Dict[str, str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- attribute_results = data.attribute_results
30
- persona = data.persona
31
- m = Model()
32
- q = QuestionExtract(
33
- question_text=dedent(
34
- """\
35
- This is a persona: "{{ persona }}"
36
- They vary on the following dimensions: "{{ attribute_results }}"
37
- For each dimenion, what are some values that this persona might have for that dimension?
38
- Please keep answers very short, ideally one word.
39
- """
40
- ),
41
- answer_template={k: None for k in attribute_results},
42
- question_name="dimension_values",
43
- )
44
- results = (
45
- q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
- .by(m)
47
- .run()
48
- )
49
- results.select("attribute_results", "dimension_values").print()
50
- return self.output(
51
- dimension_values=results.select("dimension_values").first(),
52
- attribute_results=attribute_results,
53
- persona=persona,
54
- )
55
-
56
-
57
- if __name__ == "__main__":
58
- from edsl.auto.StageQuestions import StageQuestions
59
- from edsl.auto.StagePersona import StagePersona
60
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
-
62
- pipeline = gen_pipeline(
63
- [
64
- StageQuestions,
65
- StagePersona,
66
- StagePersonaDimensions,
67
- StagePersonaDimensionValues,
68
- ]
69
- )
70
- pipeline.process(
71
- pipeline.input(
72
- overall_question="What are some factors that could determine whether someone likes ice cream?"
73
- )
74
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List, Dict
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
+ from edsl import Model
11
+ from edsl.questions import QuestionList, QuestionExtract
12
+ from edsl.scenarios import Scenario
13
+
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValues(StageBase):
18
+ input = StagePersonaDimensions.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ attribute_results: List[str]
23
+ dimension_values: Dict[str, str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ attribute_results = data.attribute_results
30
+ persona = data.persona
31
+ m = Model()
32
+ q = QuestionExtract(
33
+ question_text=dedent(
34
+ """\
35
+ This is a persona: "{{ persona }}"
36
+ They vary on the following dimensions: "{{ attribute_results }}"
37
+ For each dimenion, what are some values that this persona might have for that dimension?
38
+ Please keep answers very short, ideally one word.
39
+ """
40
+ ),
41
+ answer_template={k: None for k in attribute_results},
42
+ question_name="dimension_values",
43
+ )
44
+ results = (
45
+ q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
+ .by(m)
47
+ .run()
48
+ )
49
+ results.select("attribute_results", "dimension_values").print()
50
+ return self.output(
51
+ dimension_values=results.select("dimension_values").first(),
52
+ attribute_results=attribute_results,
53
+ persona=persona,
54
+ )
55
+
56
+
57
+ if __name__ == "__main__":
58
+ from edsl.auto.StageQuestions import StageQuestions
59
+ from edsl.auto.StagePersona import StagePersona
60
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
+
62
+ pipeline = gen_pipeline(
63
+ [
64
+ StageQuestions,
65
+ StagePersona,
66
+ StagePersonaDimensions,
67
+ StagePersonaDimensionValues,
68
+ ]
69
+ )
70
+ pipeline.process(
71
+ pipeline.input(
72
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
73
+ )
74
+ )
@@ -1,69 +1,69 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersona import StagePersona
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
-
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- class StagePersonaDimensions(StageBase):
19
- input = StagePersona.output
20
-
21
- @dataclass
22
- class Output(FlowDataBase):
23
- attribute_results: List[str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- q_attributes = QuestionList(
30
- question_text=dedent(
31
- """\
32
- Here is a persona: "{{ persona }}"
33
- It was construced to be someone who could answer these questions: "{{ questions }}"
34
-
35
- We want to identify the general dimensions that make up this persona.
36
- E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
- """
38
- ),
39
- question_name="find_attributes",
40
- )
41
- m = Model()
42
- results = (
43
- q_attributes.by(
44
- Scenario({"persona": data.persona, "questions": data.questions})
45
- )
46
- .by(m)
47
- .run()
48
- )
49
- (
50
- results.select("find_attributes").print(
51
- pretty_labels={
52
- "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
- },
54
- split_at_dot=False,
55
- )
56
- )
57
- attribute_results = results.select("find_attributes").first()
58
- return self.output(attribute_results=attribute_results, persona=data.persona)
59
-
60
-
61
- if __name__ == "__main__":
62
- from edsl.auto.StageQuestions import StageQuestions
63
-
64
- pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?"
68
- )
69
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersona import StagePersona
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ class StagePersonaDimensions(StageBase):
19
+ input = StagePersona.output
20
+
21
+ @dataclass
22
+ class Output(FlowDataBase):
23
+ attribute_results: List[str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ q_attributes = QuestionList(
30
+ question_text=dedent(
31
+ """\
32
+ Here is a persona: "{{ persona }}"
33
+ It was construced to be someone who could answer these questions: "{{ questions }}"
34
+
35
+ We want to identify the general dimensions that make up this persona.
36
+ E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
+ """
38
+ ),
39
+ question_name="find_attributes",
40
+ )
41
+ m = Model()
42
+ results = (
43
+ q_attributes.by(
44
+ Scenario({"persona": data.persona, "questions": data.questions})
45
+ )
46
+ .by(m)
47
+ .run()
48
+ )
49
+ (
50
+ results.select("find_attributes").print(
51
+ pretty_labels={
52
+ "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
+ },
54
+ split_at_dot=False,
55
+ )
56
+ )
57
+ attribute_results = results.select("find_attributes").first()
58
+ return self.output(attribute_results=attribute_results, persona=data.persona)
59
+
60
+
61
+ if __name__ == "__main__":
62
+ from edsl.auto.StageQuestions import StageQuestions
63
+
64
+ pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
68
+ )
69
+ )